ФАРМАКОЛОГИЧЕСКИЕ МИШЕНИ И МЕХАНИЗМ ДЕЙСТВИЯ АНТИПСИХОТИЧЕСКИХ СРЕДСТВ В РАМКАХ НЕЙРОХИМИЧЕСКОЙ ТЕОРИИ ПАТОГЕНЕЗА ШИЗОФРЕНИИ
PDF

Ключевые слова

шизофрения
антипсихотические препараты
нейролептики
нейропсихофармакология
дофамин
серотонин
глутамат
цитокины
нейропептиды

Как цитировать

Калитин, К. Ю., Спасов, А. А., Муха, О. Ю., Придворов, Г. В., & Липатов , В. А. (2021). ФАРМАКОЛОГИЧЕСКИЕ МИШЕНИ И МЕХАНИЗМ ДЕЙСТВИЯ АНТИПСИХОТИЧЕСКИХ СРЕДСТВ В РАМКАХ НЕЙРОХИМИЧЕСКОЙ ТЕОРИИ ПАТОГЕНЕЗА ШИЗОФРЕНИИ. Российский физиологический журнал им. И. М. Сеченова, 107(8), 927–954. https://doi.org/10.31857/S0869813921080070

Аннотация

Шизофрения характеризуется нейрохимическими, морфологическими, биоэлектрическими и поведенческими изменениями в организме, системная совокупность которых образует констелляцию взаимоопосредующих патофизиологических теорий. В обзоре рассматривается нейрохимическая теория патогенеза шизофрении через призму нейропсихофармакологии с целью объяснения и понимания механизма действия антипсихотических средств. Описаны взаимосвязи нейрохимических процессов с генетическими и иммунологическими предпосылками шизофрении. Представлены актуальные данные о лигандах, рецепторных мишенях и вторичных мессенджерах, которые вовлечены в патогенез шизофрении и психозов, с подробным объяснением их физиологической роли и связей на нейрохимическом, анатомическом, функциональном и эффекторном уровнях коннективной организации головного мозга.

https://doi.org/10.31857/S0869813921080070
PDF

Литература

Imamura A, Morimoto Y, Ono S, Kurotaki N, Kanegae S, Yamamoto N, Kinoshita H, Tsujita T, Okazaki Y, Ozawa H (2020) Genetic and environmental factors of schizophrenia and autism spectrum disorder: insights from twin studies. J Neural Transmission 127:1-15. https://doi.org/10.1007/s00702-020-02188-w

Avramopoulos D (2018) Recent advances in the genetics of schizophrenia. Mol Neuropsychiatry 4:35-51. https://doi.org/10.1159/000488679

Shokouhifar A, Askari N, Yazdani S, Mehrabadi JF (2019) DISC1 gene polymorphisms and the risk of schizophrenia in an Iranian population: A preliminary study. J Cell Biochem 120: 1588-1597. https://doi.org/10.1002/jcb.27427

Malavia TA, Chaparala S, Wood J, Chowdari K, Prasad KM, McClain L, Jegga AG, Ganapathiraju MK, Nimgaonkar VL (2017) Generating testable hypotheses for schizophrenia and rheumatoid arthritis pathogenesis by integrating epidemiological, genomic, and protein interaction data. npj Schizophrenia 3:11. https://doi.org/10.1038/s41537-017-0010-z

Gründer G, Hippius H, Carlsson A (2009) The “atypicality” of antipsychotics: A concept re-examined and re-defined. Nature Rev Drug Discov 8(3):197-202. https://doi.org/10.1038/nrd2806

Amato D, Vernon AC, Papaleo F (2018) Dopamine, the antipsychotic molecule: A perspective on mechanisms underlying antipsychotic response variability. Neurosci Biobehav Rev 85:146-159. https://doi.org/10.1016/j.neubiorev.2017.09.027

Solmi M, Murru A, Pacchiarotti I, Undurraga J, Veronese N, Fornaro M, Stubbs B, Monaco F, Vieta E, Vseeman M, Correll CU, Carvalho AF (2017) Safety, tolerability, and risks associated with first-and second-generation antipsychotics: A state-of-the-art clinical review. Therap Clin Risk Management 13:757-777. https://doi.org/10.2147/tcrm.s117321

Grinchii D, Dremencov E (2020) Mechanism of action of atypical antipsychotic drugs in mood disorders. Int J Mol Sci 21(24):9532. https://doi.org/10.3390/ijms21249532

Xu H, Zhuang X (2019) Atypical antipsychotics-induced metabolic syndrome and nonalcoholic fatty liver disease: A critical review. Neuropsych Disease Treatment 15:2087-2099. https://doi.org/10.2147/ndt.s208061

Grajales D, Ferreira V, Valverde ÁM (2019) Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain. Cells 8(11):1336. https://doi.org/10.3390/cells8111336

