КЛЕТКИ ЦЕРЕБРАЛЬНОГО ЭНДОТЕЛИЯ И ПЕРИВАСКУЛЯРНОЙ АСТРОГЛИИ В РЕГУЛЯЦИИ НЕЙРОГЕНЕЗА
PDF

Ключевые слова

нейрогенная ниша
нейрогенез
ангиогенез
церебральный эндотелий
локальное микроокружение

Как цитировать

Тепляшина, Е. А., Горина, Я. В., Хилажева, Е. Д., Бойцова , Е. Б., Мосягина, А. И., Малиновская , Н. А., Комлева , Ю. К., Моргун , А. В., Успенская, Ю. А., Шуваев, А. Н., & Салмина , А. Б. (2022). КЛЕТКИ ЦЕРЕБРАЛЬНОГО ЭНДОТЕЛИЯ И ПЕРИВАСКУЛЯРНОЙ АСТРОГЛИИ В РЕГУЛЯЦИИ НЕЙРОГЕНЕЗА. Российский физиологический журнал им. И. М. Сеченова, 108(5), 530–546. https://doi.org/10.31857/S0869813922050119

Аннотация

Гематоэнцефалический барьер представляет собой совокупность клеток в составе нейроваскулярной единицы головного мозга, выполняющих собственно барьерную функцию, а также участвующих в механизмах пластичности. Проницаемость гематоэнцефалического барьера определяется эффективностью формирования контактов между клетками церебрального эндотелия, механизмами трансцеллюлярной проницаемости, характером взаимодействия клеток эндотелия с периваскулярными клетками, в частности, перицитами и астроцитами. Кроме того, проницаемость барьера является производной от активности всей нейроваскулярной единицы и влияет на процессы нейропластичности, в частности, нейрогенез, который во взрослом головном мозге осуществляется в специализированных нейрогенных нишах, где поддержание пула стволовых и прогениторных клеток, их обновление, пролиферация, дифференцировка контролируются локальным микроокружением. Формирование этого микроокружения во многом определяется проницаемостью гематоэнцефалического барьера в микрососудах, составляющих сосудистую основу нейрогенных ниш. Поэтому функциональное сопряжение процессов нейрогенеза и неоангиогенеза является важным компонентом механизмов пластичности головного мозга. Процессы неоангиогенеза и нейрогенеза связаны между собой посредством эффектов широкого спектра регуляторных молекул: факторов роста, цитокинов, нейро- и глиотрансмиттеров и метаболитов. Современные технологии дают возможность разрабатывать новые протоколы управления активностью клеток, формирующих пронейрогенное и/или проангиогенное микроокружение. В обзоре обобщены современные представления о механизмах пластичности с участием клеток церебрального эндотелия и о возможностях управления или за счет адресного (оптогенетического) воздействия на периваскулярную астроглию.

https://doi.org/10.31857/S0869813922050119
PDF

Литература

Nikitin VP, Sherstnev VV (2009) The Concept of the Integrative Activities of Neurons and Mechanisms of Neuroplasticity. Neurochem J 3:29–34. https://doi.org/10.1134/S1819712409010048

Riguelme PA, Drapeau E, Doetsch F (2008) Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci 363:123–137. https://doi.org/10.1098/rstb.2006.2016

Trentesaux C, Striediner K, Pomerants J, Klein OD (2020) From gut to glutes: The critical role of niche signals in the maintenance and renewal of adult stem cells. Curr Opin Cell Biol 63:88–101.https://doi.org/10.1016/j.ceb.2020.01.004

Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: From precursors to network and physiology. Physiol Rev 85:523–569. https://doi.org/10.1152/physrev.00055.2003

Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335. https://doi.org/10.1002/cne.901240303

Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126:337–389. https://doi.org/10.1002/cne.901260302

Butti E, Cusimano M, Bacigaluppi M, Martino G (2014) Neurogenic and non-neurogenic functions of endogenous neural stem cells. Front Neurosci 8:92. https://doi.org/10.3389/fnins.2014.00092

Avarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683–686. https://doi.org/10.1016/s0896-6273(04)00111-4

Mind GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250.https://doi.org/10.1146/annurev.neuro.28.051804.101459

Mandairon N, Sacquet J, Garcia S, Ravel N, Jourdan F, Didier A (2006) Neurogenic correlates of an olfactory discrimination task in the adult olfactory bulb. Eur J Neurosci 24:3578–3588. https://doi.org/10.1111/j.1460-9568.2006.05235.x

Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E (2002) Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12:578–584.https://doi.org/10.1002/hipo.10103

Wiltrout C, Lang B, Yan Y, Dempsey RJ, Vemuganti R (2007) Repairing brain after stroke: A review on post-ischemic neurogenesis. Neurochem Int 50:1028–1041. https://pubmed.ncbi.nlm.nih.gov/17531349

Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT (2016) Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathol Appl Neurobiol 42:621–638.https://doi.org/10.1111/nan.12337

Young SZ, Taylor MM, Bordey A (2011) Neurotransmitters couple brain activity to subventricular zone neurogenesis. Eur J Neurosci 33:1123–1132. https://doi.org/10.1111/j.1460-9568.2011.07611.x

Lee JC (1971) Evolutyion in the concept of the blood-brain barrier phenomen. Prog Neuropathol 1:84–145.

Joó F (1996) Endothelial cells of the brain and other organ systems: some similarities and differences. Progress in Neurobiol 48:255–273. https://doi.org/10.1016/0301-0082(95)00046-1

Bradbury MW (1985) The blood-brain barrier. Transport across the cerebral endothelium. Circ Res 57:213–222. https://doi.org/10.1161/01.res.57.2.213

Begley DJ, Brightman MW (2003) Structural and functional aspects of the blood-brain barrier. Prog Drug Res 61:39–78. https://doi.org/10.1007/978-3-0348-8049-7_2

Pardridge WM (1999) Blood-brain barrier biology and methodology. J Neurovirol 5:556–569. https://doi.org/10.3109/13550289909021285

Roh E, Song DK, Kim MS (2016) Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp Mol Med 48:e216. https://doi.org/10.1038/emm.2016.4

Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health disease. Pharmacol Rev 57:173–185.https://doi.org/10.1124/pr.57.2.4

Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Ann Rev Neurosci 22:11–28. https://doi.org/10.1146/annurev.neuro.22.1.11

Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25. https://doi:10.1016/j.nbd.2009.07.030

Ballabh P, Braun A, Nedergaard M. (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16(1):1–13. https://pubmed.ncbi.nlm.nih.gov/15207256/

Салмина АБ, Моргун АВ, Кувачева НВ, Комлева ЮК, Пожиленкова ЕА, Кутищева ИА, Труфанова ЛВ, Таранушенко ТЕ, Мартынова ГП (2013) Межклеточные взаимодействия в развивающемся гематоэнцефалическом барьере. Педиатрия Журн им ГН Сперанского 92:155–159. [Salmina AB, Morgun AV, Kuvacheva NV, Komleva YuK, Pojilenkova EA, Kutischeva IA, Trufanova LV, Taranushenko TE, Martyinova GP (2013) Mezhkletochnyye vzaimodeystviya v razvivayushchemsya gematoentsefalicheskom bar'yere. Pediatriya Zhurn Im GN Speranskogo 92:155–159. (In Russ)].https://www.elibrary.ru/item.asp?id=19394048

Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494. https://doi.org/10.1002/1096-9861(20001002)425:4<479::aid-cne2>3.0.co;2-3

Apple DM, Kokovay E (2017) Vascular niche contribution to age-associate neural stem cell dysfunction. Am J Physiol August 11:896–902.https://journals.physiology.org/doi/pdf/10.1152/ajpheart.00154.2017

Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634.https://doi.org/10.1523/JNEUROSCI.22-03-00629.2002

Doetsch F (2003) A niche for adult neural stem cell niche. Curr Opin Genetic Develop 13:543–550. https://doi.org/10.1016/j.gde.2003.08.012

Salmina AB, Morgun AV, Kuvacheva NV, Lopatina OL, Komleva YK, Malinovskaya NA, Pozhilenkova EA (2014) Establishment of neurogenic microenvironment in the neurovascular unit: the connexin 43 story. Rev Neurosci 25:97–111. https://doi.org/10.1515/revneuro-2013-0044

Pozhilenkova EA, Lopatina OL, Komleva YK, Salmin VV, Salmina AB (2017) Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Rev Neurosci 28:397–415. https://doi.org/10.1515/revneuro-2016-0071

Conover JC, Notti RQ (2008) The neural stem cell niche. Cell Tissue Res 331:211–224. https://doi.org/10.1007/s00441-007-0503-6

Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A 99:11946–11950. https://doi.org/10.1073/pnas.182296499

Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36:1021–1034. https://doi.org/10.1016/s0896-6273(02)01133-9

Kilpatrick TJ, Barlett PF (1995) Cloned multipotential precursors from the mouse cerebrum require FGF-2, whereas glial restricted precursors are stimulated with either FGF-2 or EGF. J Neurosci 15:3653–3661.https://doi.org/10.1523/JNEUROSCI.15-05-03653.1995

Cheng A, Wang S, Cai J, Rao MS, Mattson MP (2003) Nitric oxide act in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain. Dev Biol 258:319–333. https://doi.org/10.1016/s0012-1606(03)00120-9

Andreu-Agulló C, Morante-Redolat JM, Delgado AC, Fariñas I (2009) Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nat Neurosci 12:1514–1523. https://doi.org/10.1038/nn.2437

Ramírez-Castillejo C, Sánchez-Sánchez F, Andreu-Agulló C, Ferrón SR, Aroca-Aguilar JD, Sánchez P, Mira H, Escribano J, Fariñas I (2006) Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat Neuroscience 9:331–339. https://doi.org/10.1038/nn1657

Zhang J, Jiao J (2015) Molecular Biomarkers for Embryonic and Adult Neural Stem Cell and Neurogenesis. Biomed Res Int 2015:727542. https://doi.org/10.1155/2015/727542

Bátiz LF, Castro MA, Burgos PV, Velásquez ZD, Muñoz RI, Lafourcade CA, Troncoso-Escudero P, Wyneken U (2016) Exosomes as Novel Regulators of Adult Neurogenic Niches. Front Cell Neurosci 9:501. https://doi.org/10.3389/fncel.2015.00501

Delgado AC, Ferrón SR, Vicente D, Porlan E, Perez-Villalba A, Trujillo CM, D'Ocón P, Fariñas I (2014) Endothelial NT-3 Delivered by Vasculature and CSF Promotes Quiescence of Subependymal Neural Stem Cells through Nitric Oxide Induction. Neuron 83:572–585. https://doi.org/10.1016/j.neuron.2014.06.015

Gómez-Gaviro MV, Scott CE, Sesay AK, Matheu A, Booth S, Galichet C, Lovell-Badge R (2012) Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. Proc Natl Acad Sci U S A 109:1317–1322. https://doi.org/10.1073/pnas.1016199109

Crouch EE, Liu C, Silva-Vargas V, Doetsch F (2015) Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci 35:4528–4539. https://doi.org/10.1523/JNEUROSCI.1188-14.2015

Chong CM, Ai N, Ke M, Tan Y, Huang Z, Li Y, Lu JH, Ge W, Su H (2018) Roles of Nitric Oxide Synthase Isoforms in Neurogenesis. Mol Neurobiol 55:2645–2652. https://doi.org/10.1007/s12035-017-0513-7

