ИНТЕГРАТИВНАЯ РОЛЬ АЛЬБУМИНА: ЭВОЛЮЦИОННЫЕ, БИОХИМИЧЕСКИЕ И ПАТОФИЗИОЛОГИЧЕСКИЕ АСПЕКТЫ
PDF

Ключевые слова

альбумин
плазма крови
оксидативный стресс
эндотелий
гликокаликс
транспортная функция
трансцитоз

Как цитировать

Белинская, Д. А., Воронина, П. А., & Гончаров, Н. В. (2021). ИНТЕГРАТИВНАЯ РОЛЬ АЛЬБУМИНА: ЭВОЛЮЦИОННЫЕ, БИОХИМИЧЕСКИЕ И ПАТОФИЗИОЛОГИЧЕСКИЕ АСПЕКТЫ. Российский физиологический журнал им. И. М. Сеченова, 107(12), 1455–1489. https://doi.org/10.31857/S0869813921120037

Аннотация

Будучи одним из главных белков в организме человека и многих видов животных, альбумин играет решающую роль в транспортировке различных ионов, электронейтральных молекул и в поддержании коллоидно-осмотического давления крови. Альбумин способен связывать практически все известные лекарства, многие нутрицевтики и токсические вещества, в значительной степени определяя их фармако- и токсикокинетику. Однако альбумин не только пассивный, но и активный участник фармакокинетических и токсикокинетических процессов, обладающий рядом ферментативных активностей. Благодаря тиоловой группе в составе Cys34 альбумин может служить ловушкой для активных форм кислорода и азота, участвуя таким образом в окислительно-восстановительных процессах. Большое значение имеет взаимодействие белка с клетками крови, кровеносных сосудов, а также с клетками тканей за пределами сосудистого русла. Взаимодействие с эндотелиальным гликокаликсом и клетками эндотелия сосудов во многом определяет интегративную роль альбумина. В данном обзоре представлены сведения исторического характера, информация об эволюционных изменениях, воспалительных и антиоксидантных свойствах альбумина, о его структурно-функциональных модификациях и их значении в патогенезе некоторых заболеваний.

https://doi.org/10.31857/S0869813921120037
PDF

Литература

Peters T (1995) All about albumin: biochemistry, genetics and medical applications. Acad Press. London.

Raoufinia R, Mota A, Keyhanvar N, Safari F, Shamekhi S, Abdolalizadeh J (2016) Overview of albumin and its purification methods. Adv Pharm Bull 6:495–507.

Mozzi A, Forni D, Cagliani R, Pozzoli U, Vertemara J, Bresolin N, Sironi M (2014) Albuminoid genes: Evolving at the interface of dispensability and selection. Genome Biol Evol 6:2983–2997. https://doi.org/10.1093/gbe/evu235

Li S, Cao Y, Geng F (2017) Genome-Wide Identification and Comparative Analysis of Albumin Family in Vertebrates. Evol Bioinform 13:1–6. https://doi.org/10.1177/1176934317716089

Haefliger DN, Moskaitis JE, Schoenberg DR, Wahli W (1989) Amphibian albumins as members of the albumin, alpha-fetoprotein, vitamin D-binding protein multigene family. J Mol Evol 29:344–354. https://doi.org/10.1007/BF02103621

Lichenstein HS, Lyons DE, Wurfel MM, Johnson DA, McGinley MD, Leidli JC, Trollinger DB, Mayer JP, Wright SD, Zukowski MM (1994) Afamin is a new member of the albumin, alpha-fetoprotein, and vitamin D-binding protein gene family. J Biol Chem 269:18149–18154.

Doolittle RF (1992) Reconstructing history with amino acid sequences. In: Protein Science. 191–200.

Bujacz A (2012) Structures of bovine, equine and leporine serum albumin. Acta Crystallogr Sect D Biol Crystallogr 68:1278–1289. https://doi.org/10.1107/S0907444912027047

Metcalf V, Brennan S, George P (2003) Using serum albumin to infer vertebrate phylogenies. Appl Bioinform 2:S97–S107.

Sarich VM, Wilson AC (1967) Rates of albumin evolution in primates. Proc Natl Acad Sci U S A 58:142–148. https://doi.org/10.1073/pnas.58.1.142

Harper ME (1983) Linkage of the evolutionarily-related serum albumin and alpha-fetoprotein genes within q11-22 of human chromosome 4. Am J Hum Genet 35:565–572.

Gray JE, Doolittle RF (1992) Characterization, primary structure, and evolution of lamprey plasma albumin. Protein Sci 1:289–302. https://doi.org/10.1002/pro.5560010211

Nishio H, Heiskanen M, Palotie A, Bélanger L, Dugaiczyk A (1996) Tandem arrangement of the human serum albumin multigene family in the sub-centromeric region of 4q: Evolution and chromosomal direction of transcription. J Mol Biol 259:113–119. https://doi.org/10.1006/jmbi.1996.0306

Quinlan GJ, Martin GS, Evans TW (2005) Albumin: Biochemical properties and therapeutic potential. Hepatology 41:1211–1219.

Pietrangelo A, Panduro A, Chowdhury JR, Shafritz DA (1992) Albumin gene expression is down-regulated by albumin or macromolecule infusion in the rat. J Clin Invest 89:1755–1760. https://doi.org/10.1172/JCI115778

Pyzik M, Sand KMK, Hubbard JJ, Andersen JT, Sandlie I, Blumberg RS (2019) The neonatal Fc Receptor (FcRn): A misnomer? Front Immunol 10:1540. https://doi.org/10.3389/fimmu.2019.01540.

Pincetic A, Bournazos S, Dilillo DJ, Maamary J, Wang TT, Dahan R, Fiebiger BM, Ravetch JV. (2014) Type i and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol 15:707–716. https://doi.org/10.1038/ni.2939

Nakashima F, Shibata T, Kamiya K, Yoshitake J, Kikuchi R, Matsushita T, Ishii I, Giménez-Bastida JA, Schneider C, Uchida K (2018) Structural and functional insights into S-thiolation of human serum albumins. Sci Rep 8:932. https://doi.org/10.1038/s41598-018-19610-9

Tabata F, Wada Y, Kawakami S, Miyaji K (2021) Serum albumin redox states: More than oxidative stress biomarker. Antioxidants 10:503. https://doi.org/10.3390/antiox10040503.

Kragh-Hansen U, Brennan SO, Galliano M, Sugita O (1990) Binding of warfarin, salicylate, and diazepam to genetic variants of human serum albumin with known mutations. Mol Pharmacol 37:238–242

Fasano M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P, Notari S, Ascenzi P (2005) The extraordinary ligand binding properties of human serum albumin. IUBMB Life 57:787–796. https://doi.org/10.1080/15216540500404093

Ascenzi P, Bocedi A, Notari S, Fanali G, Fesce R, Fasano M (2006) Allosteric Modulation of Drug Binding to Human Serum Albumin. Mini-Reviews Med Chem 6:483–489. https://doi.org/10.2174/138955706776361448

Ascenzi P, Fasano M (2010) Allostery in a monomeric protein: The case of human serum albumin. Biophys Chem 148:16–22. https://doi.org/10.1016/j.bpc.2010.03.001

Goncharov NV, Belinskaya DA, Razygraev AV, Ukolov AI (2015) On the enzymatic activity of albumin. Russ J Bioorgan Chem 41:131–144. https://doi.org/10.1134/S1068162015020041

Belinskaia DA, Goncharov NV (2020) Theoretical and Practical Aspects of Albumin Esterase Activity. Russ J Bioorganic Chem 46:287–298. https://doi.org/10.1134/S1068162020030036

Belinskaia DA, Voronina PA, Shmurak VI, Vovk MA, Batalova AA, Jenkins RO, Goncharov NV (2020) The universal soldier: Enzymatic and non-enzymatic antioxidant functions of serum albumin. Antioxidants 9:1–29. https://doi.org/10.3390/antiox9100966

