РОЛЬ ГУМОРАЛЬНЫХ ФАКТОРОВ В ДИСТАНТНОМ ПРЕКОНДИЦИОНИРОВАНИИ СЕРДЦА
PDF

Ключевые слова

сердце
ишемия
реперфузия
дистантное прекондиционирование
гуморальные факторы

Как цитировать

Прокудина, Е. С., Маслов, Л. Н., Цибульников, С. Ю., Сингх, Н., Клим, В. С., & Скрябина, А. А. (2019). РОЛЬ ГУМОРАЛЬНЫХ ФАКТОРОВ В ДИСТАНТНОМ ПРЕКОНДИЦИОНИРОВАНИИ СЕРДЦА. Российский физиологический журнал им. И. М. Сеченова, 105(4), 416–436. https://doi.org/10.1134/S0869813919040101

Аннотация

Гуморальный путь реализации кардиопротекторного эффекта дистантного ишемического прекондиционирования (ДИПре) продемонстрирован на различных моделях ишемии-реперфузии: верхних и нижних конечностей, печени, а также окклюзии/реперфузии мезентериальных и почечных артерий. В качестве гуморальных факторов ДИПре рассматриваются: гидрофобные пептиды, опиоидные пептиды, аденозин, простаноиды, эндованилоиды, эндоканнабиноиды, кальцитонин ген-родственный пептид, лейкотриены, адреномедуллин и микроРНК. Норадреналин, аденозин, которые также принимают участие в реализации кардиопротекторного эффекта ДИПре, рассматриваются как нейрогуморальные факторы защитного действия дистантного ишемического прекондиционирования. Знания о гуморальных факторах кардиопротекции могут быть использованы для разработки методов повышения устойчивости миокарда к ишемическому-реперфузионному повреждению.

https://doi.org/10.1134/S0869813919040101
PDF

Литература

Gedik N., Maciel L., Schulte C., Skyschally A., Heusch G., Kleinbongard P. Cardiomyocyte mitochondria as targets of humoral factors released by remote ischemic preconditioning. Arch. Med. Sci. 13(2): 448–458. 2017.

Heusch G., Rassaf T. Time to give up on cardioprotection? A critical appraisal of clinical studies on ischemic pre-, post-, and remote conditioning. Circ. Res. 119(5): 676–695. 2016.

Heusch G. Remote ischemic conditioning in cardiovascular surgery. J. Cardiovasc. Pharmacol. Ther. 22(4): 297–301. 2017.

Kleinbongard P., Skyschally A., Gent S., Pesch M., Heusch G. STAT3 as a common signal of ischemic conditioning: a lesson on "rigor and reproducibility" in preclinical studies on cardioprotection. Basic Res. Cardiol. 113(1): 3. 2017.

Singh L., Kulshrestha R., Singh N., Jaggi A. S. Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection. Korean J. Physiol. Pharmacol. 22(3): 225–234. 2018.

Huda R., Chung D. H., Mathru M. Ischemic preconditioning at a distance: altered gene expression in mouse heart and other organs following brief occlusion of the mesenteric artery. Heart Lung Circ. 14(1): 36–43. 2005.

Wagner R., Piler P., Bedanova H., Adamek P., Grodecka L., Freiberger T. Myocardial injury is decreased by late remote ischaemic preconditioning and aggravated by tramadol in patients undergoing cardiac surgery: a randomised controlled trial. Interact. Cardiovasc. Thorac. Surg. 11(6): 758–762. 2010.

Xiao L., Lu R., Hu C.P., Deng H. W., Li Y. J. Delayed cardioprotection by intestinal preconditioning is mediated by calcitonin gene-related peptide. Eur. J. Pharmacol. 427(2): 131–135. 2001.

Abdul-Ghani S., Fleishman A. N., Khaliulin I., Meloni M., Angelini G. D., Suleiman M. S. Remote ischemic preconditioning triggers changes in autonomic nervous system activity: implications for cardioprotection. Physiol. Rep. 5(3): pii: e13085. 2017.