Goldberg JS, Hirschi KK (2012) A Vascular perspective on neurogenesis. In: Bonfanti L (ed.) Neural Stem Cells – New Perspectives. https://www.intechopen.com/chapters/44266

Lamus F, Martín C, Carnicero E, Moro JA, Fernández JMF, Mano A, Gato Á, Alonso MI (2020) FGF2/EGF contributes to brain neuroepithelial precursor proliferation and neurogenesis in rat embryos: the involvement of embryonic cerebrospinal fluid. Dev Dyn 249:141–153. https://doi.org/10.1002/dvdy.135

Zheng W, Nowakowski RS, Vaccarino FM (2004) Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev Neurosci 26:181–196. https://doi.org/10.1159/000082136

Killer K, Le O, Beauséjour C (2021) The Intracerebroventricular Injection of Murine Mesenchymal Stromal Cells Engineered to Secrete Epidermal Growth Factor Does Not Prevent Loss of Neurogenesis in Irradiated Mice. Radiat Res 196:315–322. https://doi.org/10.1667/RADE-21-00017.1

Yang C, Qi Y, Sun Z (2021) The Role of Sonic Hedgehog Pathway in the Development of the Central Nervous System and Aging-Related Neurodegenerative Diseases. Front Mol Biosci 8:711710. https://doi.org/10.3389/fmolb.2021.711710

Kandasamy M, Lehner B, Kraus S, Sander PR, Marschallinger J, Rivera FJ, Trümbach D, Ueberham U, Reitsamer HA, Strauss O, Bogdahn U, Couillard-Despres S, Aigner L (2014) TGF-beta signalling in the adult neurogenic niche promotes stem cell quiescence as well as generation of new neurons. J Cell Mol Med 18:1444–1459. https://doi.org/10.1111/jcmm.12298

Dumont CM, Piselli JM, Kazi N, Bowman E, Li G, Linhardt RJ, Temple S, Dai G, Thompson DM (2017) Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage. Stem Cells Dev 26:1199–1213.https://doi.org/10.1089/scd.2016.0350

Qiu Z, Yang J, Deng G, Li D, Zhang S (2021) Angiopoietin-like 4 promotes angiogenesis and neurogenesis in a mouse model of acute ischemic stroke. Brain Res Bull 168:156–164. https://doi.org/10.1016/j.brainresbull.2020.12.023

Obernier K, Alvarez-Buylla A (2019) Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development 146:dev156059. https://doi.org/10.1242/dev.156059

Li F, Chong ZZ, Maiese K (2006) Winding through the WNT pathway during cellular development and demise. Histol Histopathol 21:103–124. https://doi.org/10.14670/HH-21.103

Young JK, Heinbockel T, Gondré-Lewis MC (2013) Astrocyte fatty acid binding protein-7 is a marker for neurogenic niches in the rat hippocampus. Hippocampus 23:1476–1483. https://doi.org/10.1002/hipo.22200

Салмина АБ, Малиновская НА, Кувачева НВ, Моргун АВ, Хилажева ЕД, Горина ЯВ, Пожиленкова ЕА, Фролова ОВ (2014) Коннексиновые и паннексиновые транспортные системы в клетках нейроваскулярной единицы головного мозга. Нейрохимия 31:122–133. [Salmina AB, Malinovskaya NA, Kuvacheva NV, Morgun AV, Khilazheva ED, Gorina YaV, Pozhilenkova EA, Frolova OV (2014) Connexin and Pannexin Transport Systems in Cells of Neurovascular Unit of the Brain. Neurochem J 31:122–133. (In Russ)].https://doi.org/10.7868/s1027813314020095

Heneka MT, Rodríguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63:189–211. https://doi.org/10.1016/j.brainresrev.2009.11.004

Caesar K, Hashemi P, Douhou A, Bonvento G, Boutelle M, Walls, Lauritzen M (2008) Glutamate receptor-dependent increments in lactate, glucose and oxygen metabolism evoked in rat cerebellum in vivo. J Physiol 586(5):1337–1349. https://pubmed.ncbi.nlm.nih.gov/18187464/

