РЕПЕРФУЗИОННОЕ ПОВРЕЖДЕНИЕ СЕРДЦА. ОСНОВНЫЕ ЗВЕНЬЯ ПАТОГЕНЕЗА.

Ключевые слова

сердце
реперфузионное повреждение
Ca2 -перегрузка
окислительный стресс

Как цитировать

[1]
Л. Н. Маслов, «РЕПЕРФУЗИОННОЕ ПОВРЕЖДЕНИЕ СЕРДЦА. ОСНОВНЫЕ ЗВЕНЬЯ ПАТОГЕНЕЗА.», РФЖ, т. 104, вып. 8, с. 881—903, апр. 2018.

Аннотация

Установлено, что Ca2+-перегрузка кардиомиоцитов и усиление продукции активных форм кислорода играют ключевую роль в реперфузионном повреждении (РП) клеток сердца. Показано, что реперфузия приводит к гибели клеток в результате некроза, некроптоза, апоптоза и, возможно, аутофагии и пироптоза. Роль ферроптоза в РП сердца сомнительна. Повышение активности симпатоадреналовой системы негативно влияет на устойчивость сердца к действию реперфузии. Ангиотезин II и эндотелин-1 усугубляют РП сердца. Установлено, что тромбоциты играют важную роль в ишемическом и реперфузионном повреждении сердца. Основными клиническими проявлениями ишемического и реперфузионного повреждения сердца являются: некроз, желудочковые аритмии, сократительная дисфункция, феномен no-reflow.

Литература

Маслов Л. Н., Барбараш О. Л. Фармакологические подходы к ограничению размера инфаркта миокарда у пациентов с острым инфарктом миокарда. Эксперим. клин. фармакология 81(3): 75—82. 2018.

Сыркина А. Г., Белокопытова Н. В., Марков В. А., Эрлих А. Д. Как выполняются Национальные клинические рекомендации по лечению острого коронарного синдрома с подъемом сегмента ST в среднеурбанизированном городе Сибири по данным регистра РЕКОРД, 2. Сиб. мед. журн. (Томск) 28(3): 19—23. 2013.

Agrawal V., Gupta J. K., Qureshi S. S., Vishwakarma V. K. Role of cardiac renin angiotensin system in ischemia reperfusion injury and preconditioning of heart. Indian Heart J. 68(6): 856—861. 2016.

Alkaitis M. S., Crabtree M. J. Recoupling the cardiac nitric oxide synthases: tetrahydrobiopterin synthesis and recycling. Curr. Heart Fail Rep. 9(3): 200—210. 2012.

Alker K. J., Bellows S. D., Kloner R. A. Stuttering reperfusion of ischemic myocardium does not exacerbate myocardial infarction: evidence against lethal cell reperfusion injury in the rabbit. J. Thromb. Thrombolysis. 3(3): 185—188. 1996.

Arslan F., Keogh B., McGuirk P., Parker A. E. TLR2 and TLR4 in ischemia reperfusion injury. Mediators Inflamm. 2010: 704202. 2010.

Ault K. A., Cannon C. P., Mitchell J., McCahan J., Tracy R. P., Novotny W. F., Reimann J. D., Braunwald E. Platelet activation in patients after an acute coronary syndrome: results from the TIMI—12 trial. J. Am. Coll. Cardiol. 33(3): 634—639. 1999.

Baxter G. F. The neutrophil as a mediator of myocardial ischemia-reperfusion injury: time to move on. Basic. Res. Cardiol. 97(4): 268—275. 2002.

Baydoun A. R., Peers S. H., Cirino G., Woodward B. Effects of endothelin-1 on the rat isolated heart. J. Cardiovasc. Pharmacol. 13 (Suppl. 5): S193—S196. 1989.

Bhat A. M., Sacks H., Osborne J. A., Lefer A. M. Protective effect of the specific thromboxane receptor antagonist, BM-13505, in reperfusion injury following acute myocardial ischemia in cats. Am. Heart J. 117(4): 799—803. 1989.

Boag S. E., Andreano E., Spyridopoulos I. Lymphocyte communication in myocardial ischemia/reperfusion injury. Antioxid. Redox Signal. 26(12): 660—675. 2017.

Brar B. K., Stephanou A., Liao Z., O'Leary R. M., Pennica D., Yellon D. M., Latchman D. S. Cardiotrophin-1 can protect cardiac myocytes from injury when added both prior to simulated ischaemia and at reoxygenation. Cardiovasc. Res. 51(2): 265—274. 2001.

Braunwald E., Kloner R. A. Myocardial reperfusion: a double-edged sword? J. Clin. Invest. 76(5): 1713—1719. 1985.

Burgoyne J. R., Madhani M., Cuello F., Charles R. L., Brennan J. P., Schröder E., Browning D. D., Eaton P. Cysteine redox sensor in PKGIα enables oxidant-induced activation. Science. 317(5843): 1393—1397. 2007.

Burgoyne J. R., Rudyk O., Cho H. J., Prysyazhna O., Hathaway N., Weeks A., Evans R., Ng T., Schröder K., Brandes R. P., Shah A. M., Eaton P. Deficient angiogenesis in redox-dead Cys17Ser PKARI knock-in mice. Nat. Commun. 10: 7920—7928. 2015.