Kirby AJ, Hollfelder F, Tawfik DS (2000) Nonspecific catalysis by protein surfaces. Appl Biochem Biotechnol - Part A Enzym Eng Biotechnol 83:173–181. https://doi.org/10.1385/abab:83:1-3:173

Copley SD (2017) Shining a light on enzyme promiscuity. Curr Opin Struct Biol 47:167–175. https://doi.org/10.1016/j.sbi.2017.11.001

Yang G, Miton CM, Tokuriki N (2020) A mechanistic view of enzyme evolution. Protein Sci 29:1724–1747. https://doi.org/10.1002/pro.3901

Sanchez E, Lu S, Reed C, Schmidt J, Forconi M (2016) Kemp elimination in cationic micelles: Designed enzyme-like rates achieved through the addition of long-chain bases. J Phys Org Chem 29:185–189. https://doi.org/10.1002/poc.3515

Sakamoto S, Komatsu T, Ueno T, Hanaoka K, Urano Y (2017) Fluorescence detection of serum albumin with a turnover-based sensor utilizing Kemp elimination reaction. Bioorgan Med Chem Lett 27:3464–3467. https://doi.org/10.1016/j.bmcl.2017.05.076

Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195. https://doi.org/10.1038/nature06879

Oettl K, Marsche G (2010) Redox State of Human Serum Albumin in Terms of Cysteine-34 in Health and Disease. In: Methods in Enzymology 181–195.

Michelis R, Sela S, Zeitun T, Geron R, Kristal B (2016) Unexpected normal colloid osmotic pressure in clinical states with low serum albumin. PLoS One 11:e0159839. https://doi.org/10.1371/journal.pone.0159839

Nagumo K, Tanaka M, Chuang VTG, Setoyama H, Watanabe H, Yamada N, Kubota K, Tanaka M, Matsushita K, Yoshida A, Jinnouchi H, Anraku M, Kadowaki D, Ishima Y, Sasaki Y, Otagiri M, Maruyama T (2014) Cys34-cysteinylated human serum albumin is a sensitive plasma marker in oxidative stress-related chronic diseases. PLoS One 9:e85216. https://doi.org/10.1371/journal.pone.0085216

Kurano M, Yasukawa K, Ikeda H, Aoki J, Yatomi Y (2019) Redox state of albumin affects its lipid mediator binding characteristics. Free Radic Res 53:892–900. https://doi.org/10.1080/10715762.2019.1641603

Figueroa SM, Araos P, Reyes J, Gravez B, Barrera-Chimal J, Amador CA (2021) Oxidized albumin as a mediator of kidney disease. Antioxidants 10:1–13. https://doi.org/10.3390/antiox10030404

Turell L, Radi R, Alvarez B (2013) The thiol pool in human plasma: The central contribution of albumin to redox processes. Free Radic Biol Med 65:244–253. https://doi.org/10.1016/j.freeradbiomed.2013.05.050

Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E (2008) The antioxidant properties of serum albumin. FEBS Lett 582:1783–1787. https://doi.org/10.1016/j.febslet.2008.04.057

Taverna M, Marie AL, Mira JP, Guidet B (2013) Specific antioxidant properties of human serum albumin. Ann Intensive Care 3:1–7. https://doi.org/10.1186/2110-5820-3-4

Pedersen AO, Jacobsen J (1980) Reactivity of the Thiol Group in Human and Bovine Albumin at pH 3–9, as Measured by Exchange with 2,2′-Dithiodipyridine. Eur J Biochem 106:291–295. https://doi.org/10.1111/j.1432-1033.1980.tb06022.x

Agarwal RP, Phillips M, McPherson RA, Hensley P (1986) Serum albumin and the metabolism of disulfiram. Biochem Pharmacol 35:3341–3347. https://doi.org/10.1016/0006-2952(86)90433-8

Hurst R, Bao Y, Ridley S, Williamson G. (1999) Phospholipid hydroperoxide cysteine peroxidase activity of human serum albumin. Biochem J 338 (Pt 3):723–728.

Cha MK, Kim IH (1996) Glutathione-linked thiol peroxidase activity of human serum albumin: A possible antioxidant role of serum albumin in blood plasma. Biochem Biophys Res Commun 222:619–625. https://doi.org/10.1006/bbrc.1996.0793

Lee H, Kim IH (2001) Thioredoxin-linked lipid hydroperoxide peroxidase activity of human serum albumin in the presence of palmitoyl coenzyme A. Free Radic Biol Med 30:327–333. https://doi.org/10.1016/S0891-5849(00)00483-4

Iwao Y, Ishima Y, Yamada J, Noguchi T, Kragh-Hansen U, Mera K, Honda D, Suenaga A, Maruyama T, Otagiri M (2012) Quantitative evaluation of the role of cysteine and methionine residues in the antioxidant activity of human serum albumin using recombinant mutants. IUBMB Life 64:450–454. https://doi.org/10.1002/iub.567

Harris ED (1991) Copper Transport: An Overview. Proc Soc Exp Biol Med 196:130–140. https://doi.org/10.3181/00379727-196-43171B

Karpenko MN, Ilyicheva EY, Muruzheva ZM, Milyukhina IV, Orlov YA, Puchkova LV (2018) Role of Copper Dyshomeostasis in the Pathogenesis of Parkinson’s Disease. Bull Exp Biol Med 164:596–600. https://doi.org/10.1007/s10517-018-4039-4

Laussac JP, Sarkar B (1984) Characterization of the Copper(II)- and Nickel(II)-Transport Site of Human Serum Albumin. Studies of Copper(II) and Nickel(II) Binding to Peptide 1-24 of Human Serum Albumin by 13C and 1H NMR Spectroscopy. Biochemistry 23:2832–2838. https://doi.org/10.1021/bi00307a046

Sendzik M, Pushie MJ, Stefaniak E, Haas KL (2017) Structure and Affinity of Cu(I) Bound to Human Serum Albumin. Inorg Chem 56:15057–15065. https://doi.org/10.1021/acs.inorgchem.7b02397

Bar-Or D, Rael LT, Lau EP, Rao NKR, Thomas GW, Winkler JV, Yukl RL, Kingston RG, Curtis CG (2001) An analog of the human albumin N-terminus (Asp-Ala-His-Lys) prevents formation of copper-induced reactive oxygen species. Biochem Biophys Res Commun 284:856–862. https://doi.org/10.1006/bbrc.2001.5042

Gryzunov YA, Arroyo A, Vigne JL, Zhao Q, Tyurin VA, Hubel CA, Gandley RE, Vladimirov YA, Taylor RN, Kagan VE (2003) Binding of fatty acids facilitates oxidation of cysteine-34 and converts copper-albumin complexes from antioxidants to prooxidants. Arch Biochem Biophys 413:53–66. https://doi.org/10.1016/S0003-9861(03)00091-2

Jarabak R, Westley J (1991) Localization of the sulfur-cyanolysis site of serum albumin to subdomain 3-ab. J Biochem Toxicol 6:65–70. https://doi.org/10.1002/jbt.2570060109

Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS (2016) Oxidant mechanisms in renal injury and disease. Antioxidants Redox Signal. 25:119–146. https://doi.org/10.1089/ars.2016.6665

Zunszain PA, Ghuman J, McDonagh AF, Curry S (2008) Crystallographic Analysis of Human Serum Albumin Complexed with 4Z,15E-Bilirubin-IXα. J Mol Biol 381:394–406. https://doi.org/10.1016/j.jmb.2008.06.016

Gounden V, Ngu M, Anastasopoulou C, Jialal I (2020) Fructosamine. In: Stat Pearls. Stat Pearls Publ. Treasure Island (FL).

