ВЛИЯНИЕ БЛОКАДЫ СИНТЕЗА NO НА ОСМОРЕГУЛИРУЮЩУЮ ФУНКЦИЮ ПОЧЕК В УСЛОВИЯХ МОДЕЛИРОВАНИЯ ГИПОТИРЕОЗА У КРЫС С РАЗЛИЧНЫМ УРОВНЕМ ВАЗОПРЕССИНА В КРОВИ
PDF

Ключевые слова

тиреоидная система
оксид азота (II)
вазопрессин
линии крыс WAG и Brattleboro
осморегулирующая функция почек

Как цитировать

Правикова, П. Д., & Иванова, Л. Н. (2021). ВЛИЯНИЕ БЛОКАДЫ СИНТЕЗА NO НА ОСМОРЕГУЛИРУЮЩУЮ ФУНКЦИЮ ПОЧЕК В УСЛОВИЯХ МОДЕЛИРОВАНИЯ ГИПОТИРЕОЗА У КРЫС С РАЗЛИЧНЫМ УРОВНЕМ ВАЗОПРЕССИНА В КРОВИ. Российский физиологический журнал им. И. М. Сеченова, 107(12), 1505–1517. https://doi.org/10.31857/S0869813921120086

Аннотация

Исследовано влияние блокады синтеза оксида азота (NO) на осморегулирующую функцию почек у крыс линии WAG, а также у вазопрессин-дефицитных крыс линии Brattleboro в условиях моделирования гипотиреоза раствором метимазола. Установлено, что NO модулирует гидроосмотический эффект вазопрессина, влияя на параметры гидруреза вне зависимости от уровня синтеза тиреоидных гормонов. Между тем выявлено, что NO играет существенную роль в развитии антинатрийуреза у крыс в условиях блокады синтеза тиреоидных гормонов, причем данный эффект не зависит от уровня эндогенного вазопрессина в крови. У крыс WAG и вазопрессин-дефицитной линии Brattleboro моделирование гипотиреоза способствует развитию антинатрийуретической реакции, в то время как устранение действия NO на фоне блокады синтеза тиреоидных гормонов приводит к развитию натрийуреза. Результаты исследования свидетельствуют о существенной роли NO в подавлении экскреции натрия почками при гипотиреозе. Обсуждаются возможные механизмы, лежащие в основе влияния NO на параметры натрийуретической функции почек у крыс линий WAG и Brattleboro в условиях подавления синтеза тиреоидных гормонов.

https://doi.org/10.31857/S0869813921120086
PDF

Литература

Seifter JL, Chang HY (2017) Extracellular acid-Base balance and ion transport between body fluid compartments. Physiology (Bethesda) 32: 367-379. https://doi.org/10.1152/physiol.00007.2017

Kumar J, Gordillo R, Kaskel FJ, Druschel CM, Woroniecki RP (2009) Increased prevalence of renal and urinary tract anomalies in children with congenital hypothyroidism. J Pediatr 154: 263-266. https://doi.org/10.1016/j.jpeds.2008.08.023

den Hollander JG, Wulkan RW, Mantel MJ, Berghout A (2005) Correlation between severity of thyroid dysfunction and renal function. Clinical Endocrinol 62: 423–427. https://doi.org/10.1111/j.1365-2265.2005.02236.x

Iglesias P, Bajo MA, Selgas R, Díez JJ (2009) Thyroid dysfunction and kidney disease. Eur J Endocrinol 160: 503-515. https://doi.org/10.1007/s11154-016-9395-7

Mariani LH, Berns JS (2012) The renal manifestations of thyroid disease. J Am Soc Nephrol 23(1): 22-26. https://doi.org/10.1681/ASN.2010070766

Vargas F, Moreno JM, Rodríguez-Gómez I, Wangensteen R, Osuna A, Alvarez-Guerra M, García-Estañ J (2006) Vascular and renal function in experimental thyroid disorders. Eur J Endocrinol 2: 197-212. https://doi.org/10.1530/eje.1.02093

Skowsky WR, Kikuchi TA (1978) The role of vasopressin in the impaired water excretion of myxedema. Am J Med 64(4): 613-621. https://doi.org/10.1016/0002-9343(78)90581-8

Chen YC, Cadnapaphornchai MA, Yang J, Summer SN, Falk S, Li C, Wang W, Schrier RW (2005) Nonosmotic release of vasopressin and renal aquaporins in impaired urinary dilution in hypothyroidism. Am J Physiol: Renal Physiol 289: 672-678. https://doi.org/10.1152/ajprenal.00384.2004

Wang W, Li C, Summer SN, Falk S, Schrier RW (2007) Polyuria of thyrotoxicosis: downregulation of aquaporin water channels and increased solute excretion. Kidney Int 72: 1088-1094. https://doi.org/10.1038/sj.ki.5002475

Syme HM (2007) Cardiovascular and renal manifestations of hyperthyroidism. Vet Clin North Am Small Anim Pract 4: 723–743. https://doi.org/10.1016/j.cvsm.2007.05.011

