ВЛИЯНИЕ НЕЙРОТРАНСМИТТЕРОВ НА ФУНКЦИОНИРОВАНИЕ ОБОНЯТЕЛЬНЫХ СЕНСОРНЫХ НЕЙРОНОВ
PDF

Ключевые слова

обонятельные сенсорные нейроны
рецепторы NMDA
дофаминовые рецепторы
мускариновые ацетилхолиновые рецепторы
серотониновые рецепторы
глутамат

Как цитировать

Бигдай, Е. В., & Самойлов, В. О. (2022). ВЛИЯНИЕ НЕЙРОТРАНСМИТТЕРОВ НА ФУНКЦИОНИРОВАНИЕ ОБОНЯТЕЛЬНЫХ СЕНСОРНЫХ НЕЙРОНОВ. Российский физиологический журнал им. И. М. Сеченова, 108(6), 699–711. https://doi.org/10.31857/S0869813922060012

Аннотация

В статье анализируются литературные данные, из которых следует, что обонятельные сенсорные нейроны объединяют в себе свойства, типичные для обонятельных рецепторных клеток, предназначенных для восприятия запахов, и свойства, присущие нейронам ЦНС. Это обусловливается тем, что в их мембране экспрессируются не только молекулярные белки-рецепторы, специфические для данной пахучей молекулы, но и рецепторы к таким нейротрансмиттерам, как глутамат, дофамин, серотонин, адреналин, ацетилхолин. Они играют нейрозащитную и модулирующую роль в функционировании рецепторного аппарата обонятельного анализатора. Кроме того, экспрессия и функциональность рецепторов к этим нейротрансмиттерам в обонятельных сенсорных нейронах представляет особый интерес, поскольку они вовлекаются в патогенез таких заболеваний, как шизофрения, болезнь Паркинсона и другие психоневрологических заболевания.

https://doi.org/10.31857/S0869813922060012
PDF

Литература

McClintock TS, Khan N, Xie C, Martens JR (2020) Maturation of the Olfactory Sensory Neuron and Its Cilia. Chemical Senses 45:805–822. https://doi.org/10.1093/chemse/bjaa070

Самойлов ВО, Бигдай ЕВ, Руденко ЯН, Бекусова ВВ, Дудич БА (2008) Две молекулярные системы подвижности обонятельных жгутиков лягушки. Биофизика 53: 997–100. [Samoilov VO, Bigdai EV, Dudich BA, Rudenko YN, Bekusova VV (2008) Two molecular motility systems of the frog olfactory cilia. Biophysics 53: 539–543. (In Russ)].

Qiu L, LeBel R, Storm DR, Chen X (2016) Type 3 adenylyl cyclase: a key enzyme mediating the cAMP signaling in neuronal cilia. J Physiol Pathophysiol Pharmacol 8: 95–108.

Бигдай ЕВ (2004) Гетерогенность молекулярных механизмов обонятельной рецепции. Рос физиол журн им ИМ Сеченова 90:790–800. [Bigday EV (2004) Heterogeneity of molecular mechanisms of olfactory reception. Russ J Physiol 90:790–800. (In Russ)].

Бигдай ЕВ, Самойлов ВО (2018) Xемосенсорные и механосенсорные функции обонятельных жгутиков. Биофизика 63: 1146–1153. [Bigday EV, Samojlov VO (2018) Chemosensory and mechanosensory functions of olfactory cilia. Biophysics 63:1146–1153. (In Russ]. https://doi.org/10.1134/S0006350918060027

Nagayama S, Enerva A, Fletcher ML, Masurkar AV, Igarashi KM, Mori K, Chen WR (2010) Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Front Neural Circuits 4:1–8. https://doi.org/10.3389/fncir.2010.00120

Abuin L, Bargeton B, Ulbrich MH, Isacoff EY, Kellenberger S, Benton R (2011) Functional Architecture of Olfactory Ionotropic Glutamate Receptors. Neuron 69: 44–60. https://doi.org/10.1016/j.neuron.2010.11.042