Belsare S, Coté G (2021) Development of a colorimetric paper fluidic dipstick assay for measurement of glycated albumin to monitor gestational diabetes at the point-of-care. Talanta 223. https://doi.org/10.1016/j.talanta.2020.121728

Bettiga A, Fiorio F, Di Marco F, Trevisani F, Romani A, Porrini E, Salonia A, Montorsi F, Vago R (2019) The modern western diet rich in advanced glycation end-products (AGEs): An overview of its impact on obesity and early progression of renal pathology. Nutrients 11(8):1748. https://doi.org/10.3390/nu11081748

Bohlender JM, Franke S, Stein G, Wolf G (2005) Advanced glycation end products and the kidney. Am J Physiol Ren Physiol 289(4):F645-F659. https://doi.org/10.1152/ajprenal.00398.2004

Pötzsch S, Blankenhorn A, Navarrete Santos A, Silber RE, Somoza V, Simm A (2013) The effect of an AGE-rich dietary extract on the activation of NF-κB depends on the cell model used. Food Funct 4:1023–1031. https://doi.org/10.1039/c3fo30349g

Vlassara H, Uribarri J (2014) Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Curr Diab Rep 14:453. https://doi.org/10.1007/s11892-013-0453-1

Frimat M, Daroux M, Litke R, Nevière R, Tessier FJ, Boulanger E (2017) Kidney, heart and brain: Three organs targeted by ageing and glycation. Clin Sci 131:1069–1092. https://doi.org/10.1042/CS20160823

Fritz G (2011) RAGE: A single receptor fits multiple ligands. Trends Biochem Sci 36:625–632. https://doi.org/10.1016/j.tibs.2011.08.008

Gill V, Kumar V, Singh K, Kumar A, Kim JJ (2019) Advanced glycation end products (AGEs) may be a striking link between modern diet and health. Biomolecules 9(12):888. https://doi.org/10.3390/biom9120888

Smith PK (2017) Do advanced glycation end-products cause food allergy? Curr Opin Allergy Clin Immunol 17:325–331. https://doi.org/10.1097/ACI.0000000000000385

Sukkar MB, Wood LG, Tooze M, Simpson JL, McDonald VM, Gibson PG, Wark PAB (2012) Soluble RAGE is deficient in neutrophilic asthma and COPD. Eur Respir J 39:721–729. https://doi.org/10.1183/09031936.00022011

Morales ME, Rojas RA, Monasterio AV, González BI, Figueroa CI, Manques M B, Romero EJ, Llanos LJ, Valdés ME, Cofré LC (2013) Lesiones gástricas en pacientes infectados con Helicobacter pylori: Expresión de RAGE (receptor de productos de glicosilización avanzada) y otros inmunomarcadores. Rev Med Chil 141:1240–1248. https://doi.org/10.4067/S0034-98872013001000002

Kumar Pasupulati A, Chitra PS, Reddy GB (2016) Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy. Biomol Concepts 7:293–299. https://doi.org/10.1515/bmc-2016-0021

Perkins TN, Oczypok EA, Milutinovic PS, Dutz RE, Oury TD (2019) RAGE-dependent VCAM-1 expression in the lung endothelium mediates IL-33-induced allergic airway inflammation. Allergy Eur J Allergy Clin Immunol 74:89–99. https://doi.org/10.1111/all.13500

Sotokawauchi A, Matsui T, Higashimoto Y, Yamagishi SI (2019) Fructose causes endothelial cell damage via activation of advanced glycation end products–receptor system. Diabetes Vasc Dis Res 16:556–561. https://doi.org/10.1177/1479164119866390

Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL (2001) Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 280:E685–E694. https://doi.org/10.1152/ajpendo.2001.280.5.e685

Tanaka N, Yonekura H, Yamagishi SI, Fujimori H, Yamamoto Y, Yamamoto H (2000) The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-α through nuclear factor-κB, and by 17β-Estradiol through sp-1 in human vascular endothelial cells. J Biol Chem 275:25781–25790. https://doi.org/10.1074/jbc.M001235200

Li L-M, Hou D-X, Guo Y-L, Yang J-W, Liu Y, Zhang C-Y, Zen K (2011) Role of MicroRNA-214–Targeting Phosphatase and Tensin Homolog in Advanced Glycation End Product-Induced Apoptosis Delay in Monocytes. J Immunol 186:2552–2560. https://doi.org/10.4049/jimmunol.1001633

Lyons TJ, Jenkins A (1997) Glycation, oxidation, and lipoxidation in the development of the complications of diabetes: a carbonyl stress hypothesis. Diabetes Rev 5:365–391.

Neviere R, Yu Y, Wang L, Tessier F, Boulanger E (2016) Implication of advanced glycation end products (Ages) and their receptor (Rage) on myocardial contractile and mitochondrial functions. Glycoconj J 33:607–617. https://doi.org/10.1007/s10719-016-9679-x

Ahmad S, Siddiqui Z, Rehman S, Khan MY, Khan H, Khanum S, Alouffi S, Saeed M (2017) A Glycation Angle to Look into the Diabetic Vasculopathy: Cause and Cure. Curr Vasc Pharmacol 15:352–364. https://doi.org/10.2174/1570161115666170327162639

Copur S, Siriopol D, Afsar B, Comert MC, Uzunkopru G, Sag AA, Ortiz A, Covic A, van Raalte DH, Cherney DZ, Rossing P, Kanbay M (2021) Serum glycated albumin predicts all-cause mortality in dialysis patients with diabetes mellitus: meta-analysis and systematic review of a predictive biomarker. Acta Diabetol 58:81−91. https://doi.org/10.1007/s00592-020-01581-x

Vijayaraghavan B, Padmanabhan G, Ramanathan K (2020) Determination of serum glycated albumin and high sensitivity c-reactive protein in the insight of cardiovascular complications in diabetic chronic kidney disease patients. Afr Health Sci 20:308–313. https://doi.org/10.4314/ahs.v20i1.36

Giglio RV, Lo Sasso B, Agnello L, Bivona G, Maniscalco R, Ligi D, Mannello F, Ciaccio M (2020) Recent Updates and Advances in the Use of Glycated Albumin for the Diagnosis and Monitoring of Diabetes and Renal, Cerebro- and Cardio-Metabolic Diseases. J Clin Med 9:3634. https://doi.org/10.3390/jcm9113634

Sarmah S, Das S, Roy AS (2020) Protective actions of bioactive flavonoids chrysin and luteolin on the glyoxal induced formation of advanced glycation end products and aggregation of human serum albumin: In vitro and molecular docking analysis. Int J Biol Macromol 165:2275–2285. https://doi.org/10.1016/j.ijbiomac.2020.10.023

Rondeau P, Bourdon E (2011) The glycation of albumin: Structural and functional impacts. Biochimie 93:645–658. https://doi.org/10.1016/j.biochi.2010.12.003

Das A, Basak P, Pramanik A, Majumder R, Ghosh A, Hazra S, Guria M, Bhattacharyya M, Banik SP (2020) Ribosylation induced structural changes in Bovine Serum Albumin: understanding high dietary sugar induced protein aggregation and amyloid formation. Heliyon 6:e05053. https://doi.org/10.1016/j.heliyon.2020.e05053

Vlassopoulos A, Lean MEJ, Combet E (2013) Role of oxidative stress in physiological albumin glycation: A neglected interaction. Free Radic Biol Med 60:318–324. https://doi.org/10.1016/j.freeradbiomed.2013.03.010

Ledesma-Osuna AI, Ramos-Clamont G, Vázquez-Moreno L (2008) Characterization of bovine serum albumin glycated with glucose, galactose and lactose. Acta Biochim Pol 55:491–497.