Oliveira CJ, Schindler F, Ventura AM, Morais MS, Arai RJ, Debbas V, Stern A, Monteiro HP (2003) Nitric oxide and cGMP activate the Ras-MAP kinase pathway-stimulating protein tyrosine phosphorylation in rabbit aortic endothelial cells. Free Radic Biol Med 35: 381-396. https://doi.org/10.1016/S0891-5849(03)00311-3

Yamada T, Matsuda K, Uchiyama M (2006) Atrial natriuretic peptide and cGMP activate sodium transport through PKA-dependent pathway in the urinary bladder of the Japanese tree frog. J Compar Physiol [B] 176: 203-212. https://doi.org/10.1007/s00360-005-0041-z

Bouley R, Pastor-Soler N, Cohen O, McLaughlin M, Breton S, Brown D (2005) Stimulation of AQP2 membrane insertion in renal epithelial cells in vitro and in vivo by the cGMP phosphodiesterase inhibitor sildenafil citrate (Viagra). Am J Physiol Renal Physiol 288: 1103-1112. https://doi.org/10.1152/ajprenal.00337.2004

Sanches TR, Volpini RA, Massola Shimizu MH, Braganca AC, Oshiro-Monreal F, Seguro AC,Andrade L (2012) Sildenafil reduces polyuria in rats with lithium-induced NDI. Am J Physiol Renal Physiol 302: 216-225. https://doi.org/10.1152/ajprenal.00439.2010

Rong S, Gao Y, Yang Y, Shao H, Okekunle AP, Lv C, Du Y, Sun H, Jiang Y, Darko GM, Sun D (2018) Nitric oxide is involved in the hypothyroidism with significant morphology changes in female Wistar rats induced by chronic exposure to high water iodine from potassium iodate. Chemosphere 206: 320-329. https://doi.org/10.1016/j.chemosphere.2018.05.015

Zhou J, Cheng G, Pang H, Liu Q, Liu Y (2018) The effect of 131I-induced hypothyroidism on the levels of nitric oxide (NO), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), total nitric oxide synthase (NOS) activity, and expression of NOS isoforms in rats. Bosn J Basic Med Sci 18(4): 305-312. https://doi.org/10.17305/bjbms.2018.2350

Sarati LI, Toblli JE, Martinez CR, Uceda A, Feldman M, Balaszczuk AM, Fellet AL (2013) Nitric oxide and aqp2 in hypothyroid rats: A link between aging and water homeostasis. Metabolism 62: 1287-1295. https://doi.org/10.1016/j.metabol.2013.04.013

Valtin H, Schroeder HA (1997) Familial hypothalamic diabetes insipidus in rats (Brattleboro rata).1964 [classical article]. J Am Soc Nephrol 8: 1333-1341. https://doi.org/10.1681/ASN.V881333

Schmitt R, Klussmann E, Kahl T, Ellison DH, Bachmann S (2003) Renal expression of sodium transporters and aquaporin-2 in hypothyroid rats. Am J Physiol Renal Physiol 284: 1097-1104. https://doi.org/10.1152/ajprenal.00368.2002

Tain YL, Huang LT, Lee CT, Chan JY, Hsu CN (2015) Maternal citrulline supplementation prevents prenatal NG-nitro-l-arginine-methyl ester (l-NAME)-induced programmed hypertension in rats. Biol Reprod 92: 1-7. https://doi.org/10.1095/biolreprod.114.121384

Bullier-Picard F, Wolf BA, Hugues JN, Durand D, Voirol MJ, Charrier J, Czernichow P, Postel-Vinay MC (1985) The Brattleboro rat: normal growth hormone secretion, decreased hepatic growth hormone receptors and low plasma somatomedin activity. Mol Cell Endocrinol 45(1): 49-56. https://doi.org/10.1016/0303-7207(86)90081-X

Egan G, Silk T, Zamarripa F, Williams J, Federico P, Cunnington R, Carabott L, Blair-West J, Shade R, McKinley M, Farrell M, Lancaster J, Jackson G, Fox P, Denton D (2003) Neural correlates of the emergence of consciousness of thirst. Proc Natl Acad Sci U S A 100: 15241–15246. https://doi.org/10.1073/pnas.2136650100

Fadlalla MB, Wei Q, Fedail JS, Mehfooz A, Mao D, Shi F (2017) Effects of hyper- and hypothyroidism on the development and proliferation of testicular cells in prepubertal rats. Anim Sci J 88: 1943-1954. https://doi.org/10.1111/asj.12883

Yeum CH, Kim SW, Kim NH, Choi KC, Lee J (2002) Increased expression of aquaporin water channels in hypothyroid rat kidney. Pharmacol Res 46: 85–88. https://doi.org/10.1016/S1043-6618(02)00036-1

Iwasaki Y, Oiso Y, Yamauchi K, Takatsuki K, Kondo K, Hasegawa H, Tomita A (1990) Osmoregulation of plasma vasopressin in myxedema. J Clin Endocrinol Metab 70(2): 534-539. https://doi.org/10.1210/jcem-70-2-534

Martin PY, Bianchi M, Roger F, Niksic L, Feraille E (2002) Arginine vasopressin modulates expression of neuronal NOS in rat renal medulla. Am J Physiol Renal Physiol 283: 559-568. https://doi.org/10.1152/ajprenal.00309.2001