Aulakh A. S., Randhawa P.K., Singh N., Jaggi A. S. Neurogenic pathways in remote ischemic preconditioning induced cardioprotection: Evidences and possible mechanisms. Korean J. Physiol. Pharmacol. 21(2): 145–152. 2017.

Gill R., Kuriakose R., Gertz Z. M., Salloum F. N., Xi L., Kukreja R. C. Remote ischemic preconditioning for myocardial protection: update on mechanisms and clinical relevance. Mol. Cell Biochem. 402(1-2): 41–49. 2015.

Liem D. A., Verdouw P. D., Ploeg H., Kazim S., Duncker D. J. Sites of action of adenosine in interorgan preconditioning of the heart. Am. J. Physiol. Heart Circ. Physiol. 283(1): H29–H37. 2002.

Gho B. C., Schoemaker R. G., van den Doel M. A., Duncker D. J., Verdouw P. D. Myocardial protection by brief ischemia in noncardiac tissue. Circulation. 94(9): 2193–2200. 1996.

Liem D. A., Verdouw P. D., Duncker D. J. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation. 107(24): e218–e219. 2003.

Weinbrenner C., Nelles M., Herzog N., Sarvary L., Strasser R. H. Remote preconditioning by infrarenal occlusion of the aorta protects the heart from infarction: a newly identified non-neuronal but PKC-dependent pathway. Cardiovasc. Res. 55(3): 590–601. 2002.

Oxman T., Arad M., Klein R., Avazov N., Rabinowitz B. Limb ischemia preconditions the heart against reperfusion tachyarrhythmia. Am. J. Physiol. 273(4 Pt 2): H1707–H1712. 1997.

Dickson E. W., Reinhardt C. P., Renzi F. P., Becker R. C., Porcaro W. A., Heard S. O. Ischemic preconditioning may be transferable via whole blood transfusion: preliminary evidence. J. Thromb. Thrombolysis. 8(2): 123–129. 1999.

Dickson E. W., Porcaro W. A., Fenton R. A., Heard S. O., Reinhardt C. P., Renzi F. P., Przyklenk K. “Preconditioning at a distance” in the isolated rabbit heart. Acad. Emerg. Heart. 7(4): 311–317. 2000.

Bartekova M., Styk J., Pancza D., Kukan M., Sebokova J., Breier A. Proteins released from liver after ischaemia induced an elevation of heart resistance against ischaemia-reperfusion injury: 1. beneficial effect of protein fraction isolated from perfusate after ischaemia and reperfusion of liver. Gen. Physiol. Biophys. 22(4): 567–577. 2003.

Bartekova M., Sulova Z., Pancza D., Ravingerova T., Stankovicova T., Styk J., Breier A. Proteins released from liver after ischaemia induced an elevation of heart resistance against ischaemia-reperfusion injury: 2. Beneficial effect of liver ischaemia. Gen. Physiol. Biophys. 23(4): 489–497. 2004.

Serejo F. C., Rodrigues L. F., da Silva Tavares K.C., de Carvalho A. C., Nascimento J. H. Cardioprotective properties of humoral factors released from rat hearts subject to ischemic preconditioning. J. Cardiovasc. Pharmacol. 49(4): 214–220. 2007.

Wang L., Oka N., Tropak M., Callahan J., Lee J., Wilson G., Redington A., Caldarone C. A. Remote ischemic preconditioning elaborates a transferable blood-borne effector that protects mitochondrial structure and function and preserves myocardial performance after neonatal cardioplegic arrest. J. Thorac. Cardiovasc. Surg. 136(2): 335–342. 2008.

Leung C.H., Wang L., Nielsen J. M., Tropak M. B., Fu Y. Y., Kato H., Callahan J., Redington A. N., Caldarone C. A. Remote cardioprotection by transfer of coronary effluent from ischemic preconditioned rabbit heart preserves mitochondrial integrity and function via adenosine receptor activation. Cardiovasc. Drugs. Ther. 28(1): 7–17. 2014.