Soboleva A, Mavropulo-Stolyarenko G, Karonova T, Thieme D, Hoehenwarter W, Ihling C, Stefanov V, Grishina T, Frolov A (2019) Multiple glycation sites in blood plasma proteins as an integrated biomarker of type 2 diabetes mellitus. Int J Mol Sci 20:2329. https://doi.org/10.3390/ijms20092329

Qiu H, Jin L, Chen J, Shi M, Shi F, Wang M, Li D, Xu X, Su X, Yin X, Li W, Zhou X, Linhardt RJ, Wang Z, Chi L, Zhang Q (2020) Comprehensive glycomic analysis reveals that human serum albumin glycation specifically affects the pharmacokinetics and efficacy of different anticoagulant drugs in diabetes. Diabetes 69:760–770. https://doi.org/10.2337/db19-0738

Korça E, Piskovatska V, Börgermann J, Navarrete Santos A, Simm A (2020) Circulating antibodies against age-modified proteins in patients with coronary atherosclerosis. Sci Rep 10:17105. https://doi.org/10.1038/s41598-020-73877-5

Qian H, Cao Y, Sun J, Zu J, Ma L, Zhou H, Tang X, Li Y, Yu H, Zhang M, Bai Y, Xu C, Ishii N, Hashimoto T, Li X (2020) Anti-human serum albumin autoantibody may be involved in the pathogenesis of autoimmune bullous skin diseases. FASEB J 34:8574–8595. https://doi.org/10.1096/fj.201903247RR

Nass N, Bayreuther K, Simm A (2017) Systemic activation of NF-κB driven luciferase activity in transgenic mice fed advanced glycation end products modified albumin. Glycoconj J 34:157–161. https://doi.org/10.1007/s10719-017-9762-y

Freitas PAC, Ehlert LR, Camargo JL (2017) Glycated albumin: A potential biomarker in diabetes. Arch Endocrinol Metab 61:296–304. https://doi.org/10.1590/2359-3997000000272

Roohk HV, Zaidi AR, Patel D (2018) Glycated albumin (GA) and inflammation: role of GA as a potential marker of inflammation. Inflamm Res 67:21–30. https://doi.org/10.1007/s00011-017-1089-4

Prasanna G, Jing P (2021) Polyphenol binding disassembles glycation-modified bovine serum albumin amyloid fibrils. Spectrochim Acta Part A Mol Biomol Spectrosc 246:119001. https://doi.org/10.1016/j.saa.2020.119001

Bourdon E, Loreau N, Blache D (1999) Glucose and free radicals impair the antioxidant properties of serum albumin. FASEB J 13:233–244. https://doi.org/10.1096/fasebj.13.2.233

Chesne S, Rondeau P, Armenta S, Bourdon E (2006) Effects of oxidative modifications induced by the glycation of bovine serum albumin on its structure and on cultured adipose cells. Biochimie 88:1467–1477. https://doi.org/10.1016/j.biochi.2006.05.011

Martinez Fernandez A, Regazzoni L, Brioschi M, Gianazza E, Agostoni P, Aldini G, Banfi C (2019) Pro-oxidant and pro-inflammatory effects of glycated albumin on cardiomyocytes. Free Radic Biol Med 144:245–255. https://doi.org/10.1016/j.freeradbiomed.2019.06.023

Belinskaia DA, Terpilovskii MA, Batalova AA, Goncharov NV (2019) Effect of Cys34 Oxidation State of Albumin on Its Interaction with Paraoxon according to Molecular Modeling Data. Russ J Bioorganic Chem 45:535–544. https://doi.org/10.1134/S1068162019060086

Anthony-Regnitz CM, Wilson AE, Sweazea KL, Braun EJ (2020) Fewer Exposed Lysine Residues May Explain Relative Resistance of Chicken Serum Albumin to In Vitro Protein Glycation in Comparison to Bovine Serum Albumin. J Mol Evol 88:653–661. https://doi.org/10.1007/s00239-020-09964-y

Martinez del Rio C, Gutiérrez-Guerrero YT (2020) An Evolutionary Remedy for an Abominable Physiological Mystery: Benign Hyperglycemia in Birds. J Mol Evol 88:715–719. https://doi.org/10.1007/s00239-020-09970-0

Myers GJ, Wegner J (2017) Endothelial Glycocalyx and Cardiopulmonary Bypass. J Extra Corpor Technol 49:174–181.

Perrin RM, Harper SJ, Bates DO (2007) A role for the endothelial glycocalyx in regulating microvascular permeability in diabetes mellitus. Cell Biochem Biophys 49:65–72. https://doi.org/10.1007/s12013-007-0041-6

Bruegger D, Rehm M, Jacob M, Chappell D, Stoeckelhuber M, Welsch U, Conzen P, Becker BF (2008) Exogenous nitric oxide requires an endothelial glycocalyx to prevent postischemic coronary vascular leak in guinea pig hearts. Crit Care 12:R73. https://doi.org/10.1186/cc6913

Bundgaard M (1984) The three-dimensional organization of tight junctions in a capillary endothelium revealed by serial-section electron microscopy. J Ultrasructure Res 88:1–17. https://doi.org/10.1016/S0022-5320(84)90177-1

Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79:703–761 . https://doi.org/10.1152/physrev.1999.79.3.703

Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 11:32–51. https://doi.org/10.1007/s12575-009-9008-x

Aukland K, Kramer GC, Renkin EM (1984) Protein concentration of lymph and interstitial fluid in the rat tail. Am J Physiol Hear Circ Physiol 247(1 Pt 2):H74−H79. https://doi.org/10.1152/ajpheart.1984.247.1.h74

Rutili G, Arfors KE (1977) Protein Concentration in Interstitial and Lymphatic Fluids from the Subcutaneous Tissue. Acta Physiol Scand 99:1–8. https://doi.org/10.1111/j.1748-1716.1977.tb10345.x

Millici AJ, Watrous NE, Stukenbrok H, Palade GE (1987) Transcytosis of albumin in capillary endothelium. J Cell Biol 105:2603–2612. https://doi.org/10.1083/jcb.105.6.2603

Miyawaki-Shimizu K, Predescu D, Shimizu J, Broman M, Predescu S, Malik AB (2006) siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway. Am J Physiol Lung Cell Mol Physiol 290:L405−L413. https://doi.org/10.1152/ajplung.00292.2005

Schubert W, Frank PG, Razani B, Park DS, Chow CW, Lisanti MP (2001) Caveolae-deficient Endothelial Cells Show Defects in the Uptake and Transport of Albumin in Vivo. J Biol Chem 276:48619–48622. https://doi.org/10.1074/jbc.C100613200

Larsen MT, Kuhlmann M, Hvam ML, Howard KA (2016) Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther 4:3. https://doi.org/10.1186/s40591-016-0048-8

Armstrong SM, Khajoee V, Wang C, Wang T, Tigdi J, Yin J, Kuebler WM, Gillrie M, Davis SP, Ho M, Lee WL (2012) Co-regulation of transcellular and paracellular leak across microvascular endothelium by dynamin and Rac. Am J Pathol 180:1308-1323. https://doi.org/10.1016/j.ajpath.2011.12.002

Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow CW, Lisanti MP (2002) Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-name, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 277:40091–40098. https://doi.org/10.1074/jbc.M205948200

Berde CB, Hudson BS, Simoni RD, Sklar LA (1979) Human serum albumin. Spectroscopic studies of binding and proximity relationships for fatty acids and bilirubin. J Biol Chem 254:391–400.

