О ЗНАЧИМОСТИ NO-СИНТАЗЫ, АКТИВНЫХ ФОРМ КИСЛОРОДА, КИНАЗ И КАТФ-КАНАЛОВ В РЕАЛИЗАЦИИ ИНФАРКТ-ЛИМИТИРУЮЩЕГО ЭФФЕКТА АДАПТАЦИИ К ГИПОКСИИ
PDF

Ключевые слова

сердце
хроническая гипоксия
киназы
NO-синтаза
КАТФ-каналы

Как цитировать

Нарыжная, Н. В., Маслов, Л. Н., Деркачев, И. А., & Fu, F. (2022). О ЗНАЧИМОСТИ NO-СИНТАЗЫ, АКТИВНЫХ ФОРМ КИСЛОРОДА, КИНАЗ И КАТФ-КАНАЛОВ В РЕАЛИЗАЦИИ ИНФАРКТ-ЛИМИТИРУЮЩЕГО ЭФФЕКТА АДАПТАЦИИ К ГИПОКСИИ. Российский физиологический журнал им. И. М. Сеченова, 108(4), 414–429. https://doi.org/10.31857/S0869813922040069

Аннотация

Показано, что кардиопротекторный эффект хронической гипоксии (ХГ) связан с активацией индуцибельной NO-синтазы. Установлено, что активные формы кислорода принимают участие в повышении устойчивости сердца к ишемии/реперфузии после ХГ. Продемонстрировано, что инфаркт-лимитирующий эффект ХГ зависит от открытия митохондриальных АТФ-зависимых калиевых каналов (митоКАТФ-каналов). Установлено, что δ-изоформа протеинкиназы C участвует в кардиозащитном эффекте адаптации к гипоксии. Показано, что ХГ усиливает экспрессию фосфорилированной протеинкиназы С, фосфорилированной регулируемой внеклеточными сигналами киназы, Ca2+/кальмодулинкиназы II, фосфорилированной p-38-киназы, фосфорилированной АМФ-активируемой протеинкиназы, а также гексокиназы-1 и гексокиназы-2. Представленные данные указывают, что митоген-активируемая протеинкиназа (MEK1/2) и ERK1/2 участвуют в кардиопротекторном эффекте адаптации к гипоксии. Роль предсердного натрийуретического пептида, эритропоэтина, эндотелина-1, фосфатидилинозитол-3-киназы, протеинкиназы G, c-Jun N-терминальная киназы и p38-киназы в защитном эффекте адаптации к гипоксии требует дальнейшего изучения.

https://doi.org/10.31857/S0869813922040069
PDF

Литература

Tsibulnikov SY, Maslov LN, Naryzhnaya NV, Ma H, Lishmanov YB, Oeltgen PR, Garlid K (2018) Role of protein kinase C, PI3 kinase, tyrosine kinases, NO-synthase, KATP channels and MPT pore in the signaling pathway of the cardioprotective effect of chronic continuous hypoxia. Gen Physiol Biophys 37:537–547. https://doi.org/10.4149/gpb_2018013

Нарыжная НВ, Мухамедзянов АВ, Ласукова ТВ, Маслов ЛН (2017) Об участии вегетативной нервной системы в реализации антиаритмического эффекта адаптации к периодической гипобарической гипоксии. Бюл эксп биол мед 167:275–278. [Naryzhnaya NV, Mukhamedzyanov AV, Lasukova TV, Maslov LN (2017) On the participation of the autonomic nervous system in the implementation of the antiarrhythmic effect of adaptation to periodic hypobaric hypoxia. Bull Exp Biol Med 167:275–278. (In Russ)].

Meerson FZ, Ustinova EE, Manukhina EB (1989) Prevention of cardiac arrhythmias by adaptation to hypoxia: regulatory mechanisms and cardiotropic effect. Biomed Biochim Acta 48:S83-8.