Konstantinov I. E., Li J., Cheung M. M., Shimizu M., Stokoe J., Kharbanda R. K., Redington A. N. Remote ischemic preconditioning of the recipient reduces myocardial ischemia-reperfusion injury of the denervated donor heart via a Katp channel-dependent mechanism. Transplantation. 79 (12): 1691–1695. 2005.

Shimizu M., Tropak M., Diaz R. J., Suto F., Surendra H., Kuzmin E., Li J., Gross G., Wilson G. J., Callahan J., Redington A. N. Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clin. Sci. (Lond.) 117(5): 191–200. 2009.

Maciel L., de Oliveira D. F., Verissimo da Costa G. C., Bisch P. M., Nascimento J. H. M. Cardioprotection by the transfer of coronary effluent from ischaemic preconditioned rat hearts: identification of cardioprotective humoral factors. Basic Res. Cardiol. 112(5): 52. 2017.

Zhao Y., Zheng Z. N., Cheung C. W., Zuo Z. Y., Jin S. Q. Transfusion of plasma collected at late phase after preconditioning reduces myocardial infarct size induced by ischemia-reperfusion in rats in vivo. Chin. Med. J. 130(3): 303–308. 2017.

Zhao Y., Zheng Z. N., Pi Y. N., Liang X., Jin S. Q. Cardioprotective effects of transfusion of late-phase preconditioned plasma may be induced by activating the reperfusion injury salvage kinase pathway but not the survivor activating factor enhancement pathway in rats. Oxid. Med. Cell. Longev. 2017: 8526561. 2017.

Hausenloy D. J., Yellon D. M. Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail. Rev. 12(3-4): 217–234. 2007.

Hausenloy D. J., Yellon D. M. Ischaemic conditioning and reperfusion injury. Nat. Rev. Cardiol. 13(4): 193–209. 2016.

Zhao Y., Zheng Z. N., Liu X., Dai G., Jin S. Q. Effects of preconditioned plasma collected during the late phase of remote ischaemic preconditioning on ventricular arrhythmias caused by myocardial ischaemia reperfusion in rats. J. Int. Med. Res. 46(4): 1370–1379. 2018.

Gedik N., Kottenberg E., Thielmann M., Frey U. H., Jakob H., Peters J., Heusch G, Kleinbongard P. Potential humoral mediators of remote ischemic preconditioning in patients undergoing surgical coronary revascularization. Sci. Rep. 7(1): 12660. 2017.

Heinen A., Behmenburg F., Aytulun A., Dierkes M., Zerbin L., Kaisers W., Schaefer M., Meyer-Treschan T., Feit S., Bauer I., Hollmann M. W., Huhn R. The release of cardioprotective humoral factors after remote ischemic preconditioning in humans is age- and sex-dependent. J. Transl. Med. 16(1): 112. 2018.

Ney J., Hoffmann K., Meybohm P., Goetzenich A., Kraemer S., Benstöm C., Weber N.C., Bickenbach J., Rossaint R., Marx G., Zacharowski K., Bernhagen J., Stoppe C. Remote ischemic preconditioning does not affect the release of humoral factors in propofol-anesthetized cardiac surgery patients: a secondary analysis of the RIPHeart study. Int. J. Mol. Sci. 19(4): pii: E1094. 2018.

Dickson E. W., Blehar D. J., Carraway R. E., Heard S. O., Steinberg G., Przyklenk K. Naloxone blocks transferred preconditioning in isolated rabbit hearts. J. Mol. Cell. Cardiol. 33(9): 1751–1756. 2001.

Dickson E. W., Ludwig P. S., Ackermann L. W., Buresh C. T., Denning G. M. Met5-enkephalin-Arg6-Phe7 (MEAP): a cardioprotective hormonal opioid. Acad. Emerg. Med. 13(8): 813–819. 2006.