Butler M. J., Chan W., Taylor A. J., Dart A. M., Duffy S. J. Management of the no-reflow phenomenon. Pharmacol. Ther. 132(1): 72—85. 2011.

Byrne R. A., Ndrepepa G., Braun S., Tiroch K., Mehilli J., Schulz S., Schömig A., Kastrati A. Peak cardiac troponin-T level, scintigraphic myocardial infarct size and one-year prognosis in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction. Am. J. Cardiol. 106(9): 1212—1217. 2010.

Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic. Biol. Med. 117: 76—89. 2018.

Cecchi E., Liotta A. A., Gori A. M., Valente S., Giglioli C., Lazzeri C., Sofi F., Gensini G. F., Abbate R., Mannini L. Relationship between blood viscosity and infarct size in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Int. J. Cardiol. 134(2): 189—194. 2009.

Cerra F. B., Lajos T. Z., Montes M., Siegel J. H. Hemorrhagic infarction: A reperfusion injury following prolonged myocardial ischemic anoxia. Surgery. 78(1): 95—104. 1975.

Chandra R., Baumann F. G., Goldman R. A. Myocardial reperfusion, a cause of ischemic injury during cardiopulmonary bypass. Surgery. 80(2): 266—276. 1976.

Chatziathanasiou G. N., Nikas D. N., Katsouras C. S., Kazakos N. D., Bouba V., Vougiouklakis T., Naka K. K., Michalis L K. Combined intravenous treatment with ascorbic acid and desferrioxamine to reduce myocardial reperfusion injury in an experimental model resembling the clinical setting of primary PCI. Hellenic J. Cardiol. 53(3): 195—204. 2012.

Chen D., Yu J., Zhang L. Necroptosis: an alternative cell death program defending against cancer. Biochim. Biophys. Acta. 1865(2): 228—236. 2016.

Cohen M. V., Downey J. M. Combined cardioprotectant and antithrombotic actions of platelet P2Y12 receptor antagonists in acute coronary syndrome: just what the doctor ordered. J. Cardiovasc. Pharmacol. Ther. 19(2): 179—190. 2014.

Cohen M. V., Downey J. M. The impact of irreproducibility and competing protection from P2Y12 antagonists on the discovery of cardioprotective interventions. Basic Res. Cardiol. 112(6): 64. 2017.

Cohen M. V., Yang X. M, White J., Yellon D. M., Bell R. M., Downey J. M. Cangrelor-mediated cardioprotection requires platelets and sphingosine phosphorylation. Cardiovasc. Drugs Ther. 30(2): 229—232. 2016.

Cohen M. V., Yang X. M., Downey J. M. The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation. 115(14): 1895—1903. 2007.

Consolini A. E., Ragone M. I., Bonazzola P., Colareda G. A. Mitochondrial bioenergetics during ischemia and reperfusion. Adv. Exp. Med. Biol. 982: 141—167. 2017.

Cookson B., Brennan M. Pro-inflammatory programmed cell death. Trends Microbiol. 9(3): 113—114. 2001.

Coughlin T. R., Levitsky S., O'Donoghue M., Feinberg H. Effects of augmented myocardial blood flow on postischemic reperfusion injury. Surg. Forum. 30: 262—264. 1979.

Degterev A., Huang Z., Boyce M., Li Y., Jagtap P., Mizushima N., Cuny G. D., Mitchison T. J., Moskowitz M. A., Yuan J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1(2): 112—119. 2005.

Di Pasquale P., Paterna S., Parrinello G., Bucca V., Cannizzaro S., Pipitone F., Maringhini G., Scalzo S., Licata G. Captopril does not affect plasma endothelin-1 during thrombolysis and reperfusion. Int. J. Cardiol. 51(2): 131—135. 1995.

Dmitriev Y. V., Minasian S. M., Demchenko E. A., Galagudza M. M. Study of cardioprotective effects of necroptosis inhibitors on isolated rat heart subjected to global ischemia-reperfusion. Bull. Exp. Biol. Med. 155(2): 245—248. 2013.

Dobsak P., Siegelova J., Wolf J. E., Rochette L., Eicher J. C., Vasku J., Kuchtickova S., Horky M. Prevention of apoptosis by Deferoxamine during 4 hours of cold cardioplegia and reperfusion: in vitro study of isolated working rat heart model. Pathophysiology. 9(1): 27. 2002.

Dohi T., Maehara A., Brener S. J., Généreux P., Gershlick A. H., Mehran R., Gibson C. M., Mintz G. S., Stone G. W. Utility of peak creatine kinase-MB measurements in predicting myocardialinfarct size, left ventricular dysfunction, and outcome after first anterior wall acute myocardial infarction (from the INFUSE-AMI trial). Am. J. Cardiol. 115(5): 563—570. 2015.

Dong Q., Li J., Wu Q. F., Zhao N., Qian C., Ding D., Wang B. B., Chen L., Guo K. F., Fu D., Han B., Liao Y. H., Du Y. M. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice. Sci. Rep. 7: 42678. 2017.