Chen Q, Man Y, Li J, Pei D, Wu W (2017) Olfactory Ionotropic Receptors in Mosquito Aedes albopictus (Diptera: Culicidae). J Med Entomol 54:1229–1235. https://doi.org/10.1093/jme/tjx063

Borgmann-Winter KE, Rawson NE, Wang H-Y, Wang H, MacDonald ML, Ozdener MH, Yee KK, Gomez G, Xu J, Bryant B, Adamek G, Mirza N, Pribitkin E, Hahn C-G (2009) Human olfactory epithelial cells generated in vitro express diverse neuronal characteristics. Neuroscience 158: 642–653. https://doi.org/10.1016/j.neuroscience.2008.09.059

Lee JH, Wei L, Deveau TC, Gu X, Yu SP (2016) Expression of the NMDA receptor subunit GluN3A (NR3A) in the olfactory system and its regulatory role on olfaction in the adult mouse. Brain Struct Funct 221: 3259-3273. https://doi.org/10.1007/s00429-015-1099-3

Kehoe LA, Bernardinelli Y, Muller D (2013) GluN3A: An NMDA Receptor Subunit with Exquisite Properties and Functions. Neural Plasticity 1–12. https://doi.org/10.1155/2013/145387

Tong G, Takahashi H, Tu S, Shin Y, Talantova M, Zago W, Xia P, Nie Z, Goetz T, Zhang D, Lipton SA, Nakanishi N (2008) Modulation of NMDA Receptor Properties and Synaptic Transmission by the NR3A Subunit in Mouse Hippocampal and Cerebrocortical Neurons. J Neurophysiol 99: 122–132. https://doi.org/10.1152/jn.01044.2006

Nakanishi N, Tu S, Shin Y, Cui J, Kurokawa T, Zhang D, Chen H-SV, Tong G, Lipton SA (2009) Neuroprotection by the NR3A Subunit of the NMDA Receptor. J Neurosci 29: 5260–5265. https://doi.org/10.1523/JNEUROSCI.1067-09.2009

Henson MA, Larsen RS, Lawson SN, Pe ́ rez-Otan ̃ o I, Nakanishi N, Lipton SA, Philpot BD (2012) Genetic Deletion of NR3A Accelerates Glutamatergic Synapse Maturation. PLoS ONE 7: e42327.

Low C-M, Wee KS-L (2010) New Insights into the Not-So-New NR3 Subunits of N-Methyl-D-aspartate Receptor: Localization, Structure, and Functio. Mol Pharmacol 78: 1–11. https://doi.org/10.1124/mol.110.064006

Chetkovich DM, Sweatt JD (1993) NMDA Receptor Activation Increases Cyclic AMP in Area CA 1 of the Hippocampus via Calcium/Calmodulin Stimulation of Adenylyl Cyclase. J Neurochem 61: 1933–1942. https://doi.org/10.1111/j.1471-4159.1993.tb09836.x

Lee JH, Wei ZZ, Chen D, Gu X, Wei L, Yu SP (2015) A neuroprotective role of the NMDA receptor subunit GluN3A (NR3A) in ischemic stroke of the adult mouse. Am J Physiol Cell Physiol 308: C570–C577. https://doi.org/10.1152/ajpcell.00353.2014

Kleene SJ (2008) The Electrochemical Basis of Odor Transduction in Vertebrate Olfactory Cilia. Chem Senses 33P: 839–859. https://doi.org/10.1093/chemse/bjn048

Hanh C-G, Han L-Y, Rawson NE, Mirza N, Borgmann-Winter K, Lenox RH, Arnold SE (2005) In Vivo and In Vitro Neurogenesis in Human Olfactory Epithelium. J Compar Neurol 483: 154–163. https://doi.org/10.1002/cne.20424