Maslov LN, Naryzhnaya N V, Prokudina ES, Kolar F, Gorbunov AS, Zhang Y, Wang H, Tsibulnikov SY, Portnichenko AG, Lasukova T V, Lishmanov YB (2015) Preserved cardiac mitochondrial function and reduced ischaemia/reperfusion injury afforded by chronic continuous hypoxia: role of opioid receptors. Clin Exp Pharmacol Physiol 42:496–501. https://doi.org/10.1111/1440-1681.12383

Winkelmayer WC, Hurley MP, Liu J, Brookhart MA (2012) Altitude and the risk of cardiovascular events in incident US dialysis patients. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc 27:2411–2417. https://doi.org/10.1093/ndt/gfr681

Mallet RT, Burtscher J, Richalet J-P, Millet GP, Burtscher M (2021) Impact of High Altitude on Cardiovascular Health: Current Perspectives. Vasc Health Risk Manag 17:317–335. https://doi.org/10.2147/VHRM.S294121

Hampl V, Bíbová J, Banasová A, Uhlík J, Miková D, Hnilicková O, Lachmanová V, Herget J (2006) Pulmonary vascular iNOS induction participates in the onset of chronic hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 290:L11-L20. https://doi.org/10.1152/ajplung.00023.2005

Kylhammar D, Rådegran G (2017) The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. Acta Physiol (Oxf) 219:728–756. https://doi.org/10.1111/apha.12749

Maston LD, Jones DT, Giermakowska W, Resta TC, Ramiro-Diaz J, Howard TA, Jernigan NL, Herbert L, Maurice AA, Gonzalez Bosc L V (2018) Interleukin-6 trans-signaling contributes to chronic hypoxia-induced pulmonary hypertension. Pulm Circ 8:2045894018780734. https://doi.org/10.1177/2045894018780734

Kentera D, Susić D (1980) Dynamics of regression of right ventricular hypertrophy in rats with hypoxic pulmonary hypertension. Respiration 39:272–275. https://doi.org/10.1159/000194227

Neckář J, Ošťádal B, Kolář F (2004) Myocardial infarct size-limiting effect of chronic hypoxia persists for five weeks of normoxic recovery. Physiol Res 53:621–628.

Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151. https://doi.org/10.1152/physrev.00009.2003

Маслов ЛН, Лишманов ЮБ (2016) Кардиопротекторный эффект посткондиционирования сердца (экспериментальные и клинические аспекты). Томск гос ун-т систем упр и радиоэлектронники. Томск. [Maslov LN, Lishmanov YuB (2016) Cardioprotective effect of postconditioning of the heart (experimental and clinical aspects). Tomsk State Univer Control Systems and Radioelectronics. Tomsk. (In Russ)].

Yuan X, Zhu D, Guo X, Deng Y, Shang J, Liu K, Liu H (2015) Telmisartan attenuates myocardial apoptosis induced by chronic intermittent hypoxia in rats: modulation of nitric oxide metabolism and inflammatory mediators. Sleep Breath 19:703–709. https://doi.org/10.1007/s11325-014-1081-y

Mallet RT, Manukhina EB, Ruelas SS, Caffrey JL, Downey HF (2018) Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential. Am J Physiol Heart Circ Physiol 315:H216–H232. https://doi.org/10.1152/ajpheart.00060.2018

Alánová P, Chytilová A, Neckář J, Hrdlička J, Míčová P, Holzerová K, Hlaváčková M, Macháčková K, Papoušek F, Vašinová J, Benák D, Nováková O, Kolář F (2017) Myocardial ischemic tolerance in rats subjected to endurance exercise training during adaptation to chronic hypoxia. J Appl Physiol 122:1452–1461. https://doi.org/10.1152/japplphysiol.00671.2016

La Padula PH, Etchegoyen M, Czerniczyniec A, Piotrkowski B, Arnaiz SL, Milei J, Costa LE (2018) Cardioprotection after acute exposure to simulated high altitude in rats. Role of nitric oxide. Nitric oxide Biol Chem 73:52–59. https://doi.org/10.1016/j.niox.2017.12.007

La Padula P, Bustamante J, Czerniczyniec A, Costa LE (2008) Time course of regression of the protection conferred by simulated high altitude to rat myocardium: correlation with mtNOS. J Appl Physiol 105:951–957. https://doi.org/10.1152/japplphysiol.90400.2008

Jung F, Palmer LA, Zhou N, Johns RA (2000) Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ Res 86:319–325. https://doi.org/10.1161/01.res.86.3.319

Yu X, Ge L, Niu L, Lian X, Ma H, Pang L (2018) The Dual Role of Inducible Nitric Oxide Synthase in Myocardial Ischemia/Reperfusion Injury: Friend or Foe? Oxid Med Cell Longev 2018:8364848. https://doi.org/10.1155/2018/8364848

Baker JE, Holman P, Kalyanaraman B, Griffith OW, Pritchard KAJ (1999) Adaptation to chronic hypoxia confers tolerance to subsequent myocardial ischemia by increased nitric oxide production. Ann N Y Acad Sci 874:236–253. https://doi.org/10.1111/j.1749-6632.1999.tb09239.x