Eddy L. J., Stewart J. R., Jones H. P., Engerson T. D., McCord J. M., Downey J. M. Free radical-producing enzyme, xanthine oxidase, is undetectable in human hearts. Am. J. Physiol. 253(3, pt 2): H709—H711. 1987.

Erickson J. R., Pereira L., Wang L., Han G., Ferguson A., Dao K., Copeland R. J., Despa F., Hart G. W., Ripplinger C. M., Bers D. M. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502(7471): 372—376. 2013.

Fang R., Zhang L. L., Zhang L. Z., Li W., Li M., Wen K. Sphingosine 1—phosphate postconditioning protects against myocardial ischemia/reperfusion injury in rats via mitochondrial signaling and Akt-Gsk3β phosphorylation. Arch. Med. Res. 48(2): 147—155. 2017.

Faxon D. P., Gibbons R. J., Chronos N. A., Gurbel P. A., Sheehan F., HALT-MI Investigators. The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: the results of the HALT-MI study. J. Am. Coll. Cardiol. 40(7): 1199—1204. 2002.

Ferrari R., Balla C., Malagù M., Guardigli G., Morciano G., Bertini M., Biscaglia S., Campo G. Reperfusion damage — a story of success, failure, and hope. Circ. J. 81(2): 131—141. 2017.

Fink S., Cookson B. Caspase‑1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 8(11): 1812—1825. 2006.

Finkel T. Signal transduction by reactive oxygen species. J. Cell. Biol. 194(1): 7—15. 2011.

Follette D., Fey K., Livesay J., Maloney J. V, Buckberg G. D. Studies on myocardial reperfusion injury. I. Favorable modification by adjusting reperfusate pH. Surgery. 82(1): 149—155. 1977.

Fukui Y., Nozawa T., Ihori H., Sobajima M., Nakadate T., Matsuki A., Nonomura M., Fujii N., Inoue H., Kinugawa K. Nicorandil attenuates ischemia-reperfusion injury via inhibition of norepinephrine release from cardiac sympathetic nerve terminals. Int. Heart J. 58(5): 787—793. 2017.

Funaro S., Galiuto L., Boccalini F., Cimino S., Canali E., Evangelio F., DeLuca L., Paraggio L., Mattatelli A., Gnessi L., Agati L. Determinants of microvascular damage recovery after acute myocardial infarction: results from the acute myocardial infarction contrast imaging (AMICI) multi-centre study. Eur. J. Echocardiogr. 12(4): 306—312. 2011.

Galluzzi L., Vitale I. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25(3): 486—541. 2018.

Ganot C. E., Kaltenbach J. P. Oxygen-induced enzyme release: early events and a proposed mechanism. J. Mol. Cell. Cardiol. 11(4): 389—406. 1979.

Gedik N., Thielmann M., Kottenberg E., Peters J., Jakob H., Heusch G., Kleinbongard P. No evidence for activated autophagy in left ventricular myocardium at early reperfusion with protection by remote ischemic preconditioning in patients undergoing coronary artery bypass grafting. PLoS One. 9(5): e96567. 2014.

Grootjans S., Vanden Berghe T., Vandenabeele P. Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ. 24(7): 1184—1195. 2017.

Gumina R. J., Mizumura T., Beier N., Schelling P., Schultz J. J., Gross G. J. A new sodium/hydrogen exchange inhibitor, EMD 85131, limits infarct size in dogs when administered before or after coronary artery occlusion. J. Pharmacol. Exp. Ther. 286(1): 175—183. 1998.

Hadi N. R., Al-Amran F. G., Hussien Y. A., Al-Yasiri I. K., Al-Turfy M. The cardioprotective potential of valsartan in myocardial ischaemia reperfusion injury. Cent. Eur. J. Immunol. 40(2): 159—166. 2015.

Haiyun L., Yijia L., Honggang L., Honghai W. Protective effect of total flavones from Elsholtzia blanda (TFEB) on myocardial ischemia induced by coronary occlusion in canines. J. Ethnopharmacol. 94(1): 101—107. 2004.

Halestrap A. P. A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem. Soc. Trans. 38(4): 841—860. 2010.

Halestrap A. P., Richardson A. P. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J. Mol. Cell. Cardiol. 78: 129—141. 2015.

Hanson B. Necroptosis: A new way of dying? Cancer Biol Ther. 17(9): 899—910. 2016.

Hausenloy D. J., Duchen M. R., Yellon D. M. Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia–reperfusion injury. Cardiovasc. Res. 60(3): 617—625. 2003.

Hayasaki T., Kaikita K., Okuma T., Yamamoto E., Kuziel W. A., Ogawa H., Takeya M. CC chemokine receptor-2 deficiency attenuates oxidative stress and infarct size caused by myocardial ischemia-reperfusion in mice. Circ. J. 70(3): 342—351. 2006.

Herzog W. R., Vogel R. A., Schlossberg M. L., Edenbaum L. R., Scott H. J., Serebruany V. L. Short-term low dose intracoronary diltiazem administered at the onset of reperfusion reduces myocardial infarct size. Int. J. Cardiol. 59(1): 21—27. 1997.