Pantazopoulos H, Boyer-Boiteau A, Holbrook EH, Jang W, Hahn C-G, Arnold SE, Berretta S (2013) Proteoglycan abnormalities in olfactory epithelium tissue from subjects diagnosed with schizophrenia. Spec Sect Negat Symptoms 150: 366–372. https://doi.org/10.1016/j.schres.2013.08.013

Arnold SE, Han L-Y, Moberg PJ, Turetsky BI, Gur RE, Trojanowski JQ, Hahn C-G (2001) Dysregulation of olfactory receptor neuron lineage in schizophrenia. Arch Gen Psychiatry. 58: 829–835. https://doi.org/10.1001/archpsyc.58.9.829

Javitt DC (2007) Glutamate and Schizophrenia: Phencyclidine, N-Methyl-d-Aspartate Receptors, and Dopamine–Glutamate Interactions. Integrat Neurobiol Schizophr 78: 69–108. https://doi.org/10.1016/S0074-7742(06)78003-5

Thukral V, Chikaraishi D, Hunter DD, Wang JKT (1997) Expression of non-N-Methyl-D-Aspartate glutamate receptor Subunits in the olfactory epithelium. Neuroscience 79: 411–424. https://doi.org/10.1016/s0306-4522(96)00699-9

Fe´ron F, Vincent A, Mackay-Sim A (1999) Dopamine promotes differentiation of olfactory neuron in vitro. Brain Res 845: 252–259. https://doi.org/10.1016/s0006-8993(99)01959-9

Coronas V, Srivastava LK, Liang J-J, Jourdan F, Moyse E (1997) Identification and localization of dopamine receptor subtypes in rat olfactory mucosa and bulb: a combined in situ hybridization and ligand binding radioautographic approach. J Chem Neuroanat. 12: 243–257. https://doi.org/10.1016/s0891-0618(97)00215-9

Koster NL, Norman AB, Richtand NM, Nickell WT, Puche AC, Pixley YSK, Shipley MT (1999) Olfactory receptor neurons express D2 dopamine receptors. J Comp Neurol 411: 666–673. https://doi.org/10.1002/(sici)1096-9861(19990906)411:4<666::aid-cne10>3.0.co;2-s

Martel JC, McArthur SG (2020). Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front Pharmacol 11. https://doi.org/10.3389/fphar.2020.01003

Carli M, Kolachalam S, Aringhieri S, Rossi M, Giovannini L, Maggio R, Scarsell M (2018) Dopamine D2 Receptors Dimers: How can we Pharmacologically Target Them? Current Neuropharmacol 16: 222-230. https://doi.org/10.2174/1570159X15666170518151127

Coronas V, Féron F, Hen R., Sicard G, Jourdan F, Moyse E (1997) In Vitro Induction of Apoptosis or Differentiation by Dopamine in an Immortalized Olfactory Neuronal Cell Line. J Neurochem 69: 1870–1881.

Бигдай ЕВ, Фуфачев ДК, Петров ПР, Самойлов ВО (2017) Механизмы электромеханического и электрохимического сопряжений в обонятельных жгутиках лягушки (Rana temporaria). Биофизика 62:311–318. [Bigdaj EV, Samojlov VO, Fufachev DK, Petrov PR (2017) Mechanisms of electromechanical and electrochemical coupling in olfactory cilia of the frog (Rana temporaria). Biophysics 62:240-246. (In Russ)]. https://doi.org/10.1134/S0006350917020051

Hegg CC, Lucero MT (2004) Dopamine Reduces Odor- and Elevated-K+-Induced Calcium Responses in Mouse Olfactory Receptor Neurons In Situ. J Neurophysiol 91: 1492–1499.