Horvat A, Muhic M, Smolic T, Begic E, Zorec R, Kreft M, Vardjan N (2021) Ca2+ as the prime trigger of aerobic glycolysis in astrocytes. Cell Calcium 95: 102368.https://www.sciencedirect.com/science/article/pii/S0143416021000221

Siegenthaler JA, Sohet F, Daneman R (2013) 'Sealing off the CNS': cellular and molecular regulation of blood-brain barriergenesis. Curr Opin Neurobiol 23:1057–1064. https://doi.org/10.1016/j.conb.2013.06.006

Mizee MR, Wooldrik D, Lakeman KA, van het Hof B, Drexhage JA, Geerts D, Bugiani M, Aronica E, Mebius RE, Prat A, de Vries HE, Reijerkerk A (2013) Retinoic acid induces blood-brain barrier development. J Neurosci 33:1660–1671. https://doi.org/10.1523/JNEUROSCI.1338-12.2013

Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676. https://doi.org/10.1038/nm0603-669

You T, Bi Y, J Li, Zhang M, Chen X, Zhang K, Li J (2017) IL-17 induces reactive astrocytes and up-regulation of vascular endothelial growth factor (VEGF) through JAK/STAT signaling. Scient Rep7: 41779.https://www.nature.com/articles/srep41779

Choi SH, Kim HJ, Cho HJ, Park SD, Lee NE, Hwang SH, Rhim H, Kim HC, Cho IH, Nah SY (2019) Gintonin-mediated release of astrocytic vascular endothelial growth factor protect cortical astrocytes from hypoxia-induced cell damages. J Ginseng Res 43(2):305–311.https://khu.elsevierpure.com/en/publications/gintonin-mediated-release-of-astrocytic-vascular-endothelial-grow

Shen Y, Gu J, Liu Z, Xu C, Qian S, Zhang X, Zhou B, Guan Q, Sun, Y, Wang Y, Jin X (2018) Inhibition of HIF-1α Reduced Blood Brain Barrier Damage by Regulating MMP-2 and VEGF During Acute Cerebral Ischemia. Front Cell Neurosci 4.https://www.frontiersin.org/articles/10.3389/fncel.2018.00288/full

Liu J, Li J (2022) Astrocytes Protect Human Brain Microvascular Endothelial Cells from Hypoxia Injury by Regulating VEGF Expression. J Healthcare Engineer ID 1884959.https://www.hindawi.com/journals/jhe/2022/1884959/

Baumann J, Tsao CC, Huang SF, Gassmann M, Ogunshola OO (2021) Astrocyte-specific hypoxia-inducible factor 1 (HIF-1) does not disrupt the endothelial barrier during hypoxia in vitro. Fluids and Barriers of the CNS 18(13).https://fluidsbarrierscns.biomedcentral.com/articles/10.1186/s12987-021-00247-2

Jin K, Zhu Y, Sun Y, Mao, X., Xie, L., Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Biol Sci 99(18):11946–11950.https://www.pnas.org/doi/10.1073/pnas.182296499

Udo H, Yoshida Y, Kino T, Ohnuki K, Mizunoya W, Mukuda T, Sugiyama H (2008) Enhanced Adult Neurogenesis and Angiogenesis and Altered Affective Behaviors in Mice Overexpressing Vascular Endothelial Growth Factor 120. J Neurosci 28(53):14522–14536. https://sci-hub.wf/10.1523/JNEUROSCI.3673-08.2008