Hirai T., Fujita M., Yoshida N., Yamanishi K., Inoko M., Miwa K. Importance of ischemic preconditioning and collateral circulation for left ventricular functional recovery in patients with successful intracoronary thrombolysis for acute myocardial infarction. Am. Heart J. 126(4): 827—831. 1993.

Homma S., Kimura T., Sakai S., Yanagi K., Miyauchi Y., Aonuma K., Miyauchi T. Calcitonin gene-related peptide protects the myocardium from ischemia induced by endothelin-1: intravital microscopic observation and 31P-MR spectroscopic studies. Life Sci. 118(2): 248—254. 2014.

Huang C., Andres A. M., Ratliff E. P., Hernandez G., Lee P., Gottlieb R. A. Preconditioning involves selective mitophagy mediated by parkin and p62/SQSTM1. PLoS One. 6(6): e20975. 2011.

Ibarra-Lara L., Sánchez-Aguilar M., Sánchez-Mendoza A., Del Valle-Mondragón L., Soria-Castro E., Carreón-Torres E., Díaz-Díaz E., Vázquez-Meza H., Guarner-Lans V., Rubio-Ruiz M. E. Fenofibrate therapy restores antioxidant protection and improves myocardial insulin resistance in a rat model of metabolic syndrome and myocardial ischemia: the role of angiotensin II. Molecules. 22(1). pii: e31. 2016.

Ikeda Y., Young L. H., Scalia R., Ross C. R., Lefer A. M. PR-39, a proline/arginine-rich antimicrobial peptide, exerts cardioprotective effects in myocardial ischemia-reperfusion. Cardiovasc. Res. 49(1): 69—77. 2001.

Inserte J., Garcia-Dorado D., Ruiz-Meana M., Agulló L., Pina P., Soler-Soler J. Ischemic preconditioning attenuates calpain-mediated degradation of structural proteins through a protein kinase A-dependent mechanism. Cardiovasc. Res. 64(1): 105—114. 2004.

Ishikawa I., Hollenberg N. K. Blockade of the systemic and renal vascular actions of angiotensisn II with the 1-sar, 8-ala analogue in the rat. Life Sci. 17(1): 121—129. 1975.

Jordan J. E., Zhao Z. Q., Sato H., Taft S., Vinten-Johansen J. Adenosine A2 receptor activation attenuates reperfusion injury by inhibiting neutrophil accumulation, superoxide generation and coronary endothelial adherence. J. Pharmacol. Exp. Ther. 280(1): 301—309. 1997.

Jorgensen I., Miao E. A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev. 265(1): 130—142. 2015.

Kaplan A., Altara R., Eid A., Booz G. W., Zouein F. A. Update on the protective role of regulatory T cells in myocardial infarction: a promising therapy to repair the heart. J. Cardiovasc. Pharmacol. 68(6): 401—413. 2016.

Kawada T., Akiyama T., Li M., Zheng C., Turner M. J., Shirai M., Sugimachi M. Acute arterial baroreflex-mediated changes in plasma catecholamine concentrations in a chronic rat model of myocardial infarction. Physiol. Rep. 4(15). pii: e12880. 2016.

Kelly-Laubscher R. F., King J. C., Hacking D., Somers S., Hastie S., Stewart T., Imamdin A., Maarman G., Pedretti S., Lecour S. Cardiac preconditioning with sphingosine-1-phosphate requires activation of signal transducer and activator of transcription-3. Cardiovasc. J. Afr. 25(3): 118—123. 2014.

Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer. 26(4): 239—257. 1972.

Kim J. H., Na H. J., Kim C. K., Kim J. Y., Ha K. S., Lee H., Chung H. T., Kwon H. J., Kwon Y. G., Kim Y. M. The non-provitamin A carotenoid, lutein, inhibits NF-κB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-κB-inducing kinase pathways: role of H2O2 in NF-κB activation. Free Radic. Biol. Med. 45(6): 885—896. 2008.

Kingma J. G., Plante S., Bogaty P. Platelet GPIIb/IIIa receptor blockade reduces infarct size in a canine model of ischemia-reperfusion. J. Am. Coll. Cardiol. 36(7): 2317—2324. 2000.

Klionsky D. J. Autophagy revisited: A conversation with Christian de Duve. Autophagy. 4(6): 740—743. 2008.

Kloner R. A., Alker K. J. The effect of streptokinase on intramyocardial hemorrhage, infarct size, and the no-reflow phenomenon during coronary reperfusion. Circulation. 70(3): 513—521. 1984.

Kloner R. A., Brown D. A., Csete M., Dai W., Downey J. M., Gottlieb R. A., Hale S. L., Shi J. New and revisited approaches to preserving the reperfused myocardium. Nat. Rev. Cardiol. 14(11): 679—693. 2017.

Kloner R. A., Ganote C. E., Jennings R. B. The «no-reflow» phenomenon after temporary coronary occlusion in the dog. J. Clin. Invest. 54(6): 1496—1508. 1974.

Kloner R. A., Rude R. E., Carlson N., Maroko P. R, DeBoer L. W., Braunwald E. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation. 62(5): 945—952. 1980.

Knapp M. Cardioprotective role of sphingosine-1-phosphate. J. Physiol. Pharmacol. 62(6): 601—607. 2011.