Baldo G, Fellin R, Manzatoa E, Baiocchi MR, Ongaro G, Baggio G, Fabiani F, Pauluzzi S, Crepaldi G (1983) Characterization of hyperlipidemia m two patients with analbuminemia. Clin Chim Acta 128:307–319. https://doi.org/10.1016/0009-8981(83)90330-3

Cormode EJ, Lyster DM, Israels S (1975) Analbuminemia in a neonate. J Pediatr 86:862–867. https://doi.org/10.1016/S0022-3476(75)80215-0

Schnitzer JE, Carley WW, Palade GE (1988) Albumin interacts specifically with a 60-kDa microvascular endothelial glycoprotein. Proc Natl Acad Sci U S A 85:6773–6777. https://doi.org/10.1073/pnas.85.18.6773

Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 272:25968–25975. https://doi.org/10.1074/jbc.272.41.25968

Kuebler WM, Wittenberg C, Lee WL, Reppien E, Goldenberg NM, Lindner K, Gao Y, Winoto-Morbach S, Drab M, Mühlfeld C, Dombrowsky H, Ochs M, Schütze S, Uhlig S (2016) Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase. Am J Physiol - Lung Cell Mol Physiol 310:L720–L732. https://doi.org/10.1152/ajplung.00157.2015

John TA, Vogel SM, Tiruppathi C, Malik AB, Minshall RD (2003) Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol - Lung Cell Mol Physiol 284:L187–L196. https://doi.org/10.1152/ajplung.00152.2002

Сарапульцев АП, Ремпель СВ, Кузнецова ЮВ, Сарапульцев ГП (2016) Взаимодействие наночастиц с биологическими объектами (обзор). Вестн Урал Мед Акад Наук 3:97–111. [Sarapultsev AP, Rempel SV, Kuznetsova JuV, Sarapultsev GP (2016) Nanoparticle’s interactions with biological objects (The Review). J Ural Med Acad Sci 3:97–111. (In Russ)]. https://doi.org/10.22138/2500-0918-2016-15-3-97-111

Aird WC (2007) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100:174–190. https://doi.org/10.1161/01.RES.0000255690.03436.ae.

Raheel H, Ghaffari S, Khosraviani N, Mintsopoulos V, Auyeung D, Wang C, Kim YH, Mullen B, Sung HK, Ho M, Fairn G, Neculai D, Febbraio M, Heit B, Lee WL (2019) CD36 mediates albumin transcytosis by dermal but not lung microvascular endothelial cells: Role in fatty acid delivery. Am J Physiol - Lung Cell Mol Physiol 316:L740–L750. https://doi.org/10.1152/ajplung.00127.2018

Goncharov NV, Popova PI, Avdonin PP, Kudryavtsev IV, Serebryakova MK, Korf EA, Avdonin PV (2020) Markers of Endothelial Cells in Normal and Pathological Conditions. Biochem Suppl Ser A Membr Cell Biol 14:167–183. https://doi.org/10.1134/S1990747819030140

Park L, Wang G, Moore J, Girouard H, Zhou P, Anrather J, Iadecola C (2014) The key role of transient receptor potential melastatin-2 channels in amyloid-β-induced neurovascular dysfunction. Nat Commun 5:5318. https://doi.org/10.1038/ncomms6318

Suresh K, Servinsky L, Reyes J, Undem C, Zaldumbide J, Rentsendorj O, Modekurty S, Dodd-o JM, Scott A, Pearse DB, Shimoda LA (2016) CD36 mediates H2O2-induced calcium influx in lung microvascular endothelial cells. Am J Physiol - Lung Cell Mol Physiol 312:L143–L153. https://doi.org/10.1152/ajplung.00361.2016

Hawighorst T, Oura H, Streit M, Janes L, Nguyen L, Brown LF, Oliver G, Jackson DG, Detmar M (2002) Thrombospondin-1 selectively inhibits early-stage carcinogenesis and angiogenesis but not tumor lymphangiogenesis and lymphatic metastasis in transgenic mice. Oncogene 21:7945–7956. https://doi.org/10.1038/sj.onc.1205956

Febbraio M, Hajjar DP, Silverstein RL (2001) CD36: A class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108:785–791. https://doi.org/10.1172/JCI14006

Ibrahimi A, Abumrad NA (2002) Role of CD36 in membrane transport of long-chain fatty acids. Curr Opin Clin Nutr Metab Care 5:139–145. https://doi.org/10.1097/00075197-200203000-00004

Glatz JFC, Luiken JJFP (2018) Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. J Lipid Res 59:1084–1093. https://doi.org/10.1194/jlr.R082933

Peters TJr (1977) Serum albumin: recent progress in the understanding of its structure and biosynthesis. Clin Chem 391–400.

van der Vusse GJ (2009) Albumin as fatty acid transporter. Drug Metab Pharmacokinet 24:300–307. https://doi.org/10.2133/dmpk.24.300

Nergiz-Unal R, Rademakers T, Cosemans J, Heemskerk J (2011) CD36 as a Multiple-Ligand Signaling Receptor in Atherothrombosis. Cardiovasc Hematol Agents Med Chem 9:42–55. https://doi.org/10.2174/187152511794182855

Nagase S, Shimamune K, Shumiya S (1979) Albumin-deficient rat mutant. Science 205:590–591. https://doi.org/10.1126/science.451621

Lin MH, Khnykin D (2014) Fatty acid transporters in skin development, function and disease. Biochim Biophys Acta - Mol Cell Biol Lipids 1841:362–368. https://doi.org/10.1016/j.bbalip.2013.09.016

Robertson S, Colombo ES, Lucas SN, Hall PR, Febbraio M, Paffett ML, Campen MJ (2013) CD36 mediates endothelial dysfunction downstream of circulating factors induced by O3 exposure. Toxicol Sci 134:304–311. https://doi.org/10.1093/toxsci/kft107

Traoré B, Muanza K, Looareesuwan S, Supavej S, Khusmith S, Danis M, Viriyavejakul P, Gay F (2000) Cytoadherence characteristics of Plasmodium falciparum isolates in Thailand using an in vitro human lung endothelial cells model. Am J Trop Med Hyg 62:38–44. https://doi.org/10.4269/ajtmh.2000.62.38

Pillon NJ, Azizi PM, Li YE, Liu J, Wang C, Chan KL, Hopperton KE, Bazinet RP, Heit B, Bilan PJ, Lee WL, Klip A (2015) Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis. Am J Physiol - Endocrinol Metab 309:E35–E44. https://doi.org/10.1152/ajpendo.00611.2014

Amore A, Cirina P, Conti G, Cerutti F, Bagheri N, Emancipator SN, Coppo R (2004) Amadori-configurated albumin induces nitric oxide-dependent apoptosis of endothelial cells: A possible mechanism of diabetic vasculopathy. Nephrol Dial Transplant 19:53–60. https://doi.org/10.1093/ndt/gfg428

Moon JH, Chae MK, Kim KJ, Kim HM, Cha BS, Lee HC, Kim YJ, Lee BW (2012) Decreased endothelial progenitor cells and increased serum glycated albumin are independently correlated with plaque-forming carotid artery atherosclerosis in type 2 diabetes patients without documented Ischemic disease. Circ J 76:2273–2279. https://doi.org/10.1253/circj.CJ-11-1499

Popov D, Simionescu M (2006) Cellular mechanisms and signalling pathways activated by high glucose and AGE-albumin in the aortic endothelium. Arch Physiol Biochem 112:265–273. https://doi.org/10.1080/13813450601094573

Rubenstein DA, Maria Z, Yin W (2011) Glycated albumin modulates endothelial cell thrombogenic and inflammatory responses. J Diabetes Sci Technol 5:703–713. https://doi.org/10.1177/193229681100500325

Rubenstein DA, Maria Z, Yin W (2014) Combined incubation of platelets and endothelial cells with glycated albumin: Altered thrombogenic and inflammatory responses. Diabetes Vasc Dis Res 11:235–242. https://doi.org/10.1177/1479164114531298

Nizheradze K (2006) Concanavalin A, but not glycated albumin, increases subendothelial deposition of von Willebrand factor in vitro. Endothel J Endothel Cell Res 13:245–248. https://doi.org/10.1080/10623320600903916

Wang S, Hirschberg R (2009) Diabetes-relevant regulation of cultured blood outgrowth endothelial cells. Microvasc Res 78:174–179. https://doi.org/10.1016/j.mvr.2009.06.002