Комлева ЮК, Салмина АБ, Прокопенко СВ, Шестакова ЛА, Петрова ММ, Малиновская ММ, Лопатина ОЛ (2013) Изменения структурно-функциональной пластичности головного мозга, индуцированные обогащенной средой. Вестник акад мед наук 6:39–48. [Komleva Yu, Salmina AB, Prokopenko CV, Shestakova LA, Petrova MM, Malinovskaya NA, Lopatina OL (2013) Changes in structural and functional plasticity of the brain induced by environmental enrichment. Ann Rus Acad Med Sci 6:39–48. (In Russ)].https://www.elibrary.ru/item.asp?id=19139669

Hummel FC, Cohen LG (2005) Drivers of brain plasticipy. Curr Opin Neurol 18:667– 674. https://doi.org/10.1097/01.wco.0000189876.37475.42

Lin R, Cai J, Nathan C, Wei X, Schleidt S, Rosenwasser R, Iacovitti L (2015) Neurogenesis is enchanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability. Neurobiol Dis 74:229–239. https://doi.org/10.1016/j.nbd.2014.11.016

Font MA, Arboix A, Krupinski J (2010) Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke. Curr Cardiol Rev 6:238–244. https://doi.org/10.2174/157340310791658802

Biron KE, Dickstein DL, Gopaul R, Jefferies WA (2011) Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer's disease. PLoS One 6:e23789. https://doi.org/10.1371/journal.pone.0023789

Palma-Tortosa S, García-Culebras A, Moraga A, Hurtado O, Ruiz-Peres A, Duran-Laforet V, Parra J, Cuartero MI, Pradillo JM, Moro MA, Lizasoain I (2017) Specific Features of SVZ Neurogenesis After Cortical Ischemia: a Longitudinal Study. Sci Rep 7: 16343.https://doi.org/10.1038/s41598-017-16109-7

Deshapande SS, Malik S, Conforti P, Lin J-di, Chu Yu-H, Nath S, Greulich F, Dumbach M-A, Uhlenhaut NH, Shachtrup C (2021) P75 neurotrophin receptor controls subventricular zone neural stem cell after stroke. Cell and Tissue Res 926. https://link.springer.com/article/10.1007/s00441-021-03539-z

Liang H, Zhao H, Gleichman A, Carmichael ST (2019) Region-specific and activity-dependent regulation of SVZ neurogenesis and recovery after stroke. Biol Sci 116(27):13621–13630.https://doi.org/10.1073/pnas.1811825116

Mahoney ER, Dumitrescu L, Moore AM, Cambronero FE, De Jager PL, Koran MEI, Petyuk VA, Robinson RAS, Goyal S, Schneider JA, Bennett DA, Jefferson AL, Hohman TJ (2021) Brain expression of the vascular endothelial growth factor gene family in cognitive aging and alzheimer's disease. Mol Psychiatry 26:888–896. https://doi.org/10.1038/s41380-019-0458-5

Zhu H, Zhang Y, Zhong Yi, Ye Y, Hu X, Gu L, Xiong X (2021) Inflammation-Mediated Angiogenesis in Ischemic Stroke. Front Cell Neurosci https://www.frontiersin.org/articles/10.3389/fncel.2021.652647/full

Lin R, Cai J, Nathan C, Wei X, Schleidt S, Rosenwasser R, Iacovitti L (2015) Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability. Neurobiol Disease 74:229–239. https://doi.org/10.1016/j.nbd.2014.11.016

Lin R, Cai J, Kenyon L, Iozzo R, Rosenwasser R, Iacovitti L (2019) Systemic Factors Trigger Vasculature Cells to Drive Notch Signaling and Neurogenesis in Neural Stem Cells in the Adult Brain. Stem Cells 37:395–406.https://doi.org/10.1002/stem.2947

Rodrigues JJ, Jones VC, Verkhratsky A (2009) Impaired cell proliferation in the subventricular zone in an Alzheimer's disease model. Neuroreport 20(10):907–912. https://pubmed.ncbi.nlm.nih.gov/19494789/

Demars M, Hu Y-S, Gadadhar A, Lazarov O (2010) Impaired neurogenesis is an early event in the etiology of familial Alzheimer's disease in transgenic mice. J Neurosci Res 88(10):2103–2117. https://pubmed.ncbi.nlm.nih.gov/20209626/