Kobayashi Y. How to manage various arrhythmias and sudden cardiac death in the cardiovascular intensive care. J. Intensive Care. 6: 23. 2018.

Koga K., Kenessey A., Powell S. R., Sison C. P., Miller E. J., Ojamaa K. Macrophage migration inhibitory factor provides cardioprotection during ischemia/reperfusion by reducing oxidative stress. Antioxid. Redox Signal. 14(7): 1191—1202. 2011.

Koshinuma S., Miyamae M., Kaneda K., Kotani J., Figueredo V. M. Combination of necroptosis and apoptosis inhibition enhances cardioprotection against myocardial ischemia-reperfusion injury. J. Anesth. 28(2): 235—241. 2014.

Koudstaal S., Oerleman M. I., Van der Spoel T. I., Janssen A. W., Hoefer I. E., Doevendans P. A., Sluijter J. P., Chamuleau S. A. Necrostatin-1 alleviates reperfusion injury following acute myocardial infarction in pigs. Eur. J. Clin. Invest. 45(2):150—159. 2015.

Kroemer G., Galluzzi L., Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87(1): 99—163. 2007.

Kunichika H., Ben-Yehuda O., Lafitte S., Kunichika N., Peters B., DeMaria A. N. Effects of glycoprotein IIb/IIIa inhibition on microvascular flow after coronary reperfusion. A quantitative myocardial contrast echocardiography study. J. Am. Coll. Cardiol. 43(2): 276—283. 2004.

Langford E. J., Wainwright R. J., Martin J. F. Platelet activation in acute myocardial infarction and unstable angina is inhibited by nitric oxide donors. Arterioscler. Thromb. Vasc. Biol. 16(1): 51—55. 1996.

Lesnefsky E. J., Chen Q., Tandler B., Hoppel C. L. Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annu. Rev. Pharmacol. Toxicol. 57: 535—565. 2017.

Lim S. Y., Davidson S. M., Mocanu M. M., Yellon D. M., Smith C. C. The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial transition pore. Cardiovasc Drugs Ther. 21(6): 467—469. 2007.

Lishmanov A. Y., Maslov L. N., Lasukova T. V., Crawford D., Wong T. M. Activation of kappa-opioid receptor as a method for prevention of ischemic and reperfusion arrhythmias: role of protein kinase C and KATP channels. Bull. Exp. Biol. Med. 143(2): 187—190. 2007.

Lishmanov Y. B., Maslov L. N., Mukhomedzyanov A. V. Role of β-adrenoceptors and L-type Ca2+-channels in the mechanism of reperfusion-Induced heart injury. Bull. Exp. Biol. Med. 161(1): 20—23. 2016.

Loke K. E., Woodman O. L. Preconditioning improves myocardial function and reflow, but not vasodilator reactivity, after ischaemia and reperfusion in anaesthetized dogs. Clin. Exp. Pharmacol. Physiol. 25(7—8): 552—558. 1998.

Luedike P., Hendgen-Cotta U. B., Sobierajski J., Totzeck M., Reeh M., Dewor M, Lue H., Krisp C., Wolters D., Kelm M., Bernhagen J., Rassaf T. Cardioprotection through S-nitros(yl)ation of macrophage migration inhibitory factor. Circulation. 125(15): 1880—1889. 2012.

Luo D., Hu H., Qin Z., Liu S., Yu X., Ma R., He W., Xie J., Lu Z., He B., Jiang H. Stimulation of ganglionated plexus attenuates cardiac neural remodeling and heart failure progression in a canine model of acute heart failure post-myocardial infarction. Auton. Neurosci. 208: 73—79. 2017.

MacLean M. R., Randall M. D., Hiley C. R. Effects of moderate hypoxia, hypercapnia and acidosis on haemodynamic changes induced by endothelin-1 in the pithed rat. Br. J. Pharmacol. 98(3): 1055—1065. 1989.

Maslov L. N., Lishmanov Y. B., Oeltgen P. R., Barzakh E. I., Krylatov A. V., Govindaswami M., Brown S. A. Activation of peripheral delta2 opioid receptors increases cardiac tolerance to ischemia/reperfusion injury Involvement of protein kinase C, NO-synthase, KATP channels and the autonomic nervous system. Life Sci. 84(19—20): 657—663. 2009.

Menees D. S., Peterson E. D., Wang Y., Curtis J. P., Messenger J. C., Rumsfeld J. S., Gurm H. S. Door-to-balloon time and mortality among patients undergoing primary PCI. N. Engl. J. Med. 369(10): 901—909. 2013.

Minatoguchi S., Uno Y., Kariya T., Arai M., Wang N., Hashimoto K., Nishida Y., Maruyama R., Takemura G., Fujiwara T., Fujiwara H. Cross-talk among noradrenaline, adenosine and protein kinase C in the mechanisms of ischemic preconditioning in rabbits. J. Cardiovasc. Pharmacol. 41 (Suppl. 1): S39—S47. 2003.

Ming X., Tongshen W., Delin W., Ronghua Z. Cardioprotective effect of the compound yangshen granule in rat models with acute myocardial infarction. Evid. Based Complement. Alternat. Med. 2012: 717123. 2012.