Garay RP, Citrome L, Samalin L, Liu CC, Thomsen MS, Correll CU, Hameg A, Llorca PM (2016) Therapeutic improvements expected in the near future for schizophrenia and schizoaffective disorder: An appraisal of phase III clinical trials of schizophrenia-targeted therapies as found in US and EU clinical trial registries. Expert Opinion Pharmacother 17(7):921–936. https://doi.org/10.1517/14656566.2016.1149164

Köster LS, Carbon M, Correll CU (2014) Emerging drugs for schizophrenia: An update. Expert Opinion Emerg Drugs 19(4):511-531. https://doi.org/10.1517/14728214.2014.958148

Itokawa M, Arinami T, Toru M (2010) Advanced research on dopamine signaling to develop drugs for the treatment of mental disorders: Ser311Cys polymorphisms of the dopamine D2-receptor gene and schizophrenia. J Pharmacol Sci 114(1):1-5. https://doi.org/10.1254/jphs.10R07FM

Yang AC, Tsai SJ (2017) New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci 18(8):1689. https://doi.org/10.3390/ijms18081689

Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, Bogerts B, Braun K, Kumaratilake J, Henneberg M, Gos T (2014) The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue. Front Psychiatry 5:47. https://doi.org/10.3389/fpsyt.2014.00047

Kapur S, Remington G (2001) Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biol Psychiatry 50(11):873-883. https://doi.org/10.1016/s0006-3223(01)01251-3

Gründer G, Cumming P (2016) In: The Neurobiology of Schizophrenia. Eds Abel T, Nickl-Jockschat T. Acad Press: 109-124. https://doi.org/10.1016/B978-0-12-801829-3.00015-X

Gomes FV, Grace AA (2018) Cortical dopamine dysregulation in schizophrenia and its link to stress. Brain 141(7):1897-1899. https://doi.org/10.1093/brain/awy156

Гареева АЭ (2019) Современный взгляд на нейробиологические гипотезы шизофрении. Журн высш нерв деятельн им ИП Павлова 69(4):437-455 [Gareeva AE (2019) Hypothesis of schizophrenia. Zh Vyssh Nerv Deiat Im I P Pavlova 69(4):437-455. (In Russ)]. https://doi.org/10.1134/s0044467719040038

Nakazawa K, Sapkota K (2020) The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol Therap 205:107426. https://doi.org/10.1016/j.pharmthera.2019.107426