Hyndman KA, Mironova EV, Giani JF, Dugas C, Collins J, McDonough AA, Stockand JD, Pollock JS (2017) Collecting Duct Nitric Oxide Synthase 1-beta Activation Maintains Sodium Homeostasis During High Sodium Intake Through Suppression of Aldosterone and Renal Angiotensin II Pathways. J Am Heart Assoc 6(10): e006896. https://doi.org/10.1161/JAHA.117.006896

Правикова ПД, Иванова ЛН (2018) Влияние блокады синтеза оксида азота на диуретическую и натрийуретическую функции почки у крыс с различным уровнем эндогенного вазопрессина в крови. Рос физиол журн им ИМ Сеченова 104(1): 97-103. [Pravikova PD, Ivanova LN (2018) Effect of nitric oxide (II) synthesis inhibition on the diurethic and natriuretic kidney functions in rats with various blood vasopressin levels. Russ J Physiol 104(1): 96–102 2018. (In Russ)].

Böger RH, Bode-Böger SM, Gerecke U, Frölich JC (1994) Long-term administration of L-arginine, L-NAME, and the exogenous NO donor molsidomine modulates urinary nitrate and cGMP excretion in rats. Cardiovasc Res 28(4): 494-499. https://doi.org/10.1093/cvr/28.4.494

Boone M, Kortenoeven M, Robben JH, Deen PM (2010) Effect of the cgmp pathway on aqp2 expression and translocation: Potential implications for nephrogenic diabetes insipidus. Nephrol Dial Transpl 25: 48–54. https://doi.org/10.1093/ndt/gfp409

Ortiz PA, Garvin JL (2002) Role of nitric oxide in the regulation of nephron transport. Am J Physiol Renal Physiol. 282: 777–784. https://doi.org/10.1152/ajprenal.00334.2001

Stoos BA, Garcia NH, Garvin JL (1995) Nitric oxide inhibits sodium reabsorption in the isolated perfused cortical collecting duct. J Am Soc Nephrol 6: 89–94. https://doi.org/10.1681/ASN.V6189

Nakano D, Pollock JS, Pollock DM (2008) Renal medullary ETB receptors produce diuresis and natriuresis via NOS1. Am J Physiol Renal Physiol 294: 1205-1211. https://doi.org/10.1152/ajprenal.00578.2007

Li X, Misik AJ, Rieder CV, Solaro RJ, Lowen A, Fliegel L (2002) Thyroid hormone receptor alpha 1 regulates expression of the Na+/H+ exchanger (NHE1). J Biol Chem 277: 28656- 28662. https://doi.org/10.1074/jbc.M203221200

Basu G, Mohapatra A (2012) Interactions between thyroid disorders and kidney disease. Indian J Endocrinol Metab 16(2): 204-213. https://doi.org/10.4103/2230-8210.93737

Compare JA, Aguirre JA, Ibarra FR, Barontini M, Armando I (2001) Effects of thyroid hormone on the renal dopaminergic system. Endocrine 15: 297–303. https://doi.org/10.1385/ENDO:15:3:297

Schmitt R, Kahl T, Mutig K (2004) Bachmann S. Selectively reduced expression of thick ascending limb TammHorsfall protein in hypothyroid kidneys. Histochem Cell Biol 121(4): 319–327. https://doi.org/10.1007/s00418-004-0638-4

Moreno JM, Perez-Abud R Wangensteen, Rodrıguez Gomez I, Opez Merino IL, Osuna A (2012) Function and expression of renal epithelial sodium transporters in rats with thyroid dysfunction. J Endocrinol Invest 35:735– 741. https://doi.org/10.3275/8064

Allen MD, Neumann S, Gershengorn MC (2011) Occupancy of both sites on the thyrotropin (TSH) receptor dimer is necessary for phosphoinositide signaling. FASEB J 25: 3687-3694. https://doi.org/10.1096/fj.11-188961

Beau I, Misrahi M, Gross B, Vannier B, Loosfelt H, Hai MT, Pichon C, Milgrom E (1997) Basolateral localization and transcytosis of gonadotropin and thyrotropin receptors expressed in Madin‐Darby canine kidney cells. J Biol Chem 272: 5241–5248. https://doi.org/10.1074/jbc.272.8.5241

Sellitti DF, Akamizu T, Doi SQ, Kim GH, Kariyil JT, Kopchik JJ, Koshiyama H (2000) Renal expression of two ‘thyroid‐specifific’ genes: thyrotropin receptor and thyroglobulin. Exp Nephrol 8: 235–243. https://doi.org/10.1159/000020674

Boulkroun S, Ruffieux-Daidié D, Vitagliano JJ, Poirot O, Charles RP, Lagnaz D, Firsov D, Kellenberger S, Staub O (2008) Vasopressin-inducible ubiquitinspecific protease 10 increases ENaC cell surface expression by deubiquitylating and stabilizing sorting nexin 3. Am J Physiol Renal Physiol 295: F889–F900. https://doi.org/10.1152/ajprenal.00001.2008