Dickson E. W., Tubbs R. J, Porcaro W. A., Lee W. J., Blehar D. J., Carraway R. E., Darling C. E., Przyklenk K. Myocardial preconditioning factors evoke mesenteric ischemic tolerance via opioid receptors and KATP channels. Am. J. Physiol. Heart Circ. Physiol. 283(1): H22–H28. 2002.

Surendra H., Diaz R.J., Harvey K., Tropak M., Callahan J., Hinek A., Hossain T., Redington A., Wilson G..J. Interaction of δ and κ opioid receptors with adenosine A1 receptors mediates cardioprotection by remote ischemic preconditioning. J. Mol. Cell Cardiol. 60: 142–150. 2013.

Weinbrenner C., Schulze F., Sarvary L., Strasser R. H. Remote preconditioning by infrarenal aortic occlusion is operative via δ1-opioid receptors and free radicals in vivo in the rat heart. Cardiovasc. Res. 61(3): 591–599. 2004.

Zhang S. Z., Wang N. F., Xu J., Gao Q., Lin G. H., Bruce I. C., Xia Q. Kappa-opioid receptors mediate cardioprotection by remote preconditioning. Anesthesiology. 105(3): 550–556. 2006.

Sharma R., Randhawa P. K., Singh N., Jaggi A. S. Possible role of thromboxane A2 in remote hind limb preconditioning-induced cardioprotection. Naunyn-Schmiedeberg’s Arch. Pharmacol. 389(1): 1–9. 2016.

Hajrasouliha A. R., Tavakoli S., Ghasemi M., Jabehdar-Maralani P., Sadeghipour H., Ebrahimi F., Dehpour A. R. Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart. Eur. J. Pharmacol. 579(1-3): 246–252. 2008.

Randhawa P. K., Jaggi A. S. Gadolinium and ruthenium red attenuate remote hind limb preconditioning-induced cardioprotection: possible role of TRP and especially TRPV channels. Naunyn-Schmiedeberg’s. Arch. Pharmacol. 389(8): 887–896. 2016.

Singh A., Randhawa P. K., Bali A., Singh N., Jaggi A. S. Exploring the role of TRPV and CGRP in adenosine preconditioning and remote hind limb preconditioning-induced cardioprotection in rats. Cardiovasc. Drugs Ther. 31(2): 133–143. 2017.

Wolfrum S., Nienstedt J., Heidbreder M., Schneider K., Dominiak P., Dendorfer A. Calcitonin gene related peptide mediates cardioprotection by remote preconditioning. Regul. Pept. 127(1-3): 217–224. 2005.

Dong J. H., Liu Y.X., Ji E. S., He R. R. Limb ischemic preconditioning reduces infarct size following myocardial ischemia-reperfusion in rats. Sheng Li Xue Bao. 56(1): 41–46. 2004. [ In Chinese].

Pell T. J., Baxter G. F., Yellon D. M., Drew G. M. Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels. Am. J. Physiol. 275(5 Pt 2): H1542–H1547. 1998.

Schulte G., Sommerschild H., Yang J., Tokuno S., Goiny M., Lovdahl C., Johansson B., Fredholm B. B., Valen G. Adenosine A1 receptors are necessary for protection of the murine heart by remote, delayed adaptation to ischaemia. Acta. Physiol. Scand. 182(2): 133–143. 2004.

Takaoka A., Nakae I., Mitsunami K., Yabe T., Morikawa S., Inubushi T., Kinoshita M. Renal ischemia/reperfusion remotely improves myocardial energy metabolism during myocardial ischemia via adenosine receptors in rabbits: effects of “remote preconditioning”. J. Am. Coll. Cardiol. 33(2): 556–564. 1999.

Singh B., Randhawa P.K., Singh N., Jaggi A. S. Investigations on the role of leukotrienes in remote hind limb preconditioning-induced cardioprotection in rats. Life Sci. 152: 238–243. 2016.