Vargas G, Lucero MT (1999) Dopamine modulates inwardly rectifying hyperpolarization-activated current (Ih) in cultured rat olfactory receptor neurons. J Neurophysiol 81: 149–158. https://doi.org/10.1152/jn.1999.81.1.149

Yano H, Cai N-S, Xu M, Verma RK, Rea W, Hoffman AF, Shi L, Javitch JA, Bonci A, Ferré S (2018) Gs- versus Golf-dependent functional selectivity mediated by the dopamine D1 receptor. Nat Communicat 9: 486. https://doi.org/10.1038/s41467-017-02606-w

Lucero MT, Squires A (1998) Catecholamine concentrations rat nasal mucus are modulated by trigeminal stimulation of the nasal cavity. Brain Res 807: 234–236. https://doi.org/10.1016/s0006-8993(98)00825-7

Coronas V, Krantic S, Jourdan F, Moyse E (1999) Dopamine receptor coupling to adenylyl cyclase in rat olfactory pathway: a combined pharmacological-radioautographyic approach. Neuroscience 90: 69–78. https://doi.org/10.1016/s0306-4522(98)00460-6

Gao S, Guo X, Liu T, Liu J, Chen W, Xia Q, Chen Y, Tang Y (2013) Serotonin Modulates Outward Potassium Currents in Mouse Olfactory Receptor Neurons. Physiol Res 62: 455-462. https://doi.org/10.33549/physiolres.932413

Hedlund B, Shepherd GM (1983) Biochemical studies on muscarinic receptors in the salamander olfactory epithelium. FEBS Lett 162: 428–431. https://doi.org/10.1016/0014-5793(83)80801-1

Li YR, Matsunami H (2011) Activation state of the M3 muscarinic acetylcholine receptor modulates mammalian odorant receptor signaling. Sci Signal 4: ra1. https://doi.org/10.1126/scisignal.2001230

Hall RA (2011) Autonomic modulation of olfactory signaling. Sci Signal 4: Pe1. https://doi.org/10.1126/scisignal.2001672

Jiang Y, Li YR, Tian H, Ma M, Matsunami H (2015). Muscarinic Acetylcholine Receptor M3 Modulates Odorant Receptor Activity via Inhibition of β-Arrestin-2 Recruitment. Nat Commun 6: 6448. https://doi.org/10.1038/ncomms7448

Ohkuma M, Kawai F, Miyachi E (2013) Acetylcholine enhances excitability by lowering the threshold of spike generation in olfactory receptor cells. J Neurophysiol 110: 2082–2089. https://doi.org/10.1152/jn.01077.2012

Omura M, Grosmaitre X, Ma M, Mombaerts P (2014) The β2-adrenergic receptor as a surrogate odorant receptor in mouse olfactory sensory neurons. Mol Cell Neurosci 58: 1–10. https://doi.org/10.1016/j.mcn.2013.10.010

Kawai F, Kurahashi T, Kaneko A (1999) Adrenaline enhances odorant contrast by modulating signal encoding in olfactory receptor cells. Nat Neurosci 2:133–138.

Gänger S, Schindowski K (2018) Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa. Pharmaceutics 10: 116. https://doi.org/10.3390/pharmaceutics10030116

Getchell ML, Getchell TV (1992) Fine Structural Aspects of Secretion and Extrinsic Innervation in the Olfactory Mucosa. Microsc Res Techn 23: lll-127. https://doi.org/10.1002/jemt.1070230203

Lucero MT (2013) Peripheral Modulation of Smell: Fact or Fiction? Semin Cell Dev Biol 24: 58–70. https://doi.org/10.1016/j.semcdb.2012.09.001

Ogura T, Szebenyi SA, Krosnowski K, Sathyanesan A, Jackson J, Lin W (2011) Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells. J Neurophysiol 106: 1274–1287. https://doi.org/10.1152/jn.00186.2011

Lin W, Margolskee R, Donnert G, Hell SW, Restrepo D (2007) Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc Natl Acad Sci U S A 104: 2471–2476. https://doi.org/10.1073/pnas.0610201104

Schaefer ML, Bottger B, Silver WL, Finger TE (2002). Trigeminal collaterals in the nasal epithelium and olfactory bulb: a potential route for direct modulation of olfactory information by trigeminal stimuli. J Comp Neurol 444: 221–226. https://doi.org/10.1002/cne.10143