Ripke S, Neale BM, Corvin A, Walters JTR, Farh KH, Holmans PA, Lee P, Bulik-Sullivan B, Collier DA, Huang H, Pers TH, Agartz I, Agerbo E, Albus M, Alexander M, Amin F, Bacanu SA, Begemann M, Belliveau RA, Bene J, Bergen SE, Bevilacqua E, Bigdeli TB, Black DW, Bruggeman R, Buccola NG, Buckner RL, Byerley W, Cahn W, Cai G, Campion D, Cantor RM, Carr VJ, Carrera N, Catts SV, Chambert KD, Chan RCK, Chen RYL, Chen EYH, Cheng W, Cheung EFC, Chong SA, Cloninger CR, Cohen D, Cohen N, Cormican P, Craddock N, Crowley JJ, Curtis D, Davidson M, Davis KL, Degenhardt F, del Favero J, Demontis D, Dikeos D, Dinan T, Djurovic S, Donohoe G, Drapeau E, Duan J, Dudbridge F, Durmishi N, Eichhammer P, Eriksson J, Escott-Price V, Essioux L, Fanous AH, Farrell MS, Frank J, Franke L, Freedman R, Freimer NB, Friedl M, Friedman JI, Fromer M, Genovese G, Georgieva L, Giegling I, Giusti-Rodríguez P, Godard S, Goldstein JI, Golimbet V, Gopal S, Gratten J, de Haan L, Hammer C, Hamshere ML, Hansen M, Hansen T, Haroutunian V, Hartmann AM, Henskens FA, Herms S, Hirschhorn JN, Hoffmann P, Hofman A, Hollegaard MV, Hougaard DM, Ikeda M, Joa I, Julià A, Kahn RS, Kalaydjieva L, Karachanak-Yankova S, Karjalainen J, Kavanagh D, Keller MC, Kennedy JL, Khrunin A, Kim Y, Klovins J, Knowles JA, Konte B, Kucinskas V, Kucinskiene ZA, Kuzelova-Ptackova H, Kähler AK, Laurent C, Keong JLC, Lee SH, Legge SE, Lerer B, Li M, Li T, Liang KY, Lieberman J, Limborska S, Loughland CM, Lubinski J, Lönnqvist J, Macek M, Magnusson PKE, Maher BS, Maier W, Mallet J, Marsal S, Mattheisen M, Mattingsdal M, McCarley RW, McDonald C, McIntosh AM, Meier S, Meijer CJ, Melegh B, Melle I, Mesholam-Gately RI, Metspalu A, Michie PT, Milani L, Milanova V, Mokrab Y, Morris DW, Mors O, Murphy KC, Murray RM, Myin-Germeys I, Müller-Myhsok B, Nelis M, Nenadic I, Nertney DA, Nestadt G, Nicodemus KK, Nikitina-Zake L, Nisenbaum L, Nordin A, O’Callaghan E, O’Dushlaine C, O’Neill FA, Oh SY, Olincy A, Olsen L, van Os J, Pantelis C, Papadimitriou GN, Papiol S, Parkhomenko E, Pato MT, Paunio T, Pejovic-Milovancevic M, Perkins DO, Pietiläinen O, Pimm J, Pocklington AJ, Powell J, Price A, Pulver AE, Purcell SM, Quested D, Rasmussen HB, Reichenberg A, Reimers MA, Richards AL, Roffman JL, Roussos P, Ruderfer DM, Salomaa V, Sanders AR, Schall U, Schubert CR, Schulze TG, Schwab SG, Scolnick EM, Scott RJ, Seidman LJ, Shi J, Sigurdsson E, Silagadze T, Silverman JM, Sim K, Slominsky P, Smoller JW, So HC, Spencer CCA, Stahl EA, Stefansson H, Steinberg S, Stogmann E, Straub RE, Strengman E, Strohmaier J, Stroup TS, Subramaniam M, Suvisaari J, Svrakic DM, Szatkiewicz JP, Söderman E, Thirumalai S, Toncheva D, Tosato S, Veijola J, Waddington J, Walsh D, Wang D, Wang Q, Webb BT, Weiser M, Wildenauer DB, Williams NM, Williams S, Witt SH, Wolen AR, Wong EHM, Wormley BK, Xi HS, Zai CC, Zheng X, Zimprich F, Wray NR, Stefansson K, Visscher PM, Adolfsson R, Andreassen OA, Blackwood DHR, Bramon E, Buxbaum JD, Børglum AD, Cichon S, Darvasi A, Domenici E, Ehrenreich H, Esko T, Gejman PV, Gill M, Gurling H, Hultman CM, Iwata N, Jablensky AV, Jönsson EG, Kendler KS, Kirov G, Knight J, Lencz T, Levinson DF, Li QS, Liu J, Malhotra AK, McCarroll SA, McQuillin A, Moran JL, Mortensen PB, Mowry BJ, Nöthen MM, Ophoff RA, Owen MJ, Palotie A, Pato CN, Petryshen TL, Posthuma D, Rietschel M, Riley BP, Rujescu D, Sham PC, Sklar P, St Clair D, Weinberger DR, Wendland JR, Werge T, Daly MJ, Sullivan PF, O’Donovan MC (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421-427. https://doi.org/10.1038/nature13595

Funahashi Y, Yoshino Y, Yamazaki K, Ozaki Y, Mori Y, Mori T, Ochi S, Iga J ichi, Ueno S ichi (2019) Analysis of methylation and -141C Ins/Del polymorphisms of the dopamine receptor D2 gene in patients with schizophrenia. Psychiatry Res 278:135-140. https://doi.org/10.1016/j.psychres.2019.06.001

Maramai S, Gemma S, Brogi S, Campiani G, Butini S, Stark H, Brindisi M (2016) Dopamine D3 receptor antagonists as potential therapeutics for the treatment of neurological diseases. Front Neurosci 10:451. https://doi.org/10.3389/fnins.2016.00451

Girgis RR., Forbes A, Abi-Dargham A, Slifstein M (2020) A positron emission tomography occupancy study of brexpiprazole at dopamine D2 and D3 and serotonin 5-HT1A and 5-HT2A receptors, and serotonin reuptake transporters in subjects with schizophrenia. Neuropsychopharmacology 45(5):786-792. https://doi.org/10.1038/s41386-019-0590-6

Meier MA, Lemercier CE, Kulisch C, Kiss B, Lendvai B, Adham N, Gerevich Z (2020) The novel antipsychotic cariprazine stabilizes gamma oscillations in rat hippocampal slices. Br J Pharmacol 177(7):1622-1634. https://doi.org/10.1111/bph.14923

Huang M, Kwon S, He W, Meltzer HY (2017) Neurochemical arguments for the use of dopamine D4 receptor stimulation to improve cognitive impairment associated with schizophrenia. Pharmacol Biochem Behav 157:16-23. https://doi.org/10.1016/j.pbb.2017.04.010

Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1):182-217. https://doi.org/10.1124/pr.110.002642