McBride D. W., Reis C., Zhang J. H., Applegate R., Tang J. Remote limb ischemic preconditioning attenuates cerebrovascular depression during sinusoidal galvanic vestibular stimulation via α1-adrenoceptor-protein kinase Cε-endothelial NO synthase pathway in rats. J. Am. Heart Assoc. 7(7): pii: e007105. 2018.

Dong W., Yu P., Zhang T., Zhu C., Qi J., Liang J. Adrenomedullin serves a role in the humoral pathway of delayed remote ischemic preconditioning via a hypoxia-inducible factor-1α-associated mechanism. Mol. Med. Rep. 17(3): 4547–4553. 2018.

Jose Alburquerque-Béjar J., Barba I., Valls-Lacalle L., Ruiz-Meana M., Pecoraro M., Rodríguez-Sinovas A., García-Dorado D. Remote ischemic conditioning provides humoural cross-species cardioprotection through glycine receptor activation. Cardiovasc. Res. 113(1): 52–60. 2017.

Brandenburger T., Grievink H., Heinen N., Barthel F., Huhn R., Stachuletz F., Kohns M., Pannen B., Bauer I. Effects of remote ischemic preconditioning and myocardial ischemia on microRNA-1 expression in the rat heart in vivo. Shock. 42(3): 234–238. 2014.

Duan X., Ji B., Wang X., Liu J., Zheng Z., Long C., Tang Y., Hu S. Expression of microRNA-1 and microRNA-21 in different protocols of ischemic conditioning in an isolated rat heart model. Cardiology. 122(1): 36–43. 2012.

Kang Z., Li Z., Huang P., Luo J., Liu P., Wang Y., Xia T., Zhou Y. Remote ischemic preconditioning upregulates microRNA-21 to protect the kidney in children with congenital heart disease undergoing cardiopulmonary bypass. Pediatr. Nephrol. 33(5): 911–919. 2018.

Li J., Rohailla S., Gelber N., Rutka J., Sabah N., Gladstone R. A., Wei C., Hu P., Kharbanda R. K., Redington A. N. MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res. Cardiol. 109(5): 423. 2014.

Minghua W., Zhijian G., Chahua H., Qiang L., Minxuan X., Luqiao W., Weifang Z., Peng L., Biming Z., Lingling Y., Zhenzhen W., Jianqing X., Huihui B., Xiaozhong W., Xiaoshu C. Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24. Cell Death Dis. 9(3): 320. 2018.

Patel H. H., Moore J., Hsu A. K., Gross G. J. Cardioprotection at a distance: mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. J. Mol. Cell Cardiol. 34 (10): 1317–1323. 2002.

Xie R. Q., Cui W., Hao Y. M., Liu F., Li B. H., Wu J. F., Du G. Y., Zhang T. Effects of remote preconditioning induced by skeletal muscle ischemia on myocardial cells apoptosis and roles of opioid receptors in pigs. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 22(4): 474–478. 2006. [In Chinese].

Maslov L. N., Khaliulin I., Oeltgen P. R., Naryzhnaya N. V., Pei J.-M., Brown S. A., Lishmanov Y. B., Downey J. M. Prospects of creation of cardioprotective and antiarrhythmic drugs based on opioid receptor agonists. Med. Res. Rev. 36(5): 871–923. 2016.

Маслов Л. Н., Хедрик Дж. П., Мешоулам Р., Крылатов А. В., Лишманов А. Ю., Барзах Е. И., Нарыжная Н. В., Жанг И. Роль трансактивации рецепторов в кардиопротекторных эффектах прекондиционирования и посткондиционирования. Рос. физиол. журн. 98(3): 305–317. 2012. [Maslov L. N., Headrick J. P., Mechoulam R., Krylatov A.V., Lishmanov A. Yu., Barzakh E. I., Naryzhnaya N. V., Zhang Y. The role of transactivation of receptors in the cardioprotective effects of preconditioning and postconditioning. Russ. J. Physiol. 98(3): 305–317. 2012. (In Russ.)].