Rashid G, Benchetrit S, Fishman D, Bernheim J (2004) Effect of advanced glycation end-products on gene expression and synthesis of TNF-α and endothelial nitric oxide synthase by endothelial cells. Kidney Int 66:1099–1106. https://doi.org/10.1111/j.1523-1755.2004.00860.x

Wang HJ, Lo WY, Lin LJ (2013) Angiotensin-(1-7) decreases glycated albumin-induced endothelial interleukin-6 expression via modulation of miR-146a. Biochem Biophys Res Commun 430:1157–1163. https://doi.org/10.1016/j.bbrc.2012.12.018

Bala K, Gomes J, Gohil NK (2011) Interaction of glycated human serum albumin with endothelial cells in a hemodynamic environment: Structural and functional correlates. Mol Biosyst 7:3036–3041. https://doi.org/10.1039/c1mb05015j

Kunt T, Forst T, Harzer O, Buchert G, Pfutzner A, Lobig M, Zschabitz A, Stofft E, Engelbach M, Beyer J (1998) The influence of advanced glycation endproducts (AGE) on the expression of human endothelial adhesion molecules. Exp Clin Endocrinol Diabetes 106:183–188. https://doi.org/10.1055/s-0029-1211974

Higai K, Shimamura A, Matsumoto K (2006) Amadori-modified glycated albumin predominantly induces E-selectin expression on human umbilical vein endothelial cells through NADPH oxidase activation. Clin Chim Acta 367:137–143. https://doi.org/10.1016/j.cca.2005.12.008

Paradela-Dobarro B, Bravo SB, Rozados-Luís A, González-Peteiro M, Varela-Román A, González-Juanatey JR, García-Seara J, Alvarez E (2019) Inflammatory effects of in vivo glycated albumin from cardiovascular patients. Biomed Pharmacother 113:108763. https://doi.org/10.1016/j.biopha.2019.108763

Rodiño-Janeiro BK, González-Peteiro M, Ucieda-Somoza R, González-Juanatey JR, Álvarez E (2010) Glycated albumin, a precursor of advanced glycation end-products, up-regulates NADPH oxidase and enhances oxidative stress in human endothelial cells: Molecular correlate of diabetic vasculopathy. Diabetes Metab Res Rev 26:550–558. https://doi.org/10.1002/dmrr.1117

Nagasu H, Satoh M, Kiyokage E, Kidokoro K, Toida K, Channon KM, Kanwar YS, Sasaki T, Kashihara N (2016) Activation of endothelial NAD(P)H oxidase accelerates early glomerular injury in diabetic mice. Lab Investig 96:25–36. https://doi.org/10.1038/labinvest.2015.128

Rodiño-Janeiro BK, Paradela-Dobarro B, Raposeiras-Roubín S, González-Peteiro M, González-Juanatey JR, Álvarez E (2015) Glycated human serum albumin induces NF-κB activation and endothelial nitric oxide synthase uncoupling in human umbilical vein endothelial cells. J Diabetes Complications 29:984–992. https://doi.org/10.1016/j.jdiacomp.2015.07.016

Amore A, Cirina P, Mitola S, Peruzzi L, Gianoglio B, Rabbone I, Sacchetti C, Cerutti F, Grillo C, Coppo R (1997) Nonenzymatically glycated albumin (Amadori adducts) enhances nitric oxide synthase activity and gene expression in endothelial cells. Kidney Int 51:27–35. https://doi.org/10.1038/ki.1997.4

Chakravarthy U, Hayes RG, Stitt AW, McAuley E, Archer DB (1998) Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end products. Diabetes 47:945–952. https://doi.org/10.2337/diabetes.47.6.945

Dobi A, Bravo SB, Veeren B, Paradela-Dobarro B, Álvarez E, Meilhac O, Viranaicken W, Baret P, Devin A, Rondeau P (2019) Advanced glycation end-products disrupt human endothelial cells redox homeostasis: new insights into reactive oxygen species production. Free Radic Res 53:150–169. https://doi.org/10.1080/10715762.2018.1529866

Jing Cao, Zhang G, Liu Z, Xu Q, Li C, Cheng G, Shi R (2021) Peroxidasin promotes diabetic vascular endothelial dysfunction induced by advanced glycation end products via NOX2/HOCl/Akt/eNOS pathway. Redox Biol 45:102031. https://doi.org/10.1016/j.redox.2021.102031

Ravi R, Ragavachetty Nagaraj N, Subramaniam Rajesh B (2020) Effect of advanced glycation end product on paraoxonase 2 expression: Its impact on endoplasmic reticulum stress and inflammation in HUVECs. Life Sci 246:117397. https://doi.org/10.1016/j.lfs.2020.117397

Soaita I, Yin W, Rubenstein DA (2017) Glycated albumin modifies platelet adhesion and aggregation responses. Platelets 28:682–690. https://doi.org/10.1080/09537104.2016.1260703

Son KH, Son M, Ahn H, Oh S, Yum Y, Choi CH, Park KY, Byun K (2016) Age-related accumulation of advanced glycation end-products-albumin, S100β, and the expressions of advanced glycation end product receptor differ in visceral and subcutaneous fat. Biochem Biophys Res Commun 477:271–276. https://doi.org/10.1016/j.bbrc.2016.06.056

Takeshita Y, Sato R, Kanda T (2021) Blood–nerve barrier (BNB) pathology in diabetic peripheral neuropathy and in vitro human BNB model. Int J Mol Sci 22:1–15. https://doi.org/10.3390/ijms22010062

Goldsammler M, Merhi Z, Buyuk E (2018) Role of hormonal and inflammatory alterations in obesity-related reproductive dysfunction at the level of the hypothalamic-pituitary-ovarian axis. Reprod Biol Endocrinol 16:45. https://doi.org/10.1186/s12958-018-0366-6

Kuniyasu A, Ohgami N, Hayashi S, Miyazaki A, Horiuchi S, Nakayama H (2003) CD36-mediated endocytic uptake of advanced glycation end products (AGE) in mouse 3T3-L1 and human subcutaneous adipocytes. FEBS Lett 537:85–90. https://doi.org/10.1016/S0014-5793(03)00096-6

Harati Y (2007) Diabetic Neuropathies: Unanswered Questions. Neurol Clin 25:303–317. https://doi.org/10.1016/j.ncl.2007.01.002

Linn T, Ortac K, Laube H, Federlin K (1996) Intensive therapy in adult insulin-dependent diabetes mellitus is associated with improved insulin sensitivity and reserve: A randomized, controlled, prospective study over 5 years in newly diagnosed patients. Metabolism 45:1508–1513. https://doi.org/10.1016/S0026-0495(96)90180-8

Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, Cuddihy R, Cushman WC, Genuth S, Grimm RH, Hamilton BP, Hoogwerf B, Karl D, Katz L, Krikorian A, O’Connor P, Pop-Busui R, Schubart U, Simmons D, Taylor H, Thomas A, Weiss D, Hramiak I (2010) Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: An analysis of the ACCORD randomised trial. Lancet 376:419–430. https://doi.org/10.1016/S0140-6736(10)60576-4

Ang L, Jaiswal M, Martin C, Pop-Busui R (2014) Glucose Control and Diabetic Neuropathy: Lessons from Recent Large Clinical Trials. Curr Diab Rep 14:1–15. https://doi.org/10.1007/s11892-014-0528-7

Lassén E, Daehn IS (2020) Molecular mechanisms in early diabetic kidney disease: Glomerular endothelial cell dysfunction. Int J Mol Sci 21:1–21. https://doi.org/10.3390/ijms21249456

Sol M, Kamps JAAM, van den Born J, van den Heuvel MC, van der Vlag J, Krenning G, Hillebrands JL (2020) Glomerular Endothelial Cells as Instigators of Glomerular Sclerotic Diseases. Front Pharmacol 11:573557. https://doi.org/10.3389/fphar.2020.573557