Darvish-Ghane S, Quintana C, Beaulieu JM, Martin LJ (2020) D1 receptors in the anterior cingulate cortex modulate basal mechanical sensitivity threshold and glutamatergic synaptic transmission. Mol Brain 13(1):1-15. https://doi.org/10.1186/s13041-020-00661-x

Stahl SM (2017) Drugs for psychosis and mood: Unique actions at D3, D2, and D1 dopamine receptor subtypes. CNS Spectrums 22(5):375-384. https://doi.org/10.1017/S1092852917000608

Stouffer MA, Ali S, Reith MEA, Patel JC, Sarti F, Carr KD, Rice ME (2011) SKF-83566, a D1-dopamine receptor antagonist, inhibits the dopamine transporter. J Neurochem 118(5):714-720. https://doi.org/10.1111/j.1471-4159.2011.07357.x

Arnsten AFT, Girgis RR, Gray DL, Mailman RB (2017) Novel Dopamine Therapeutics for Cognitive Deficits in Schizophrenia. Biol Psychiatry 81(1):67-77. https://doi.org/10.1016/j.biopsych.2015.12.028

Noce A, Marrone G, Rovella V, Busca A, Gola C, Ferrannini M, di Daniele N (2019) Fenoldopam Mesylate: A Narrative Review of Its Use in Acute Kidney Injury. Current Pharmac Biotechnol 20(5):366. https://doi.org/10.2174/1389201020666190417124711

Kecel-Gunduz S, Budama-Kilinc Y, Cakir-Koc R, Zorlu T, Bicak B, Kokcu Y, Kaya Z, Ozel AE, Akyuz S (2019) In silico Analysis of Sulpiride, Synthesis, Characterization and In vitro Studies of its Nanoparticle for the Treatment of Schizophrenia. Current Computer-Aided Drug Design 16(2):104-121. https://doi.org/10.2174/1573409915666190627125643

Han J, Li Y, Wang X (2017) Potential link between genetic polymorphisms of catechol-O-methyltransferase and dopamine receptors and treatment efficacy of risperidone on schizophrenia. Neuropsych Disease Treatment 13: 2935-2943. https://doi.org/10.2147/NDT.S148824

Watson DJ, Marsden CA, Millan MJ, Fone KC (2012) Blockade of dopamine D₃ but not D₂ receptors reverses the novel object discrimination impairment produced by post-weaning social isolation: implications for schizophrenia and its treatment. Int J Neuropsychopharmacol 15(4):471-484. https://doi.org/10.1017/s1461145711000435

Kirino E (2017) Serum prolactin levels and sexual dysfunction in patients with schizophrenia treated with antipsychotics: Comparison between aripiprazole and other atypical antipsychotics. Ann Gen Psychiatry 16(1):1-7. https://doi.org/10.1186/s12991-017-0166-y

MacQueen DA, Young JW (2020) The D2-family receptor agonist bromocriptine but, not nicotine, reverses NMDA receptor antagonist-induced working memory deficits in the radial arm maze in mice. Neurobiol Learn Memory 168:107159. https://doi.org/10.1016/j.nlm.2020.107159

Gibbs SEB, D’Esposito M (2006) A functional magnetic resonance imaging study of the effects of pergolide, a dopamine receptor agonist, on component processes of working memory. Neuroscience 139(1):359-371. https://doi.org/10.1016/j.neuroscience.2005.11.055

Kalkavoura CS, Michopoulos I, Arvanitakis P, Theodoropoulou P, Dimopoulou K, Tzebelikos E, Lykouras L (2013) Effects of cabergoline on hyperprolactinemia, psychopathology, and sexual functioning in schizophrenic patients. Exp Clin Psychopharmacol 21(4):332. https://doi.org/10.1037/a0033448

Michalopoulou PG, Azim A, Tracy D, Shergill SS (2012) Ropinirole as an effective adjunctive treatment for clozapine-resistant negative symptoms in simple schizophrenia: A case report. J Clin Psychopharmacol 32(5):719-720. https://doi.org/10.1097/jcp.0b013e318267062c

Weber M, Chang WL, Breier MR, Yang A, Millan MJ, Swerdlow NR (2010) The effects of the dopamine D2 agonist sumanirole on prepulse inhibition in rats. Eur Neuropsychopharmacol 20(6):421-425. https://doi.org/10.1016/j.euroneuro.2010.02.011

Maple AM, Call T, Kimmel PC, Hammer RP (2017) Effects of repeated ropinirole treatment on phencyclidine-induced hyperlocomotion, prepulse inhibition deficits, and social avoidance in rats. J Pharmacol Exp Therap 361(1):109-114. https://doi.org/10.1124/jpet.116.238634

Clarkson RL, Liptak AT, Gee SM, Sohal VS, Bender KJ (2017) D3 Receptors Regulate Excitability in a Unique Class of Prefrontal Pyramidal Cells. J Neurosci 37(24):5846-5860. https://doi.org/10.1523/jneurosci.0310-17.2017