Mirabet M., Garcia-Dorado D., Inserte J., Barrabés J. A., Lidón R. M., Soriano B., Azevedo M., Padilla F., Agulló L., Ruiz-Meana M., Massaguer A., Pizcueta P., Soler-Soler J. Platelets activated by transient coronary occlusion exacerbate ischemia-reperfusion injury in rat hearts. Am. J. Physiol 283(3): H1134—H1141. 2002.

Monassier J. P. Reperfusion injury in acute myocardial infarction. From bench to cath lab. Part I: Basic considerations. Arch. Cardiovasc. Dis. 101(7—8): 491—500. 2008.

Murry C. E., Jennings R. B., Reimer K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 74(5): 1124—1136. 1986.

Naumenko S. E., Latysheva T. V., Gilinskiĭ M. A. Ischemic preconditioning and metabolism of myocardial adrenaline. Kardiologiia. 50(6): 48—52. 2010.

Neri M., Riezzo I., Pascale N., Pomara C., Turillazzi E. Ischemia/reperfusion injury following acute myocardial infarction: a critical issue for clinicians and forensic pathologists. Mediators Inflamm. 2017: 7018393. 2017.

Obermayr R. P., Schlüter K. D., Schäfer M., Spieckermann P. G., Piper H. M. Protection of reoxygenated cardiomyocytes against sarcolemmal fragility: the role of glutathione. Pflugers Arch. 438(3): 365—367. 1999.

Oerlemans M. I., Liu J., Arslan F., den Ouden K., van Middelaar B. J., Doevendans P. A., Sluijter J. P. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res. Cardiol. 107: 270. 2012.

Okada T., Otani H., Wu Y., Kyoi S., Enoki C., Fujiwara H., Sumida T., Hattori R., Imamura H. Role of F-actin organization in p38 MAP kinase-mediated apoptosis and necrosis in neonatal rat cardiomyocytes subjected to simulated ischemia and reoxygenation. Am. J. Physiol. Heart Circ. Physiol. 289(6): H2310—H2318. 2005.

Okafor O. N., Farrington K., Gorog D. A. Allopurinol as a therapeutic option in cardiovascular disease. Pharmacol. Ther. 172: 139—150. 2017.

Ong S. B., Samangouei P., Kalkhoran S. B., Hausenloy D. J. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J. Mol. Cell. Cardiol. 78: 23—34. 2015.

Ong S. B., Subrayan S., Lim S. Y., Yellon D. M., Davidson S. M., Hausenloy D. J. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 121(18): 2012—2022. 2010.

Ozdemir R., Parlakpinar H., Polat A., Colak C., Ermis N., Acet A. Selective endothelin a (ETA) receptor antagonist (BQ-123) reduces both myocardial infarct size and oxidant injury. Toxicology. 219(1—3): 142—149. 2006.

Parameswaran S., Sharma R. K. Ischemia and reperfusion induce differential expression of calpastatin and its homologue high molecular weight calmodulin-binding protein in murine cardiomyocytes. PLoS One. 9(12): e114653. 2014.

Paraskevaidis I. A., Iliodromitis E. K., Vlahakos D., Tsiapras D. P., Nikolaidis A., Marathias A., Michalis A., Kremastinos D. T. Deferoxamine infusion during coronary artery bypass grafting ameliorates lipid peroxidation and protects the myocardium against reperfusion injury: immediate and long-term significance. Eur. Heart J. 26(3): 263—270. 2005.

Piper H. M., García-Dorado D. Prime causes of rapid cardiomyocyte death during reperfusion. Ann. Thorac. Surg. 68(5): 1913—1919. 1999.

Piper H. M., García-Dorado D., Ovize M. A fresh look at reperfusion injury. Cardiovasc. Res. 38(2): 291—300. 1998.

Preston T. J., Muller W. J., Singh G. Scavenging of extracellular H2O2 by catalase inhibits the proliferation of HER-2/Neu-transformed rat-1 fibroblasts through the induction of a stress response. J. Biol. Chem. 276(12): 9558—9564. 2001.

Qi D., Hu X., Wu X., Merk M., Leng L., Bucala R, Young L. H. Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ischemia/reperfusion. J. Clin. Invest. 119(12): 3807—3816. 2009.

Ravikumar B., Sarkar S., Davies J. E., Futter M., Garcia-Arencibia M., Green-Thompson Z. W., Jimenez-Sanchez M., Korolchuk V. I., Lichtenberg M., Luo S., Massey D. C., Menzies F. M., Moreau K., Narayanan U., Renna M., Siddiqi F. H., Underwood B. R., Winslow A. R., Rubinsztein D. C. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 90(4): 1383—1435. 2010.

Reimer K. A., Lowe J. E., Jennings R. B. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation. 56(5): 786—794. 1977.

Reimer K. A., Rasmussen M. M., Jennings R. B. Reduction by propranolol of myocardial necrosis following temporary coronary artery occlusion in dogs. Circ. Res. 33(3): 353—363. 1973.

Rodriguez-Sinovas A., Cabestrero A., García del Blanco B., Inserte J., García A., García-Dorado D. Intracoronary acid infusion as an alternative to ischemic postconditioning in pigs. Basic Res. Cardiol. 104(6): 761—771. 2009.