Rouet-Benzineb P, Eddahibi S, Raffestin B, Laplace M, Depond S, Adnot S, Crozatier B (1999) Induction of cardiac nitric oxide synthase 2 in rats exposed to chronic hypoxia. J Mol Cell Cardiol 31:1697–1708. https://doi.org/10.1006/jmcc.1999.1005

Nydegger C, Corno AF, von Segesser LK, Beghetti M, Samaja M, Milano G (2019) Effects of PDE-5 Inhibition on the Cardiopulmonary System After 2 or 4 Weeks of Chronic Hypoxia. Cardiovasc Drugs Ther 33:407–414. https://doi.org/10.1007/s10557-019-06887-9

Thompson L, Dong Y, Evans L (2009) Chronic hypoxia increases inducible NOS-derived nitric oxide in fetal guinea pig hearts. Pediatr Res 65:188–192. https://doi.org/10.1203/PDR.0b013e31818d6ad0

Fitzpatrick CM, Shi Y, Hutchins WC, Su J, Gross GJ, Ostadal B, Tweddell JS, Baker JE (2005) Cardioprotection in chronically hypoxic rabbits persists on exposure to normoxia: role of NOS and KATP channels. Am J Physiol Heart Circ Physiol 288:H62-H68. https://doi.org/10.1152/ajpheart.00701.2004

Krylatov AV, Tsibulnikov SY, Mukhomedzyanov AV, Boshchenko AA, Goldberg VE, Jaggi AS, Erben RG, Maslov LN (2021) The Role of Natriuretic Peptides in the Regulation of Cardiac Tolerance to Ischemia/Reperfusion and Postinfarction Heart Remodeling. J Cardiovasc Pharmacol Ther 26:131–148. https://doi.org/10.1177/1074248420952243

Forte M, Madonna M, Schiavon S, Valenti V, Versaci F, Zoccai GB, Frati G, Sciarretta S (2019) Cardiovascular Pleiotropic Effects of Natriuretic Peptides. Int J Mol Sci 20. https://doi.org/10.3390/ijms20163874

Casserly B, Pietras L, Schuyler J, Wang R, Hill NS, Klinger JR (2010) Cardiac atria are the primary source of ANP release in hypoxia-adapted rats. Life Sci 87:382–389. https://doi.org/10.1016/j.lfs.2010.07.013

Lordick F, Hauck RW, Senekowitsch R, Emslander HP (1995) Atrial natriuretic peptide in acute hypoxia-exposed healthy subjects and in hypoxaemic patients. Eur Respir J 8:216–221. https://doi.org/10.1183/09031936.95.08020216

Winter RJ, Meleagros L, Pervez S, Jamal H, Krausz T, Polak JM, Bloom SR (1989) Atrial natriuretic peptide levels in plasma and in cardiac tissues after chronic hypoxia in rats. Clin Sci (Lond) 76:95–101. https://doi.org/10.1042/cs0760095

Bullard AJ, Govewalla P, Yellon DM (2005) Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol 100:397–403. https://doi.org/10.1007/s00395-005-0537-4

Kiss K, Csonka C, Pálóczi J, Pipis J, Görbe A, Kocsis GF, Murlasits Z, Sárközy M, Szűcs G, Holmes CP, Pan Y, Bhandari A, Csont T, Shamloo M, Woodburn KW, Ferdinandy P, Bencsik P (2016) Novel, selective EPO receptor ligands lacking erythropoietic activity reduce infarct size in acute myocardial infarction in rats. Pharmacol Res 113:62–70. https://doi.org/10.1016/j.phrs.2016.08.013

Diab AA, Abulfadle KA, Mohammed NA, hashim fatma nabil (2022) Cardiac and Renal Protective Role of Erythropoietin in a Rat Model of Acute Myocardial Infarction. Zagazig Univ Med J 28:35–44. https://doi.org/10.21608/zumj.2021.55172.2066

Wang S, Azarfar A, Wang Y, Cao Z, Shi Q, Li S (2018) WITHDRAWN:Hematological and vasodilator characteristics for high altitude acclimatization in Holstein heifers ascended to high altitude. Asian-Australasian J Anim Sci. https://doi.org/10.5713/ajas.18.0224

Feizi H, Rajaee K, Keyhanmanesh R, Aliparasti MR, Almasi S, Alipour MR (2014) Effect of ghrelin on renal erythropoietin production in chronic hypoxic rats. Endocr Regul 48:3–8. https://doi.org/10.4149/endo_2014_01_3