Klabunde R. E. Dipyridamole inhibition of adenosine metabolism in human blood. Eur. J. Pharmacol. 93(1-2): 21–26. 1983.

Mahaffey K. W., Puma J. A., Barbagelata N. A., DiCarli M. F., Leesar M. A., Browne K. F., Eisenberg P. R., Bolli R., Casas A. C., Molina-Viamonte V., Orlandi C., Blevins R., Gibbons R. J., Califf R. M.,Granger C. B. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial. J. Am. Coll. Cardiol. 34(6): 17111–720. 1999.

Mullane K. M., Dusting G. J., Salmon J.A., Moncada S., Vane J. R. Biotransformation and cardiovascular effects of arachidonic acid in the dog. Eur. J. Pharmacol. 54(3): 217–228. 1979.

Arad M., Oxman T., Leor R., Rabinowitz B. Prostaglandins and the antiarrhythmic effect of preconditioning in the isolated rat heart. Mol. Cell. Biochem. 160-161: 249–255. 1996.

Zheng J. Molecular mechanism of TRP channels. Compar. Physiol. 3 (1): 221-242. 2013.

Friedrich O., Wagner S., Battle A.R., Schurmann S., Martinac B. Mechamo-regulation of the beating heart at the cellular level – mechanosensitive channels in normal and diseased heart. Prog. Biophys. Mol. Biol. 110(2-3): 226–238. 2012.

Kim D. A mechanosensitive K+ channel in heart cells. Activation by arachidonic acid. J.Gen.Pysiol. 100(6): 1021–1040. 1992.

Craelius W., Chen V., el-Sherif N. Stretch activated ion channels in ventricular myocytes. Biosci. Rep. 8(5): 407–414. 1988.

Lehoux S., Tedgui A. Cellular mechanis and gene expression in blood vessels. J. Biomech. 36(5): 631–643. 2003.

Nilius B., Viana F., Droogmans G. Ion channels in vascular endothelium. Annu. Rev. Physiol. 59: 145–170. 1997.

Fischer M. J., Reeh P. W., Sauer S. K. Proton-induced calcitonin gene-related peptide release from rat sciatic nerve axons, in vitro, involving TRPV1. Eur. J. Neurosci. 18(4): 803–810. 2003.

Shenton F. C., Pyner S. Expression of transient receptor potential channels TRPC1 and TRPV4 in venoatrial endocardium of the rat heart. Neuroscience. 267: 195–204. 2014.

Zahner M. R., Li D. P., Chen S. R., Pan H. L. Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats. J. Physiol. 551(Pt 2): 515–523. 2003.

Randhawa P. K., Jaggi A. S. Investigating the involvement of TRPV1 ion channels in remote hind limb preconditioning-induced cardioprotection in rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 390(2): 117–126. 2017.

Randhawa P. K., Jaggi A. S. Investigating the involvement of glycogen synthase kinase-3β and gap junction signaling in TRPV1 and remote hind preconditioning-induced cardioprotection. Eur. J. Pharmacol. 814: 9–17. 2017.

Gao Y., Song J., Chen H., Cao C., Lee C. TRPV1 activation is involved in the cardioprotection of remote limb ischemic postconditioning in ischemia-reperfusion injury rats. Biochem. Biophys. Res. Commun. 463(4): 1034–1039. 2015.

Malinowska B., Kwolek G., Gothert M. Anandamide and methanandamide induce both vanilloid VR1- and cannabinoid CB1 receptor-mediated changes in heart rate and blood pressure in anaesthetized rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 364(6): 562–569. 2001.

Kozak K. R., Crews B. C., Ray J. L., Tai H. H., Morrow J. D., Marnett L. J. Metabolism of prostaglandin glycerol esters and prostaglandin ethanolamides in vitro and in vivo. J. Biol. Chem. 276(40): 36993–36998. 2001.