Romson J. L., Hook B. G., Kunkel S. L., Abrams G. D., Schork M. A., Lucchesi B. R. Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation. 67(5): 1016—1023. 1983.

Ruiz-Meana M., García-Dorado D. Translational cardiovascular medicine (II). Pathophysiology of ischemia-reperfusion injury: new therapeutic options for acute myocardial infarction. Rev. Esp. Cardiol. 62(2): 199—209. 2009.

Ruiz-Meana M., Garcia-Dorado D., Juliá M., González M. A., Inserte J., Soler-Soler J. Pre-treatment with trimetazidine increases sarcolemmal mechanical resistance in reoxygenated myocytes. Cardiovasc. Res. 32(3): 587—592. 1996.

Sala-Mercado J. A., Wider J., Undyala V. V., Jahania S., Yoo W., Mentzer R. M., Gottlieb R. A., Przyklenk K. Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury. Circulation. 122(11, suppl. 1): S179—S184. 2010.

Schäfer U., Kurz T., Jain D., Hartmann F., Dendorfer A., Tölg R., Raasch W., Dominiak P., Katus H., Richardt G. Impaired coronary flow and left ventricular dysfunction after mechanical recanalization in acute myocardial infarction: role of neurohumoral activation? Basic Res. Cardiol. 97(5): 399—408. 2002.

Schlüter K. D., Jakob G., Ruiz-Meana M., Garcia-Dorado D., Piper H. M. Protection of reoxygenated cardiomyocytes against osmotic fragility by nitric oxide donors. Am. J. Physiol. 271(2, pt 2): H428—H434. 1996.

Sciarretta S., Maejima Y., Zablocki D., Sadoshima J. The role of autophagy in the heart. Annu. Rev. Physiol. 80: 1—26. 2018.

Sellers M. M., Stallone J. N. Sympathy for the devil: the role of thromboxane in the regulation of vascular tone and blood pressure. Am. J. Physiol. Heart Circ. Physiol. 294(5): H1978—H1986. 2008.

Shavadia J., Zheng Y., Dianati Maleki N., Huber K., Halvorsen S., Goldstein P., Gershlick A. H., Wilcox R., Van de Werf F., Armstrong P. W. Infarct size, shock, and heart failure: does reperfusion strategy matter in early presenting patients with ST-segment elevation myocardial infarction? J. Am. Heart Assoc. 4(8): e002049. 2015.

Shintani T., Klionsky D. J. Autophagy in health and disease: a double-edged sword. Science 306(5698): 990—995. 2004.

Simes R. J., O'Connell R. L., Aylward P. E., Varshavsky S., Diaz R., Wilcox R. G., Armstrong P. W., Granger C. B., French J. K., Van de Werf F., Marschner I. C., Califf R., White H. D.; HERO-2 nvestigators. Unexplained international differences in clinical outcomes after acute myocardial infarction and fibrinolytic therapy: lessons from the Hirulog and Early Reperfusion or Occlusion (HERO)-2 trial. Am. Heart J. 159(6): 988—997. 2010.

Simpson P. J., Todd R. F., Fantone J. C., Mickelson J. K., Griffin J. D., Lucchesi B. R. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mo1, anti-CD11b) that inhibits leukocyte adhesion. J. Clin. Invest. 81(2): 624—629. 1988.

Simpson P. J., Todd R. F., Mickelson J. K., Fantone J. C., Gallagher K. P., Lee K. A., Tamura Y., Cronin M., Lucchesi B. R. Sustained limitation of myocardial reperfusion injury by a monoclonal antibody that alters leukocyte function. Circulation. 81(1): 226—237. 1990.

Singh A. D., Amit S., Kumar O. S., Rajan M., Mukesh N. Cardioprotective effects of bosentan, a mixed endothelin type A and B receptor antagonist, during myocardial ischaemia and reperfusion in rats. Basic Clin. Pharmacol. Toxicol. 98(6): 604—610. 2006.

Singh K. K., Yanagawa B., Quan A., Wang R., Garg A., Khan R., Pan Y., Wheatcroft M. D., Lovren F., Teoh H., Verma S. Autophagy gene fingerprint in human ischemia and reperfusion. J. Thorac. Cardiovasc. Surg. 147(3): 1065—1072. 2014.

Sinning C., Westermann D., Clemmensen P. Oxidative stress in ischemia and reperfusion: current concepts, novel ideas and future perspectives. Biomark. Med. 11(11): 11031—1040. 2017.

Stubbs P. J., Laycock J., Alaghband-Zadeh J., Carter G., Noble M. I. Circulating stress hormone and insulin concentrations in acute coronary syndromes: identification of insulin resistance on admission. Clin. Sci. (Lond.). 96(6): 589—595. 1999.

Su Y., Han W., Cao Y. Association between activities of SOD, MDA and Na+K+-ATPase in peripheral blood of patients with acute myocardial infarction and the complication of varying degrees of arrhythmia. Hellenic J. Cardiol. 59; pii: S1109-9666(18)30009-5. 2018.

Summers W. K., Jamison R. L. The no reflow phenomenon in renal ischemia. Lab. Invest. 25(6): 635—643. 1971.