Gerozissis K (2008) Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies. Eur J Pharmacol 585:38–49. https://doi.org/10.1016/j.ejphar.2008.01.050

Lin R, Cal J, Kenyon L, Iozzo R, Rosenwasser R, Iacovitti L (2019) Systemic Factors Trigger Vasculature Cells to Drive Notch Signaling and Neurogenesis in Neural Stem Cells in the Adult Brain. Stem Cells 37:395–406. https://doi.org/10.1002/stem.2947

Garcia-Caceres C, Quarta C, Varela L, Gao Y, Gruber T, Legutko B, Jastroch M, Johansson P, Ninkovic J, Yi C-X, Le Thuc O, Szigeti-Buck K, Cai W, Meyer CW, Pfluger PT, Fernandez A, Luquet S, Woods SC, Torres-Aleman I, Kahn CR, Gotz M, Horvanth TL, Tschop MH (2016) Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability. Cell 166(4):867–880.https://pubmed.ncbi.nlm.nih.gov/27518562/

Салмина АБ, Яузина НА, Кувачева НВ, Петрова ММ, Таранушенко ТЕ, Малиновская НА, Лопатина ОЛ, Моргун АВ, Пожиленкова ЕА, Окунева ОС, Морозова ГА, Прокопенко СВ (2013) Инсулин и инсулинорезистентность: новые молекулы-маркеры и молекулы-мишени для диагностики и терапии заболеваний центральной нервной системы. Бюл сибирск мед 12:104–118. [Salmina AB, Yauzina NA, Kuvacheva NV, Petrova MM, Taranushenko TY, Malinovskaya NA, Lopatina OL, Morgun AV, Pozhilenkova YA, Okuneva OS, Morozova GA, Prokopenko SV (2013) Insulin and insulin resistance: new molecule markers and target molecule for the diagnosis and therapy of disease of central nervous system. Bull Siber Med 12:104–118. (In Russ)].https://doi.org/10.20538/1682-0363-2013-5-104-118

Горина ЯВ, Салмина АБ, Кувачева НВ, Комлева ЮК, Федюкович ЛВ, Успенская ЮА, Морозова ГА, Демко ИВ, Петрова ММ (2014) Нейровоспаление и инсулинорезистентность при болезни Альцгеймера. Сибирск мед обозр 4:11–19. [Gorina YaV, Salmina AB, Kuvacheva NV, Komleva YuK, Fedyukovich LV, Uspenskaya YuA, Morozova GA, Demko IV, Petrova MM (2014) Neuroinflammation and insulin resistance in Alzheimer’s disease. Siber Med Rev 4:11–19. (In Russ)].https://www.elibrary.ru/query_results.asp

Горина ЯВ, Лопатина ОЛ, Комлева ЮК, Черных АИ, Салмина АБ (2018) Роль нейровоспаления в реализации когнитивных функций и социального взаимодействия у мышей с возрастзависимой нейродегенерацией. Анналы клин экспер неврол 12:27–32. [Gorina YaV, Lopatina OL, Komleva YuK, Chernikh AI, Salmina AB (2018) The role neuroinflammation in cognitive functions and social interaction in mice with age-dependent neurodegeneration. Ann Clin Exp Neurol 12:27–32. (In Russ)]. https://www.elibrary.ru/item.asp?id=42236418&

Горина ЯВ, Осипова ЕД, Моргун АВ, Малиновская НА, Комлева ЮК, Салмина АБ (2020) Абберантный ангиогенез в ткани головного мозга при экспериментальной болезни Альцгеймера. Бюлл сибирск мед 19:46–52. [Gorina YaV, Osipova ED, Morgun AV, Malinovskaya NA, Komleva YuK, Lopatina OL, Salmina AB (2020) Aberrant angiogenesis in brain tissue in experimental Alzheimer’s disease. Bull Siber Med 19:46–52. (In Russ)].https://doi.org/10.20538/1682-0363-2020-4-46-52