Amara S. G., Jonas V., Rosenfeld M. G., Ong E. S., Evans R. M. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature. 298(5871): 240–244. 1982.

Muff R., Born W., Lutz T. A., Fischer J. A. Biological importance of the peptides of the calcitonin family as revealed by disruption and transfer of corresponding genes. Peptides. 25(11): 2027–2038. 2004.

Zaidi M., Breimer L .H., Maclntyre I. Biology of peptides from the calcitonin genes. Q. J. Exp. Physiol. 72(4): 371–408. 1987.

Franco-Cereceda A. Calcitonin gene0related peptide and tachykinins in relation to local sensory control of cardiac contractility and coronary vascular tone. Acta. Physiol. Scand. Suppl. 569: 1–63. 1988.

Kallner G. Release and effects of calcitonin gene-related peptide in myocardial ischaemia. Scand. Cardiovasc. J. Suppl. 49: 1–35. 1998.

Randhawa P. K., Jaggi A. S. Exploring the putative role of TRPV1-dependent CGRP release in remote hind preconditioning-induced cardioprotection. Cardiovasc. Ther. 35(5): 2017.

D’Alonzo A. J., Grover G. J., Darbenzio R. B., Hess T. A., Sleph P. G., Dzwonczyk S., Zhu J. L., Sewter J. C. In vitro effects of capsaicin: antiarrhythmic and antiischemic activity. Eur. J. Pharmacol. 272(2-3): 269–278. 1995.

Lu R., Li Y. J., Deng H. W. Evidence for calcitonin gene-related peptide-mediated ischemic preconditioning in the ray heart. Regul. Pept. 82(1-3): 53–57. 1999.

Barajas-Espinosa A., Ochoa-Cortes F., Moos M. P., Ramirez F. D., Vanner S. J., Funk C. D. Characterizatuion of the cysteinyl leukotriene 2 receptor in novel expression sites of the gastrointestinal tract. Am. J. Pathol. 178(6): 2682–2689. 2011.

Ni N. C., Ballantyne L. L., Mewburn J. D., Funk C. D. Multiple-site activation of the cysteinyl leukotriene receptor 2 is required for exacerbation of ischemia/reperfusion injury. Arterioscler. Thromb. Vasc. Biol. 34(2): 321–330. 2014.

Noguchi K., Okubo M. Leukotrienes in nociceptive pathway and neuropathic/ inflammatory pain. Biol. Pharm. Bull. 34(8): 1163–1169. 2011.

Huber M., Guhlmann A., Jansen P. L., Keppler D. Hereditary defect of hepatobiliary cysteinyl leukotriene elimination in mutant rats with defective hepatic anion excretion. Hepatology. 7(2): 224–228. 1987.

Khaliulin I., Parker J. E., Halestrap A. P. Consecutive pharmacological activation of PKA and PKC mimics the potent cardioprotection of temperature preconditioning. Cardiovasc. Res. 88(2): 324–333. 2010.

Lewis M., Szobi A., Balaska D., Khaliulin I., Adameova A., Griffiths E., Orchard C. H., Suleiman M. S. Consecutive isoproterenol and adenosine treatment confers marked protection against reperfusion injury in adult but not in immature heart: a role for glycogen. Int. J. Mol. Sci. 19(2): pii: E494. 2018.

Nishida H., Sato T., Miyazaki M., Nakaya H. Infarct size limitation by adrenomedullin: protein kinase A but not PI3-kinase is linked to mitochondrial KCa channels. Cardiovasc. Res. 77(2): 398–405. 2008.

Sluijter J. P. G., Davidson S. M., Boulanger C. M., Buzás E. I., de Kleijn D. P. V., Engel F. B., Giricz Z., Hausenloy D. J., Kishore R., Lecour S., Leor J., Madonna R., Perrino C., Prunier F., Sahoo S., Schiffelers R. M., Schulz R., Van Laake L. W., Ytrehus K., Ferdinandy P. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 114(1): 19–34. 2018.

van der Pol E., Böing A.N., Harrison P., Sturk A., Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 64(3): 676–705. 2012.