Takeuchi S, Hida H, Uchida M, Naruse R, Yoshimi A, Kitagaki S, Ozaki N, Noda Y (2019) Blonanserin ameliorates social deficit through dopamine-D3 receptor antagonism in mice administered phencyclidine as an animal model of schizophrenia. Neurochem Int 128:127-134. https://doi.org/10.1016/j.neuint.2019.04.008

Inoue Y, Tsuchimori K, Nakamura H (2021) Safety and effectiveness of oral blonanserin for schizophrenia: A review of Japanese post-marketing surveillances. J Pharmacol Sci 145(1):42-51. https://doi.org/10.1016/j.jphs.2020.09.006

Durgam S, Litman RE, Papadakis K, Li D, Németh G, Laszlovszky I (2016) Cariprazine in the treatment of schizophrenia: A proof-of-concept trial. Int Clin Psychopharmacol 31(2):61-68. https://doi.org/10.1097/YIC.0000000000000110

Girgis RR, Forbes A, Abi-Dargham A, Slifstein M (2020) A positron emission tomography occupancy study of brexpiprazole at dopamine D2 and D3 and serotonin 5-HT1A and 5-HT2A receptors, and serotonin reuptake transporters in subjects with schizophrenia. Neuropsychopharmacology 45(5):786-792. https://doi.org/10.1038/s41386-019-0590-6

Micheli F, Heidbreder C (2013) Dopamine D3 receptor antagonists: A patent review (2007-2012). Expert Opinion Therap Patents 23(3):363-381. https://doi.org/10.1517/13543776.2013.757593

Huang M, Kwon S, Oyamada Y, Rajagopal L, Miyauchi M, Meltzer HY (2015) Dopamine D3 receptor antagonism contributes to blonanserin-induced cortical dopamine and acetylcholine efflux and cognitive improvement. Pharmacol Biochem Behav 138:49-57. https://doi.org/10.1016/j.pbb.2015.09.011

Gross G, Wicke K, Drescher KU (2013) Dopamine D3 receptor antagonism - Still a therapeutic option for the treatment of schizophrenia. Naunyn-Schmiedeberg’s Arch Pharmacol 386(2):155-166. https://doi.org/10.1007/s00210-012-0806-3

Kiss B, Laszlovszky I, Krámos B, Visegrády A, Bobok A, Lévay G, Lendvai B, Román V (2021) Neuronal dopamine D3 receptors: Translational implications for preclinical research and cns disorders. Biomolecules 11(1):104. https://doi.org/10.3390/biom11010104

Weng JJ, Wang LH, Zhu H, Xu WR, Wei YM, Wang ZY, Yu WJ, Li HF (2019) Efficacy of low-dose D2/D3 partial agonist pramipexole on neuroleptic-induced extrapyramidal symptoms and symptoms of schizophrenia: A stage-1 open-label pilot study. Neuropsych Disease Treatment 15:2195-2203. https://doi.org/10.2147/NDT.S205933

Moretti DV, Binetti G, Zanetti O, Frisoni GB (2014) Behavioral and neurophysiological effects of transdermal rotigotine in atypical parkinsonism. Front Neurol 5:85. https://doi.org/10.3389/fneur.2014.00085

Tadori Y, Forbes RA, McQuade RD, Kikuchi T (2011) Functional potencies of dopamine agonists and antagonists at human dopamine D2 and D3 receptors. Eur J Pharmacol 666(1-3):43-52. https://doi.org/10.1016/j.ejphar.2011.05.050

Miyauchi M, Neugebauer NM, Meltzer HY (2017) Dopamine D4 receptor stimulation contributes to novel object recognition: Relevance to cognitive impairment in schizophrenia. J Psychopharmacol 31(4):442-452. https://doi.org/10.1177/0269881117693746

Kocsis B, Lee P, Deth R (2014) Enhancement of gamma activity after selective activation of dopamine D4 receptors in freely moving rats and in a neurodevelopmental model of schizophrenia. Brain Struct Funct 219(6):2173-2180. https://doi.org/10.1007/s00429-013-0607-6

Boeckler F, Russig H, Zhang W, Löber S, Schetz J, Hübner H, Ferger B, Gmeiner P, Feldon J (2004) FAUC 213, a highly selective dopamine D4 receptor full antagonist, exhibits atypical antipsychotic properties in behavioural and neurochemical models of schizophrenia. Psychopharmacology 175(1):7-17. https://doi.org/10.1007/s00213-004-1782-1

Löber S, Hübner H, Tschammer N, Gmeiner P (2011) Recent advances in the search for D3- and D4-selective drugs: probes, models and candidates. Trends Pharmacol Sci 32(3):148-157. https://doi.org/10.1016/j.tips.2010.12.003

Gómez-Jeria JS, López-Aravena R (2020) A Theoretical Analysis of the Relationships between Electronic Structure and Dopamine D4 Receptor Affinity in a series of compounds based on the classical D4 agonist A-412997. Chem Res J 1-9.