Dejana E, Hirschi KK, Simons M (2017) The molecular basis of endothelial cell plasticity. Nat Commun 8:14361. https://doi.org/10.1038/ncomms14361

Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952–961. https://doi.org/10.1038/nm1613

Ruan B, Duan JL, Xu H, Tao KS, Han H, Dou GR, Wang L (2021) Capillarized Liver Sinusoidal Endothelial Cells Undergo Partial Endothelial-Mesenchymal Transition to Actively Deposit Sinusoidal ECM in Liver Fibrosis. Front Cell Dev Biol 9:671081. https://doi.org/10.3389/fcell.2021.671081

Adjuto-Saccone M, Soubeyran P, Garcia J, Audebert S, Camoin L, Rubis M, Roques J, Binétruy B, Iovanna JL, Tournaire R (2021) TNF-α induces endothelial–mesenchymal transition promoting stromal development of pancreatic adenocarcinoma. Cell Death Dis 12:649. https://doi.org/10.1038/s41419-021-03920-4

Peng H, Li Y, Wang C, Zhang J, Chen Y, Chen W, Cao J, Wang Y, Hu Z, Lou T (2016) ROCK1 Induces Endothelial-to-Mesenchymal Transition in Glomeruli to Aggravate Albuminuria in Diabetic Nephropathy. Sci Rep 6:20304. https://doi.org/10.1038/srep20304

Oldfield MD, Bach LA, Forbes JM, Nikolic-Paterson D, McRobert A, Thallas V, Atkins RC, Osicka T, Jerums G, Cooper ME (2001) Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 108:1853–1863. https://doi.org/10.1172/JCI11951

Chen S, Cohen MP, Ziyadeh FN (2000) Amadori-glycated albumin in diabetic nephropathy: Pathophysiologic connections. Kidney Int Suppl 77:S40-S44. https://doi.org/10.1046/j.1523-1755.2000.07707.x

Chen S, Cohen MP, Lautenslager GT, Shearman CW, Ziyadeh FN (2001) Glycated albumin stimulates TGF-β1 production and protein kinase C activity in glomerular endothelial cells. Kidney Int 59:673–681. https://doi.org/10.1046/j.1523-1755.2001.059002673.x

Patschan D, Schwarze K, Henze E, Patschan S, Müller GA (2016) Endothelial autophagy and Endothelial-to-Mesenchymal Transition (EndoMT) in eEPC treatment of ischemic AKI. J Nephrol 29:637–644. https://doi.org/10.1007/s40620-015-0222-0

Wang J, Feng Y, Wang Y, Xiang D, Zhang X, Yuan F (2017) Autophagy regulates Endothelial-Mesenchymal transition by decreasing the phosphorylation level of Smad3. Biochem Biophys Res Commun 487:740–747. https://doi.org/10.1016/j.bbrc.2017.04.130

Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, Alvarado-Arnez LE, Bonilla-Aldana DK, Franco-Paredes C, Henao-Martinez AF, Paniz-Mondolfi A, Lagos-Grisales GJ, Ramírez-Vallejo E, Suárez JA, Zambrano LI, Villamil-Gómez WE, Balbin-Ramon GJ, Rabaan AA, Harapan H, Dhama K, Nishiura H, Kataoka H, Ahmad T, Sah R (2020) Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis 34:101623. https://doi.org/10.1016/j.tmaid.2020.101623

Rahmani-Kukia N, Abbasi A, Pakravan N, Hassan ZM (2020) Measurement of oxidized albumin: An opportunity for diagnoses or treatment of COVID-19. Bioorg Chem 105:104429. https://doi.org/10.1016/j.bioorg.2020.104429

Chiappalupi S, Salvadori L, Vukasinovic A, Donato R, Sorci G, Riuzzi F (2021) Targeting RAGE to prevent SARS-CoV-2-mediated multiple organ failure: Hypotheses and perspectives. Life Sci 272:119251. https://doi.org/10.1016/j.lfs.2021.119251

Chiappalupi S, Salvadori L, Donato R, Riuzzi F, Sorci G (2021) Hyperactivated rage in comorbidities as a risk factor for severe covid-19—the role of rage-ras crosstalk. Biomolecules 11:876. https://doi.org/10.3390/biom11060876

Dobi A, Rosanaly S, Devin A, Baret P, Meilhac O, Harry GJ, D’Hellencourt CL, Rondeau P (2021) Advanced glycation end-products disrupt brain microvascular endothelial cell barrier: The role of mitochondria and oxidative stress. Microvasc Res 133:104098. https://doi.org/10.1016/j.mvr.2020.104098

Swissa E, Serlin Y, Vazana U, Prager O, Friedman A (2019) Blood–brain barrier dysfunction in status epileptics: Mechanisms and role in epileptogenesis. Epilepsy Behav 101(Pt B):106285. https://doi.org/10.1016/j.yebeh.2019.04.03

Aird WC (2012) Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2:a006429. https://doi.org/10.1101/cshperspect.a006429

Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U, Friedman A (2007) TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130:535–547. https://doi.org/10.1093/brain/awl317

Kim SY, Senatorov V V., Morrissey CS, Lippmann K, Vazquez O, Milikovsky DZ, Gu F, Parada I, Prince DA, Becker AJ, Heinemann U, Friedman A, Kaufer D (2017) TGFβ signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults. Sci Rep 7:7711. https://doi.org/10.1038/s41598-017-07394-3

Senatorov VV, Friedman AR, Milikovsky DZ, Ofer J, Saar-Ashkenazy R, Charbash A, Jahan N, Chin G, Mihaly E, Lin JM, Ramsay HJ, Moghbel A, Preininger MK, Eddings CR, Harrison HV, Patel R, Shen Y, Ghanim H, Sheng H, Veksler R, Sudmant PH, Becker A, Hart B, Rogawski MA, Dillin A, Friedman A, Kaufer D (2019) Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci Transl Med 11:eaaw8283. https://doi.org/10.1126/scitranslmed.aaw8283

Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, Oppenheim H, Ardizzone C, Becker A, Frigerio F, Vezzani A, Buckwalter MS, Huguenard JR, Friedman A, Kaufer D (2015) Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis 78:115–125. https://doi.org/10.1016/j.nbd.2015.02.029

Vega-Zelaya L, Ortega GJ, Sola RG, Pastor J (2014) Plasma albumin induces cytosolic calcium oscilations and DNA synthesis in human cultured astrocytes. Biomed Res Int 2014:539140. https://doi.org/10.1155/2014/539140

Gatta A, Verardo A, Bolognesi M (2012) Hypoalbuminemia. Int Emerg Med 7:S193–S199. https://doi.org/10.1007/s11739-012-0802-0

Fischer K, Kettunen J, Würtz P, Haller T, Havulinna AS, Kangas AJ, Soininen P, Esko T, Tammesoo ML, Mägi R, Smit S, Palotie A, Ripatti S, Salomaa V, Ala-Korpela M, Perola M, Metspalu A (2014) Biomarker Profiling by Nuclear Magnetic Resonance Spectroscopy for the Prediction of All-Cause Mortality: An Observational Study of 17,345 Persons. PLoS Med 11:e1001606. https://doi.org/10.1371/journal.pmed.1001606

Deelen J, Kettunen J, Fischer K, van der Spek A, Trompet S, Kastenmüller G, Boyd A, Zierer J, van den Akker EB, Ala-Korpela M, Amin N, Demirkan A, Ghanbari M, van Heemst D, Ikram MA, van Klinken JB, Mooijaart SP, Peters A, Salomaa V, Sattar N, Spector TD, Tiemeier H, Verhoeven A, Waldenberger M, Würtz P, Davey Smith G, Metspalu A, Perola M, Menni C, Geleijnse JM, Drenos F, Beekman M, Jukema JW, van Duijn CM, Slagboom PE (2019) A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nat Commun 10:3346. https://doi.org/10.1038/s41467-019-11311-9