Hockeimer W (2021) Non-spatial Information Encoding in Hippocampal CA1. Theses and Dissertation, Electronic (ETDs).https://jscholarship.library.jhu.edu/handle/1774.2/63959

Моргун АВ, Осипова ЕД, Бойцова ЕБ, Лопатина ОЛ, Горина ЯВ, Пожиленкова ЕА, Салмина АБ (2020) Васкулярный компонент нейровоспаления при экспериментальной болезни Альцгеймера у мышей. Цитология 62:16–23. [Morgun AV, Osipova ED, Boytsova EB, Lopatina OL, Gorina YaV, Pozhilenkova EA, Salmina AB (2020) Vascular component of neuroinflammation in experimental Alzheimers disease in mice. Tsitologiya 62:16–23. (In Russ)].https://doi.org/10.31857/s0041377120010058

Горина ЯВ, Осипова ЕД, Моргун АВ, Бойцова ЕБ, Лопатина ОЛ, Салмина АБ (2021) Оценка уровня RAGE в клетках гематоэнцефалического барьера при экспериментальной болезни Альцгеймера. Цитология 63:176–183. [Gorina YaV, Osipova ED, Morgun AV, Boytsova EB, Lopatina OL, Salmina AB (2021) Assessment of the RAGE in cells blood-brain barrier in experiment Alzheimers disease. Tsitologiya 63:176–183. (In Russ)]. https://doi./10.1134/S1990519X21030032

Моргун АВ, Осипова ЕД, Бойцова ЕБ, Шуваев АН, Комлева ЮК, Труфанова ЛВ, Вайс ЕФ, Салмина АБ (2019) Астроцит-опосредованные механизмы регуляции нейрогенеза в модели нейрогенной ниши in vitro при действии Aβ1-42. Биомед химия 65:366–373. [Morgun AV, Osipova ED, Boytsova EB, Shuvaev YuN, Komleva YuK, Trufanova LV, Vais EF, Salmina AB (2019) Astroglia-mediated regulation of cell development in the model of neurogenic niche in vitro treated with Aβ1-42. Biomed khim 65:366–373. (In Russ)].https://doi.org/10.18097/pbmc20196505366

Хилажева ЕД, Моргун АВ, Бойцова ЕБ, Мосягина АИ, Шуваев АН, Малиновская НА, Успенская ЮА, Пожиленкова ЕА, Салмина АБ (2021) Особенности экспрессионного профиля клеток в модели нейрогенной ниши гиппокампа in vitro при оптогенетической стимуляции. Биомед химия 67:34–41. [Khilazheva ED, Morgun AV, Boytsova EB, Mosiagina AI, Shuvaev AN, Malinovskaya NA, Uspenskaya YuA, Pozhilenkova EA, Salmina AB (2021) Features of the in vitro expression profile of hippocampal neurogenic niche cells during optogenetic stimulation. Biomed khim 67:34–41. (In Russ)].https://doi.org/10.18097/pbmc20216701034

Хилажева ЕД, Писарева НВ, Моргун АВ, Бойцова ЕБ, Таранушенко ТЕ, Фролова ОВ, Салмина АБ (2017) Активация лактатных рецепторов GPR81 стимулирует митохондриальный биогенез в клетках эндотелия церебральных микрососудов. Анналы клин экспер неврол 11:34–39. [Khilazheva ED, Pisareva NB, Morgun AV, Boytsova EB, Taranushenko TE, Frolova OV, Salmina AB (2017) Activation of lactate receptors GPR81 stimulates mitochondrial biogenesis in celebral microvessel endothelial cell. Ann Clin Exp Neurol 11:34–39. (In Russ)].https://doi.org/10.18454/ACEN.2017.1.6155