Schmidt W, Spielvogel H, Eckardt KU, Quintela A, Peñaloza R (1993) Effects of chronic hypoxia and exercise on plasma erythropoietin in high-altitude residents. J Appl Physiol 74:1874–1878. https://doi.org/10.1152/jappl.1993.74.4.1874

Wang P, Gallagher KP, Downey JM, Cohen M V (1996) Pretreatment with endothelin-1 mimics ischemic preconditioning against infarction in isolated rabbit heart. J Mol Cell Cardiol 28:579–588. https://doi.org/10.1006/jmcc.1996.0054

Bugge E, Ytrehus K (1996) Endothelin-1 can reduce infarct size through protein kinase C and KATP channels in the isolated rat heart. Cardiovasc Res 32:920–929

Duda M, Konior A, Klemenska E, Beresewicz A (2007) Preconditioning protects endothelium by preventing ET-1-induced activation of NADPH oxidase and xanthine oxidase in post-ischemic heart. J Mol Cell Cardiol 42:400–410. https://doi.org/10.1016/j.yjmcc.2006.10.014

Blumberg FC, Wolf K, Arzt M, Lorenz C, Riegger GAJ, Pfeifer M (2003) Effects of ET-A receptor blockade on eNOS gene expression in chronic hypoxic rat lungs. J Appl Physiol 94:446–452. https://doi.org/10.1152/japplphysiol.00239.2002

Zhu J, Kang J, Li X, Wang M, Shang M, Luo Y, Xiong M, Hu K (2020) Chronic intermittent hypoxia vs chronic continuous hypoxia: Effects on vascular endothelial function and myocardial contractility. Clin Hemorheol Microcirc 74:417–427. https://doi.org/10.3233/CH-190706

Wang N, Chang Y, Chen L, Guo Y-J, Zhao Y-S, Guo Q-H, Ji E-S (2017) Tanshinone IIA protects against chronic intermittent hypoxia-induced myocardial injury via activating the endothelin 1 pathway. Biomed Pharmacother 95:1013–1020. https://doi.org/https://doi.org/10.1016/j.biopha.2017.08.036

Krylatov AV, Maslov LN, Voronkov NS, Boshchenko AA, Popov S V, Gomez L, Wang H, Jaggi AS, Downey JM (2018) Reactive Oxygen Species as Intracellular Signaling Molecules in the Cardiovascular System. Curr Cardiol Rev 14:290–300. https://doi.org/10.2174/1573403X14666180702152436

Lien C-F, Lee W-S, Wang I-C, Chen T-I, Chen T-L, Yang K-T (2018) Intermittent hypoxia-generated ROS contributes to intracellular zinc regulation that limits ischemia/reperfusion injury in adult rat cardiomyocyte. J Mol Cell Cardiol 118:122–132. https://doi.org/10.1016/j.yjmcc.2018.03.014

Chang J-C, Lien C-F, Lee W-S, Chang H-R, Hsu Y-C, Luo Y-P, Jeng J-R, Hsieh J-C, Yang K-T (2019) Intermittent Hypoxia Prevents Myocardial Mitochondrial Ca(2+) Overload and Cell Death during Ischemia/Reperfusion: The Role of Reactive Oxygen Species. Cells 8. https://doi.org/10.3390/cells8060564

Shi Z-J, Cheng M, Liu Y-C, Fan X-R, Zhang Y, Wei Y (2020) Effect of chronic intermittent hypobaric hypoxia on heart rate variability in conscious rats. Clin Exp Pharmacol Physiol 47:60–66. https://doi.org/10.1111/1440-1681.13170

Mrakic-Sposta S, Gussoni M, Dellanoce C, Marzorati M, Montorsi M, Rasica L, Pratali L, D’Angelo G, Martinelli M, Bastiani L, Di Natale L, Vezzoli A (2021) Effects of acute and sub-acute hypobaric hypoxia on oxidative stress: a field study in the Alps. Eur J Appl Physiol 121:297–306. https://doi.org/10.1007/s00421-020-04527-x

Balková P, Hlaváčková M, Milerová M, Neckář J, Kolář F, Novák F, Nováková O (2011) N-acetylcysteine treatment prevents the up-regulation of MnSOD in chronically hypoxic rat hearts. Physiol Res 60:467–474. https://doi.org/10.33549/physiolres.932042