Keck TM, Free RB, Day MM, Brown SL, Maddaluna MS, Fountain G, Cooper C, Fallon B, Holmes M, Stang CT, Burkhardt R, Bonifazi A, Ellenberger MP, Newman AH, Sibley DR, Wu C, Boateng CA (2019) Dopamine D4 Receptor-Selective Compounds Reveal Structure-Activity Relationships that Engender Agonist Efficacy. J Med Chem 62(7):3722-3740. https://doi.org/10.1021/acs.jmedchem.9b00231

Perreault ML, Jones-Tabah J, O’Dowd BF, George SR (2013) A physiological role for the dopamine D5 receptor as a regulator of BDNF and Akt signalling in rodent prefrontal cortex. Int J Neuropsychopharmacol 16(2):477-483. https://doi.org/10.1017/S1461145712000685

Meygooni MS, Asil MAM, Haftvani GT, Morshedzadeh F, Zaeifi D (2019) Auxiliary role of D5 dopamine receptor as a marker in paranoid schizophrenia patients. Psychiatr Clin Psychopharmacol 29(2):158-161. https://doi.org/10.1080/24750573.2019.1575501

Mohr P, Decker M, Enzensperger C, Lehmann J (2006) Dopamine/serotonin receptor ligands. 121: SAR studies on hexahydro-dibenz[d,g]azecines lead to 4-chloro-7-methyl-5,6,7,8,9,14- hexahydrodibenz[d,g]azecin-3-ol, the first picomolar D5-selective dopamine-receptor antagonist. J Med Chem 49(6):2110-2116. https://doi.org/10.1021/jm051237e

Arce E, Balice-Gordon R, Duvvuri S, Naylor M, Xie Z, Harel B, Kozak R, Gray DL, DeMartinis N (2019) A novel approach to evaluate the pharmacodynamics of a selective dopamine D1/D5 receptor partial agonist (PF-06412562) in patients with stable schizophrenia. J Psychopharmacol 33(10):1237-1247. https://doi.org/10.1177/0269881119855302

Rascol O, Zesiewicz T, Chaudhuri KR, Asgharnejad M, Surmann E, Dohin, E, Nilius S, Bauer L (2016) A Randomized Controlled Exploratory Pilot Study to Evaluate the Effect of Rotigotine Transdermal Patch on Parkinson's Disease-Associated Chronic Pain. J Clin Pharmacol 56(7):852-861. https://doi.org/10.1002/jcph.678

Perreault ML, Fan T, Banasikowski TJ, Grace AA, George SR (2017) The atypical dopamine receptor agonist SKF 83959 enhances hippocampal and prefrontal cortical neuronal network activity in a rat model of cognitive dysfunction. Eur J Neurosci 46(4):2015-2025. https://doi.org/10.1111/ejn.13635

Meade JA, Free RB, Miller NR, Chun LS, Doyle TB, Moritz AE, Conroy JL, Watts, VJ, Sibley DR (2015) (-)-Stepholidine is a potent pan-dopamine receptor antagonist of both G protein- and β-arrestin-mediated signaling. Psychopharmacology (Berl) 232(5):917-930. https://doi.org/10.1007/s00213-014-3726-8

Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: Diversity, development and disease. Current Opin Neurobiol 11(3):327-335. https://doi.org/10.1016/s0959-4388(00)00215-4

Coyle JT, Tsai G, Goff D (2003) Converging Evidence of NMDA Receptor Hypofunction in the Pathophysiology of Schizophrenia. Ann NY Acad Sci 1003:318-327. https://doi.org/10.1196/annals.1300.020

Poels EMP, Kegeles LS, Kantrowitz JT, Javitt DC, Lieberman JA, Abi-Dargham A, Girgis RR (2014) Glutamatergic abnormalities in schizophrenia: A review of proton MRS findings. Schizophr Res 152(2-3):325-332. https://doi.org/10.1016/j.schres.2013.12.013

Дорофейкова МВ, Кучер ЕО, Петрова НН, Егоров АЮ (2020) Экспериментальные модели когнитивных нарушений при шизофрении. Рос физиол журн им ИМ Сеченова 106(11):1325-1339 [Dorofeikova MV, Kutcher ЕО, Petrova NN, Egorov AYu (2020) Animal Models of Cognitive Impairment in Schizophrenia. Russ J Physiol 106(11):1325-1339. (In Russ)]. https://doi.org/10.31857/s0869813920110059