Tsirpanlis G, Bagos P, Ioannou D, Bleta A, Marinou I, Lagouranis A, Chatzipanagiotou S, Nicolaou C, do Nascimento MM, Stenvinkel P, Riella M, Lindholm B (2005) Serum albumin: A late-reacting negative acute-phase protein in clinically evident inflammation in dialysis patients. Nephrol Dial Transplant 20:658–660. https://doi.org/10.1093/ndt/gfh663

Ngan DTT, Binh NG, Lan LTH, Nguyen CTT, Huong PT (2019) Evaluation of urinary L-FABP as an early marker for diabetic nephropathy in type 2 diabetic patients. J Med Biochem 39:224-230. https://doi.org/10.2478/jomb-2019-0037

Chen L, Jin C, Chen L, Li M, Zhong Y, Xu Y (2021) Value of microalbuminuria in the diagnosis of heart failure with preserved ejection fraction. Herz 46:215–221. https://doi.org/10.1007/s00059-020-04985-1

Arogundade FA (2020) Detection of Early Renal Disease In Children With Sickle Cell Anaemia Using Microalbuminuria As A Surrogate Marker. West Afr J Med 37:327

Hwang JC, Jiang MY, Lu YH, Wang CT (2015) Precedent fluctuation of serum hs-CRP to albumin ratios and mortality risk of clinically stable hemodialysis patients. PLoS One 10:e0120266. https://doi.org/10.1371/journal.pone.0120266

Минигалин АД, Войтенко НГ, Воробьев АА, Корф ЕА, Новожилов АВ, Петухова ОВ, Баранова ТИ, Гончаров НВ (2015) Исследование взаимосвязей физиологических и биохимических показателей человека в динамике после выполнения предельной физической нагрузки. Леч Физкульт Спорт Мед 132:14–18. [Minigalin AD, Voitenko NG, Vorobyov AA, Korf EA, Novozhilov AV, Petukhova OV, Baranova TI, Goncharov NV (2015) Investigation of relations between physiological and biochemical parameters of human beings in dynamics after performing a maximal workload. Physiother Sport Med 132:14–18. (In Russ)].

Suominen A, Jahnukainen T, Ojala TH, Sarkola T, Turanlahti M, Saarinen-Pihkala UM, Jahnukainen K (2020) Long-term renal prognosis and risk for hypertension after myeloablative therapies in survivors of childhood high-risk neuroblastoma: A nationwide study. Pediatr Blood Cancer 67:e28209. https://doi.org/10.1002/pbc.28209

Violi F, Cangemi R, Romiti GF, Ceccarelli G, Oliva A, Alessandri F, Pirro M, Pignatelli P, Lichtner M, Carraro A, Cipollone F, D’Ardes D, Pugliese F, Mastroianni CM (2021) Is Albumin Predictor of Mortality in COVID-19? Antioxidants Redox Signal 35:139–142. https://doi.org/10.1089/ars.2020.8142

Fukuhara S, Yasukawa K, Sato M, Ikeda H, Inoguchi Y, Etoh T, Masakado M, Umeda F, Yatomi Y, Yamauchi T, Inoguchi T (2020) Clinical usefulness of human serum nonmercaptalbumin to mercaptalbumin ratio as a biomarker for diabetic complications and disability in activities of daily living in elderly patients with diabetes. Metabolism 103:153995. https://doi.org/10.1016/j.metabol.2019.153995

Chen Z, He Y, Shi B, Yang D (2013) Human serum albumin from recombinant DNA technology: Challenges and strategies. Biochim Biophys Acta - Gen Subj 1830:5515–5525. https://doi.org/10.1016/j.bbagen.2013.04.037

Liumbruno GM, Bennardello F, Lattanzio A, Piccoli P, Rossetti G (2009) Recommendations for the use of albumin and immunoglobulins. Blood Transfus 7:216–234. https://doi.org/10.2450/2009.0094-09

Tullis JL (1977) Albumin: 1. Background and Use. JAMA J Am Med Assoc 237:355–360. https://doi.org/10.1001/jama.1977.03270310039005

Melia D, Post B (2021) Human albumin solutions in intensive care: A review. J Intensive Care Soc 22:248−254. https://doi.org/10.1177/1751143720961245

Schneider F, Dureau A-F, Hellé S, Betscha C, Senger B, Cremel G, Boulmedais F, Strub J-M, Corti A, Meyer N, Guillot M, Schaaf P, Metz-Boutigue M-H (2019) A Pilot Study on Continuous Infusion of 4% Albumin in Critically Ill Patients. Crit Care Explor 1:e0044. https://doi.org/10.1097/cce.0000000000000044

Ikeda M, Ishima Y, Kinoshita R, Chuang VTG, Tasaka N, Matsuo N, Watanabe H, Shimizu T, Ishida T, Otagiri M, Maruyama T (2018) A novel S-sulfhydrated human serum albumin preparation suppresses melanin synthesis. Redox Biol 14:354–360. https://doi.org/10.1016/j.redox.2017.10.007

Yilmaz M, Sebe A, Ay MO, Gumusay U, Topal M, Atli M, Icme F, Satar S (2013) Effectiveness of therapeutic plasma exchange in patients with intermediate syndrome due to organophosphate intoxication. Am J Emerg Med 31:953–957. https://doi.org/10.1016/j.ajem.2013.03.016

Tarin Remohi MJ, Sanchez Arcos A, Santos Ramos B, Bautista Paloma J, Guerrero Aznar MD (2000) Costs related to inappropriate use of albumin in Spain. Ann Pharmacother 34:1198–1205. https://doi.org/10.1345/aph.19385

Arola-Arnal A, López De Las Hazas MC, Iglesias-Carres L, Mantilla-Escalante DC, Suárez M, Busto R, Visioli F, Bladé C, Dávalos A (2020) Exosomes transport trace amounts of (poly)phenols. Food Funct 11:7784–7792. https://doi.org/10.1039/d0fo01824d

Sakurai K, Kato T, Tanabe H, Taguchi-Atarashi N, Sato Y, Eguchi A, Watanabe M, Ohno H, Mori C (2020) Association between gut microbiota composition and glycoalbumin level during pregnancy in Japanese women: Pilot study from Chiba Study of Mother and Child Health. J Diabetes Investig 11:699–706. https://doi.org/10.1111/jdi.13177

Hong M, Zhang R, Liu Y, Wu Z, Weng P (2021) The interaction effect between tea polyphenols and intestinal microbiota: Role in ameliorating neurological diseases. J Food Biochem 2021:e13870. https://doi.org/10.1111/jfbc.13870

Vlassopoulos A, Lean MEJ, Combet E (2014) Protein-phenolic interactions and inhibition of glycation-combining a systematic review and experimental models for enhanced physiological relevance. Food Funct 5:2646–2655. https://doi.org/10.1039/c4fo00568f

Harris GK, Qian Y, Leonard SS, Sbarra DC, Shi X (2006) Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E 2 formation in RAW 264.7 cells. J Nutr 136:1517–1521. https://doi.org/10.1093/jn/136.6.1517

Khan MWA, Al Otaibi A, Sherwani S, Khan WA, Alshammari EM, Al-Zahrani SA, Saleem M, Khan SN, Alouffi S (2020) Glycation and oxidative stress increase autoantibodies in the elderly. Molecules 25:3675. https://doi.org/10.3390/molecules25163675

Anwar S, Khan S, Almatroudi A, Khan AA, Alsahli MA, Almatroodi SA, Rahmani AH (2021) A review on mechanism of inhibition of advanced glycation end products formation by plant derived polyphenolic compounds. Mol Biol Rep 48:787–805. https://doi.org/10.1007/s11033-020-06084-0