Kolár F, Jezková J, Balková P, Breh J, Neckár J, Novák F, Nováková O, Tomásová H, Srbová M, Ost’ádal B, Wilhelm J, Herget J (2007) Role of oxidative stress in PKC-delta upregulation and cardioprotection induced by chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol 292:H224-H230. https://doi.org/10.1152/ajpheart.00689.2006

Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. https://doi.org/10.1161/CIRCRESAHA.116.305348

Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789. https://doi.org/10.1038/s41569-020-0403-y

Morel O-E, Buvry A, Le Corvoisier P, Tual L, Favret F, León-Velarde F, Crozatier B, Richalet J-P (2003) Effects of nifedipine-induced pulmonary vasodilatation on cardiac receptors and protein kinase C isoforms in the chronically hypoxic rat. Pflugers Arch 446:356–364. https://doi.org/10.1007/s00424-003-1034-y

Holzerová K, Hlaváčková M, Žurmanová J, Borchert G, Neckář J, Kolář F, Novák F, Nováková O (2015) Involvement of PKCε in cardioprotection induced by adaptation to chronic continuous hypoxia. Physiol Res 64:191–201. https://doi.org/10.33549/physiolres.932860

Neckár J, Marková I, Novák F, Nováková O, Szárszoi O, Ost’ádal B, Kolár F (2005) Increased expression and altered subcellular distribution of PKC-delta in chronically hypoxic rat myocardium: involvement in cardioprotection. Am J Physiol Heart Circ Physiol 288:H1566-H1572. https://doi.org/10.1152/ajpheart.00586.2004

Нарыжная НВ, Маслов ЛН, Халиулин ИГ, Пей ЖМ, Жанг И, Цепокина АВ, Хуторная МВ, Кутихин АГ, Лишманов ЮБ (2016). Адаптация с помощью хронической непрерывной нормобарической гипоксии увеличивает толерантность кардиомиоцитов крыс к аноксии-реоксигенации: роль протеинкиназ. Рос физиол журн им ИМ Сеченова 102: 1462-1471.[Naryzhnaya NV, Maslov IN, Khaliulin IG, Zhang Y, Pei JM, Tsepokina AV, Khutornaya MV, Kutikhin AG, Lishmanov YB (2016) Chronic Continuous nor-mobaric hypoxia augments cell tolerance to anoxia-reoxygenation: the role of protein kinases. Rus J Physiol 102:1462–1471. (In Russ)].

El Alwani M, Usta J, Nemer G, El Sabban M, Nasser M, Bitar H, Souki R, Dbaibo GS, Bitar FF (2005) Regulation of the sphingolipid signaling pathways in the growing and hypoxic rat heart. Prostaglandins Other Lipid Mediat 78:249–263. https://doi.org/10.1016/j.prostaglandins.2005.09.002

Heidbreder M, Naumann A, Tempel K, Dominiak P, Dendorfer A (2008) Remote vs. ischaemic preconditioning: the differential role of mitogen-activated protein kinase pathways. Cardiovasc Res 78:108–115. https://doi.org/10.1093/cvr/cvm114

Ma H-J, Li Q, Ma H-J, Guan Y, Shi M, Yang J, Li D-P, Zhang Y (2014) Chronic intermittent hypobaric hypoxia ameliorates ischemia/reperfusion-induced calcium overload in heart via Na/Ca2+ exchanger in developing rats. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 34:313–324. https://doi.org/10.1159/000363001

Milano G, von Segesser LK, Morel S, Joncic A, Bianciardi P, Vassalli G, Samaja M (2010) Phosphorylation of phosphatidylinositol-3-kinase-protein kinase B and extracellular signal-regulated kinases 1/2 mediate reoxygenation-induced cardioprotection during hypoxia. Exp Biol Med (Maywood) 235:401–410. https://doi.org/10.1258/ebm.2009.009153

Strnisková M, Ravingerová T, Neckár J, Kolár F, Pastoreková S, Barancík M (2006) Changes in the expression and/or activation of regulatory proteins in rat hearts adapted to chronic hypoxia. Gen Physiol Biophys 25:25–41.