Plitman E, Iwata Y, Caravaggio F, Nakajima S, Chung JK, Gerretsen P, Kim J, Takeuchi H, Chakravarty MM, Remington G, Graff-Guerrero A (2017) Kynurenic Acid in Schizophrenia: A Systematic Review and Meta-analysis. Schizophr Bull 43(4):764-777. https://doi.org/10.1093/schbul/sbw221

Moghaddam B, Javitt D (2012) From revolution to evolution: The glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37(1):4-15. https://doi.org/10.1038/npp.2011.181

Adell A (2020) Brain NMDA receptors in schizophrenia and depression. Biomolecules 10(6):947. https://doi.org/10.3390/biom10060947

Lin CH, Lin CH, Chang YC, Huang YJ, Chen PW, Yang HT, Lane HY (2018) Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, Added to Clozapine for the Treatment of Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Trial. Biol Psychiatry 84(6):422-432. https://doi.org/10.1016/j.biopsych.2017.12.006

Macek TA, McCue M, Dong X, Hanson E, Goldsmith P, Affinito J, Mahableshwarkar AR (2019) A phase 2, randomized, placebo-controlled study of the efficacy and safety of TAK-063 in subjects with an acute exacerbation of schizophrenia. Schizophr Res 204:289-294. https://doi.org/10.1016/j.schres.2018.08.028

Strzelecki D, Urban-Kowalczyk M, Wysokiński A (2018) Serum levels of interleukin 6 in schizophrenic patients during treatment augmentation with sarcosine (results of the PULSAR study). Human Psychopharmacol 33(2):e2652. https://doi.org/10.1002/hup.2652

Fleischhacker WW, Podhorna J, Gröschl M, Hake S, Zhao Y, Huang S, Keefe RSE, Desch M, Brenner R, Walling DP, Mantero-Atienza E, Nakagome K, Pollentier S (2021) Efficacy and safety of the novel glycine transporter inhibitor BI 425809 once daily in patients with schizophrenia: a double-blind, randomised, placebo-controlled phase 2 study. Lancet Psychiatry 8(3):191-201. https://doi.org/10.1016/s2215-0366(20)30513-7

Intson K, Geissah S, McCullumsmith RE, Ramsey AJ (2020) A role for endothelial NMDA receptors in the pathophysiology of schizophrenia. Schizophr Res 11:S0920-9964(20)30491-6. https://doi.org/10.1016/j.schres.2020.10.004

Kozak R, Campbell BM, Strick CA, Horner W, Hoffmann WE, Kiss T, Chapin DS, McGinnis D, Abbott AL, Roberts BM, Fonseca K, Guanowsky V, Young DA, Seymour PA, Dounay A, Hajos M, Williams GV, Castner SA (2014) Reduction of brain kynurenic acid improves cognitive function. J Neurosci 34(32):10592-10602. https://doi.org/10.1523/JNEUROSCI.1107-14.2014

Noorbakhsh A, Hosseininezhadian Koushki E, Farshadfar C, Ardalan N (2021) Designing a natural inhibitor against human kynurenine aminotransferase type II and a comparison with PF-04859989: a computational effort against schizophrenia. J Biomol Structure Dynamics: 1-14. https://doi.org/10.1080/07391102.2021.1893817

Lebois EP, Schroeder JP, Esparza TJ, Bridges TM, Lindsley CW, Conn PJ, Brody DL, Daniels JS, Levey AI (2017) Disease-Modifying Effects of M1 Muscarinic Acetylcholine Receptor Activation in an Alzheimer’s Disease Mouse Model. ACS Chem Neurosci 8(6):1177-1187. https://doi.org/10.1021/acschemneuro.6b00278

Keefe RSE, Meltzer HA, Dgetluck N, Gawryl M, Koenig G, Moebius HJ, Lombardo I, Hilt DC (2015) Randomized, Double-Blind, Placebo-controlled study of encenicline, an α7 nicotinic acetylcholine receptor agonist, as a treatment for cognitive impairment in schizophrenia. Neuropsychopharmacology 40(13):3053-3060. https://doi.org/10.1038/npp.2015.176

Haig GM, Wang D, Zhao J, Othman AA, Bain EE (2018) Efficacy and Safety of the α7-Nicotinic Acetylcholine Receptor Agonist ABT-126 in the Treatment of Cognitive Impairment Associated With Schizophrenia: Results From a Phase 2b Randomized Controlled Study in Smokers. J Clin Psychiatry 79(3):16m11162. https://doi.org/10.4088/jcp.16m11162

Kantrowitz JT, Javitt DC, Freedman R, Sehatpour P, Kegeles LS, Carlson M, Sobeih T, Wall MM, Choo TH, Vail B, Grinband J, Lieberman JA (2020) Double blind, two dose, randomized, placebo-controlled, cross-over clinical trial of the positive allosteric modulator at the alpha7 nicotinic cholinergic receptor AVL-3288 in schizophrenia patients. Neuropsychopharmacology 45(8):1339-1345. https://doi.org/10.1038/s41386-020-0628-9