Сolombo M., Raposo G., Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell. Dev. Biol. 30: 255–289. 2014.

Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J. J., Lötvall J. O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell. Biol. 9(6): 654–659. 2007.

Hunter M. P., Ismail N., Zhang X., Aguda B. D., Lee E. J., Yu L., Xiao T., Schafer J., Lee M. L., Schmittgen T. D., Nana-Sinkam S. P., Jarjoura D., Marsh C. B. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 3(11): e3694. 2008.

Skog J., Würdinger T., van Rijn S., Meijer D. H., Gainche L., Sena-Esteves M., Curry W. T., Carter B. S., Krichevsky A. M., Breakefield X. O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell. Biol. 10(12): 1470–1476. 2008.

Salloum F. N., Yin C., Kukreja R. C. Role of microRNA in cardiac preconditioning. J. Cardiovasc. Pharmacol. 56(6): 581–588. 2010.

Lee Y., Kim M., Han J., Yeom K. H., Lee S., Baek S. H., Kim V. N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23(20): 4051–4060. 2004.

Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J., Provost P., Radmark O., Kim S., Kim V. N. The nuclear RNAse Drosha initiates microRNA processing. Nature. 415(6956): 415–419. 2003.

Bartel D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116(2): 281–297. 2004.

Eulalio A., Huntzinger E., Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell. 132(1): 9–14. 2008.

Bushati N., Cohen S. M. MicroRNA functions. Annu. Rev. Cell. Dev. Biol. 23: 175–205. 2007.

Chang T. C., Mendell J. T. MicroRNAs in vertebrate physiology and human disease. Annu. Rev. Genomics Hum. Genet. 8: 215–239. 2007.

Barile L., Moccetti T., Marban E., Vassalli G. Roles of exosomes in cardioprotection. Eur. Heart J. 38(13): pii: ehw304. 2017.

Gupta S., Knowlton A. A. HSP60 traffiking in adult cardiac myocytes: role of the exosomal pathway. Am. J. Physiol. Heart Circ. Physiol. 292(6): H3052–H3056. 2007.

Bang C., Batkai S., Dangwal S., Gupta S. K., Foinquinos A., Holzmann A., Just A., Remke J., Zimmer K., Zeug A., Ponimaskin E., Schmiedl A., Yin X., Mayr M., Halder R., Fischer A., Engelhardt S., Wei Y., Schober A., Fiedler J., Thum T. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest. 124(5): 2136–2146. 2014.

van Balkom B. W., de Jong O. G., Smits M., Brummelman J., den Ouden K., de Bree P.M., van Eijndhoven M. A., Pegtel D. M., Stoorvogel W., Wurdinger T., Verhaar M. C. Endotelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood. 121(19): 3997–4006. 2013.

Zheng Y., Vicencio J. M., Yellon D. M., Davidson S. M. Exosomes released from endothelial cells are cardioprotective. Heart. 100 Suppl 1: A10. 2014.

Baranyai T., Giricz Z., Varga Z., Sipos P., Paloczi K., Kittel A., Buzas E., Ferdinandy P. Extracellular vesicles mediate cardioprotection exerted by remote ischemic preconditioning in rats. Cardiovasc. Res. 103. Suppl 1: 435. 2014.

Wider J., Undyala V. V. R., Whittaker P., Woods J., Chen X., Przyklenk K. Remote ischemic preconditioning fails to reduce infarct size in the Zucker fatty rat model of type-2 diabetes: role of defective humoral communication. Basic Res. Cardiol. 113(3): 16. 2018.

Duan Y. F., Sun D. L., Chen J., Zhu F., An Y. MicroRNA-29a/b/c targets iNOS and is involved in protective remote ischemic preconditioning in an ischemia-reperfusion rat model of non-alcoholic fatty liver disease. Oncol. Lett. 13(3): 1775–1782. 2017.