Micova P, Hahnova K, Hlavackova M, Elsnicova B, Chytilova A, Holzerova K, Zurmanova J, Neckar J, Kolar F, Novakova O, Novotny J (2016) Chronic intermittent hypoxia affects the cytosolic phospholipase A(2)α/cyclooxygenase 2 pathway via β(2)-adrenoceptor-mediated ERK/p38 stimulation. Mol Cell Biochem 423:151–163. https://doi.org/10.1007/s11010-016-2833-8

Zhang K, Ma Z, Wang W, Liu R, Zhang Y, Yuan M, Li G (2018) Beneficial effects of tolvaptan on atrial remodeling induced by chronic intermittent hypoxia in rats. Cardiovasc Ther 36:e12466. https://doi.org/10.1111/1755-5922.12466

Ling H, Gray CBB, Zambon AC, Grimm M, Gu Y, Dalton N, Purcell NH, Peterson K, Brown JH (2013) Ca2+/Calmodulin-dependent protein kinase II δ mediates myocardial ischemia/reperfusion injury through nuclear factor-κB. Circ Res 112:935–944. https://doi.org/10.1161/CIRCRESAHA.112.276915

Lu H-T, Feng R-Q, Tang J-K, Zhou J-J, Gao F, Ren J (2020) CaMKII/calpain interaction mediates ischemia/reperfusion injury in isolated rat hearts. Cell Death Dis 11:388. https://doi.org/10.1038/s41419-020-2605-y

Zhao P-J, Pan J, Li F, Sun K (2008) Effects of chronic hypoxia on the expression of calmodulin and calcicum/calmodulin-dependent protein kinase II and the calcium activity in myocardial cells in young rats. Zhongguo Dang Dai Er Ke Za Zhi 10:381–385.

Nehra S, Bhardwaj V, Kar S, Saraswat D (2016) Chronic Hypobaric Hypoxia Induces Right Ventricular Hypertrophy and Apoptosis in Rats: Therapeutic Potential of Nanocurcumin in Improving Adaptation. High Alt Med Biol 17:342–352. https://doi.org/10.1089/ham.2016.0032

Xie Y, Zhu W-Z, Zhu Y, Chen L, Zhou Z-N, Yang H-T (2004) Intermittent high altitude hypoxia protects the heart against lethal Ca2+ overload injury. Life Sci 76:559–572. https://doi.org/10.1016/j.lfs.2004.09.017

Gui L, Guo X, Zhang Z, Xu H, Ji Y-W, Wang R-J, Zhu J-H, Chen Q-H (2018) Activation of CaMKIIδA promotes Ca(2+) leak from the sarcoplasmic reticulum in cardiomyocytes of chronic heart failure rats. Acta Pharmacol Sin 39:1604–1612. https://doi.org/10.1038/aps.2018.20

Ravingerová T, Matejíková J, Neckár J, Andelová E, Kolár F (2007) Differential role of PI3K/Akt pathway in the infarct size limitation and antiarrhythmic protection in the rat heart. Mol Cell Biochem 297:111–120. https://doi.org/10.1007/s11010-006-9335-z

Luo G-P, Jian Z, Ma R-Y, Cao Z-Z, Zhu Y, Zhu Y, Tang F-Q, Xiao Y-B (2018) Melatonin alleviates hypoxia-induced cardiac apoptosis through PI3K/Akt pathway. Int J Clin Exp Pathol 11:5840–5849.

García-Niño WR, Zazueta C, Buelna-Chontal M, Silva-Palacios A (2021) Mitochondrial Quality Control in Cardiac-Conditioning Strategies against Ischemia-Reperfusion Injury. Life (Basel, Switzerland) 11. https://doi.org/10.3390/life11111123

Qing M, Görlach A, Schumacher K, Wöltje M, Vazquez-Jimenez JF, Hess J, Seghaye M-C (2007) The hypoxia-inducible factor HIF-1 promotes intramyocardial expression of VEGF in infants with congenital cardiac defects. Basic Res Cardiol 102:224–232. https://doi.org/10.1007/s00395-007-0639-2

Rafiee P, Shi Y, Kong X, Pritchard KAJ, Tweddell JS, Litwin SB, Mussatto K, Jaquiss RD, Su J, Baker JE (2002) Activation of protein kinases in chronically hypoxic infant human and rabbit hearts: role in cardioprotection. Circulation 106:239–245. https://doi.org/10.1161/01.cir.0000022018.68965.6d

Milano G, Morel S, Bonny C, Samaja M, von Segesser LK, Nicod P, Vassalli G (2007) A peptide inhibitor of c-Jun NH2-terminal kinase reduces myocardial ischemia-reperfusion injury and infarct size in vivo. Am J Physiol Heart Circ Physiol 292:H1828-H1835. https://doi.org/10.1152/ajpheart.01117.2006

Shvedova M, Anfinogenova Y, Atochina-Vasserman EN, Schepetkin IA, Atochin DN (2018) c-Jun N-Terminal Kinases (JNKs) in Myocardial and Cerebral Ischemia/Reperfusion Injury. Front Pharmacol 9:715. https://doi.org/10.3389/fphar.2018.00715