Todd R. F., Nadler L. M., Schlossman S. F. Antigens on human monocytes identified by monoclonal antibodies. J. Immunol. 126(4): 1435—1442. 1981.

Vaidya S. R., Devarapally S. R, Arora S. Infarct related artery only versus complete revascularization in ST-segment elevation myocardial infarction and multi vessel disease: a meta-analysis. Cardiovasc. Diagn. Ther. 7(1): 16—26. 2017.

Van Hout G. P., van Solinge W. W., Gijsberts C. M., Teuben M. P., Leliefeld P. H., Heeres M., Nijhoff F., de Jong S., Bosch L., de Jager S. C., Huisman A., Stella P. R., Pasterkamp G., Koenderman L. J., Hoefer I. E. Elevated mean neutrophil volume represents altered neutrophil composition and reflects damage after myocardial infarction. Basic Res. Cardiol. 110(6): 58. 2015.

Veinot J. P., Gattinger D. A., Fliss H. Early apoptosis in human myocardial infarcts. Hum. Pathol. 28(4): 485—492. 1997.

Vinten-Johansen J., Lefer D. J., Nakanishi K., Johnston W. E., Brian C. A., Cordell A. R. Controlled coronary hydrodynamics at the time of reperfusion reduces post ischemic injury. Cor. Art. Dis. 3(11): 1081—1093. 1992.

Volz H. C., Buss S. J., Li J., Göser S., Andrassy M., Ottl R., Pfitzer G., Katus H. A., Kaya Z. Autoimmunity against cardiac troponin I in ischaemia reperfusion injury. Eur. J. Heart Fail. 13(10): 1052—1059. 2011.

Wang B. F., Yoshioka J. The emerging role of thioredoxin-interacting protein in myocardial ischemia/reperfusion injury. J. Cardiovasc. Pharmacol. Ther. 22(3): 219—229. 2017.

Wang J., Lin D., Peng H., Huang Y., Huang J., Gu J. Cancer-derived immunoglobulin G promotes tumor cell growth and proliferation through inducing production of reactive oxygen species. Cell Death Dis. 4: e945. 2013.

Wit A. L., Janse M. J. Reperfusion arrhythmias and sudden cardiac death. Circ. Res, 89(9): 741—743. 2001.

Wu Q. F., Qian C., Zhao N., Dong Q., Li J., Wang B. B., Chen L., Yu L., Han B., Du Y. M., Liao Y. H. Activation of transient receptor potential vanilloid 4 involves in hypoxia/reoxygenation injury in cardiomyocytes. Cell Death Dis. 8(5): e2828. 2017.

Wu X., Mintz G. S., Xu K., Lansky A. J., Witzenbichler B., Guagliumi G., Brodie B., Kellett M. A., Dressler O., Parise H., Mehran R., Stone G. W., Maehara A. The relationship between attenuated plaque identified by intravascular ultrasound and no-reflow after stenting in acute myocardial infarction: the HORIZONS-AMI (Harmoniazing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) trial. JACC Cardiovasc. Interv. 4(5): 495—502. 2011.

Xie Y., Hou W., Song X., Yu Y., Huang J., Sun X., Kang R., Tang D. Ferroptosis: process and function. Cell Death Differ. 23(3): 369—779. 2016.

Yang X. M., Liu Y., Cui L., Yang X., Liu Y., Tandon N., Kambayashi J., Downey J. M., Cohen M. V. Platelet P2Y12 blockers confer direct postconditioning-like protection in reperfused rabbit hearts. J. Cardiovasc. Pharmacol. Ther. 18(3): 251—262. 2013.

Yang X. M., Cui L., White J., Kuck J., Ruchko M. V., Wilson G. L., Alexeyev M., Gillespie M. N., Downey J. M., Cohen M. V. Mitochondrially targeted Endonuclease III has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion. Basic Res. Cardiol. 110(2): 3. 2015.

Yang X. P., Madeddu P., Micheletti R., English E., Rossi R., Giacalone G., Benatti P., Bianchi G. Effects of intravenous endothelin on hemodynamics and cardiac contractilityin conscious Milan normotensive rats. J. Cardiovasc. Pharmacol. 17(4): 662—669. 1991.

Yang Y., Hu W., Di S., Ma Z., Fan C., Wang D., Jiang S., Li Y., Zhou Q., Li T., Luo E. Tackling myocardial ischemic injury: the signal transducer and activator of transcription 3 (STAT3) at a good site. Expert Opin Ther Targets. 21(2): 215—228. 2017.

Ye Y., Birnbaum G. D., Perez-Polo J. R., Nanhwan M. K., Nylander S., Birnbaum Y. Ticagrelor protects the heart against reperfusion injury and improves remodeling after myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 35(8):1805—1814. 2015.

Zhang J., Zhang H., Li J., Rosenberg S., Zhang E. C., Zhou X., Qin F., Farabaugh M. RIP1-mediated regulation of lymphocyte survival and death responses. Immunol. Res. 51(2—3): 227—236. 2011.

Zhou Y., Chen S., Zhu X., Gui J., Abusaada K. Prior beta blockers use is independently associated with increased in patient mortality in patients presenting with acute myocardial infarction. Int. J. Cardiol. 243: 81—85. 2017.