Zhao Y-S, An J-R, Yang S, Guan P, Yu F-Y, Li W, Li J-R, Guo Y, Sun Z-M, Ji E-S (2019) Hydrogen and Oxygen Mixture to Improve Cardiac Dysfunction and Myocardial Pathological Changes Induced by Intermittent Hypoxia in Rats. Oxid Med Cell Longev 2019:7415212. https://doi.org/10.1155/2019/7415212

He S, Liu S, Wu X, Xin M, Ding S, Xin D, Ouyang H, Zhang J (2016) Protective role of downregulated MLK3 in myocardial adaptation to chronic hypoxia. J Physiol Biochem 73:371–380. https://doi.org/10.1007/s13105-017-0561-5

Morel S, Milano G, Ludunge KM, Corno AF, Samaja M, Fleury S, Bonny C, Kappenberger L, von Segesser LK, Vassalli G (2006) Brief reoxygenation episodes during chronic hypoxia enhance posthypoxic recovery of LV function: role of mitogen-activated protein kinase signaling pathways. Basic Res Cardiol 101:336–345. https://doi.org/10.1007/s00395-006-0596-1

Li Q, Xiang Y, Chen Y, Tang Y, Zhang Y (2017) Ginsenoside Rg1 Protects Cardiomyocytes Against Hypoxia/Reoxygenation Injury via Activation of Nrf2/HO-1 Signaling and Inhibition of JNK. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 44:21–37. https://doi.org/10.1159/000484578

Wagner C, Tillack D, Simonis G, Strasser RH, Weinbrenner C (2010) Ischemic post-conditioning reduces infarct size of the in vivo rat heart: role of PI3-K, mTOR, GSK-3beta, and apoptosis. Mol Cell Biochem 339:135–147. https://doi.org/10.1007/s11010-009-0377-x

Li W, Zhu L, Ruan Z-B, Wang M-X, Ren Y, Lu W (2019) Nicotinamide protects chronic hypoxic myocardial cells through regulating mTOR pathway and inducing autophagy. Eur Rev Med Pharmacol Sci 23:5503–5511. https://doi.org/10.26355/eurrev_201906_18220

Xie S, Liu W, Jin M, Li X, Wang T, Zeng S, Nie H, Zhao D (2021) Calcineurin suppresses cardiomyocyte-protective autophagy under chronic intermittent hypoxia by downregulating the AMPK pathway. Preprints 2021060605.

Wang J, Maimaitili Y, Zheng H, Yu J, Guo H, Ma H-P, Chen C-L (2017) The influence of rapamycin on the early cardioprotective effect of hypoxic preconditioning on cardiomyocytes. Arch Med Sci 13:947–955. https://doi.org/10.5114/aoms.2016.59712

Cohen M V, Downey JM (2007) Cardioprotection: spotlight on PKG. Br J Pharmacol 152:833–834. https://doi.org/10.1038/sj.bjp.0707453

Xie S, Deng Y, Pan Y-Y, Ren J, Jin M, Wang Y, Wang Z-H, Zhu D, Guo X-L, Yuan X, Shang J, Liu H-G (2016) Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5’-monophosphate-activated protein kinase pathway. Arch Biochem Biophys 606:41–52. https://doi.org/10.1016/j.abb.2016.07.006

Gu S, Hua H, Guo X, Jia Z, Zhang Y, Maslov LN, Zhang X, Ma H (2018) PGC-1α Participates in the Protective Effect of Chronic Intermittent Hypobaric Hypoxia on Cardiomyocytes. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 50:1891–1902. https://doi.org/10.1159/000494869

Zhang H, Liu B, Li T, Zhu Y, Luo G, Jiang Y, Tang F, Jian Z, Xiao Y (2018) AMPK activation serves a critical role in mitochondria quality control via modulating mitophagy in the heart under chronic hypoxia. Int J Mol Med 41:69–76. https://doi.org/10.3892/ijmm.2017.3213

Waskova-Arnostova P, Elsnicova B, Kasparova D, Hornikova D, Kolar F, Novotny J, Zurmanova J (2015) Cardioprotective adaptation of rats to intermittent hypobaric hypoxia is accompanied by the increased association of hexokinase with mitochondria. J Appl Physiol 119:1487–1493. https://doi.org/10.1152/japplphysiol.01035.2014

Waskova-Arnostova P, Kasparova D, Elsnicova B, Novotny J, Neckar J, Kolar F, Zurmanova J (2014) Chronic hypoxia enhances expression and activity of mitochondrial creatine kinase and hexokinase in the rat ventricular myocardium. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 33:310–320. https://doi.org/10.1159/000356671

Nedvedova I, Kolar D, Elsnicova B, Hornikova D, Novotny J, Kalous M, Pravenec M, Neckar J, Kolar F, Zurmanova JM (2018) Mitochondrial genome modulates myocardial Akt/Glut/HK salvage pathway in spontaneously hypertensive rats adapted to chronic hypoxia. Physiol Genomics 50:532–541. https://doi.org/10.1152/physiolgenomics.00040.2017

Kolar D, Gresikova M, Waskova-Arnostova P, Elsnicova B, Kohutova J, Hornikova D, Vebr P, Neckar J, Blahova T, Kasparova D, Novotny J, Kolar F, Novakova O, Zurmanova JM (2017) Adaptation to chronic continuous hypoxia potentiates Akt/HK2 anti-apoptotic pathway during brief myocardial ischemia/reperfusion insult. Mol Cell Biochem 432:99–108. https://doi.org/10.1007/s11010-017-3001-5

Miura T, Miki T (2009) GSK-3beta, a therapeutic target for cardiomyocyte protection. Circ J 73:1184–1192. https://doi.org/10.1253/circj.cj-09-0284

Small BA, Lu Y, Hsu AK, Gross GJ, Gross ER (2015) Morphine Reduces Myocardial Infarct Size via Heat Shock Protein 90 in Rodents. Biomed Res Int 2015:129612. https://doi.org/10.1155/2015/129612

McCarthy J, Lochner A, Opie LH, Sack MN, Essop MF (2011) PKCε promotes cardiac mitochondrial and metabolic adaptation to chronic hypobaric hypoxia by GSK3β inhibition. J Cell Physiol 226:2457–2468. https://doi.org/10.1002/jcp.22592

Gross GJ, Peart JN (2003) KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol 285:H921-30. https://doi.org/10.1152/ajpheart.00421.2003

Grover GJ, Garlid KD (2000) ATP-sensitive potassium channels: A review of their cardioprotective pharmacology. J Mol Cell Cardiol 32:677–695. https://doi.org/10.1006/jmcc.2000.1111

Peart JN, Gross GJ (2002) Sarcolemmal and mitochondrial K(ATP) channels and myocardial ischemic preconditioning. J Cell Mol Med 6:453–464. https://doi.org/10.1111/j.1582-4934.2002.tb00449.x

Cohen M V, Downey JM (2015) Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future. Br J Pharmacol 172:1913–1932. https://doi.org/10.1111/bph.12903

Crawford RM, Jovanović S, Budas GR, Davies AM, Lad H, Wenger RH, Robertson KA, Roy DJ, Ranki HJ, Jovanović A (2003) Chronic mild hypoxia protects heart-derived H9c2 cells against acute hypoxia/reoxygenation by regulating expression of the SUR2A subunit of the ATP-sensitive K+ channel. J Biol Chem 278:31444–31455. https://doi.org/10.1074/jbc.M303051200

Kolár F, Neckár J, Ostádal B (2005) MCC-134, a blocker of mitochondrial and opener of sarcolemmal ATP-sensitive K+ channels, abrogates cardioprotective effects of chronic hypoxia. Physiol Res 54:467–471

Нарыжная НВ, Некар Я, Маслов ЛН, Лишманов ЮБ, Колар Ф, Ласукова ТВ (2009) Роль сарколеммальных и митохондриальных КАТФ-каналов в реализации кардиопротекторного и антиаритмического эффектов разных режимов гипобарической адаптации. Рос физиол журн им ИМ Сеченова 95:837–849.[Naryzhnaya NV, Nackar Ya, Maslov LN, Lishmanov YuB, Kolar F, Lasukova TV (2009) The role of sarcolemmal and mitochondrial KATP-channels in realization of the cardioprotection and antiarrhythmic effect of different regimens of hypobaric adaptation (2009) Rus J Physiol 95: 837-849. (In Russ)].

Forkel J, Chen X, Wandinger S, Keser F, Duschin A, Schwanke U, Frede S, Massoudy P, Schulz R, Jakob H, Heusch G (2004) Responses of chronically hypoxic rat hearts to ischemia: KATP channel blockade does not abolish increased RV tolerance to ischemia. Am J Physiol Heart Circ Physiol 286:H545-H551. https://doi.org/10.1152/ajpheart.00022.2003