Perkins KA, Roy Chengappa KN, Karelitz JL, Boldry MC, Michael V, Herb T, Gannon J, Brar J, Ford L, Rassnick S, Brunzell DH (2018) Initial Cross-Over Test of A Positive Allosteric Modulator of Alpha-7 Nicotinic Receptors to Aid Cessation in Smokers with or Without Schizophrenia. Neuropsychopharmacology 43(6):1334-1342. https://doi.org/10.1038/npp.2017.292

Maksymetz J, Moran SP, Conn PJ (2017) Targeting metabotropic glutamate receptors for novel treatments of schizophrenia Tim Bliss. Mol Brain 10(1):15. https://doi.org/10.1186/s13041-017-0293-z

Плеканчук ВС, Рязанова МА (2021) Экспрессия генов глутаматных рецепторов в гиппокампе и лобной коре у крыс линии ГК с генетической кататонией. Рос физиол журн им ИМ Сеченова 107(2):232-242 [Plekanchuk VS, Ryazanova MA (2021) Expression of glutamate receptor genes in the hippocampus and frontal cortex in GC strain rats with genetic catatonia. Russ J Physiol 107(2):232-242. (In Russ)]. https://doi.org/10.31857/s0869813921020060

Cadinu D, Grayson B, Podda G, Harte MK, Doostdar N, Neill JC (2018) NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology 142:41-62. https://doi.org/10.1016/j.neuropharm.2017.11.045

Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol Rev 62(3):405-496. https://doi.org/10.1124/pr.109.002451

Javitt DC, Silipo G, Cienfuegos A, Shelley AM, Bark N, Park M, Lindenmayer JP, Suckow R, Zukin SR (2001) Adjunctive high-dose glycine in the treatment of schizophrenia. Int J Neuropsychopharmacol 4(4):385-391. https://doi.org/10.1017/s1461145701002590

Tuominen HJ, Tiihonen J, Wahlbeck K (2006) Glutamatergic drugs for schizophrenia. Cochrane Database Syst Rev (2):CD003730. https://doi.org/10.1002/14651858.cd003730.pub2

Chaves C, Marque CR, Trzesniak C, Machado de Sousa JP, Zuardi AW, Crippa JA, Dursun SM, Hallak JE (2009) Glutamate-N-methyl-D-aspartate receptor modulation and minocycline for the treatment of patients with schizophrenia: an update. Braz J Med Biol Res 42(11):1002-1014. https://doi.org/10.1590/s0100-879x2009001100002

Newport DJ, Carpenter LL, McDonald WM, Potash JB, Tohen M, Nemeroff CB (2015) Ketamine and other NMDA antagonists: Early clinical trials and possible mechanisms in depression. Am J Psychiatry 172(10):950-966. https://doi.org/10.1176/appi.ajp.2015.15040465

Kjaerby C, Hovelsø N, Dalby NO, Sotty F (2017) Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats. J Neurophysiol 118(2):1002-1011. https://doi.org/10.1152/jn.00081.2017

Moghaddam B, Krystal JH (2012) Capturing the angel in angel dust: Twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans. Schizophr Bull 38(5):942-949. https://doi.org/10.1093/schbul/sbs075

Суханов ИМ, Драволина ОА, Звартау ЭЭ, Беспалов АЮ (2021) Динамика эффектов неконкурентного антагониста NMDA-рецепторов MK-801 в тесте распознавания зрительного стимула. Эксперим и клин фармакол 84(2):71-75. [Suhanov IM, Dravolina OA, Zvartau EE, Bespalov AYu (2021) Dynamics of effects of non-competitive nmda blocker mk-801 in visual signal detection task. Exp Clin Pharmacol 84(2):71-75. (In Russ)]. https://doi.org/10.30906/0869-2092-2021-84-2-71-75

Kikuchi T (2020) Is memantine effective as an NMDA-receptor antagonist in adjunctive therapy for schizophrenia? Biomolecules 10(8):1134. https://doi.org/10.3390/biom10081134

Yadav R, Dravid SM, Yuan H, Traynelis SF (2016) AMPA receptors: Molecular biology and pharmacology. In: The Curated Reference Collection in Neuroscience and Biobehavioral Psychology. Elsevier Science Ltd 311-318. https://doi.org/10.1016/B978-0-12-809324-5.02325-7

Benesh JL, Mueller TM, Meador-Woodruff JH (2020) AMPA receptor subunit localization in schizophrenia anterior cingulate cortex. Schizophr Res S0920-9964(20)30041-4. https://doi.org/10.1016/j.schres.2020.01.025

Goff DC, Leahy L, Berman I, Posever T, Herz L, Leon AC, Johnson SA, Lynch G (2001) A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. J Clin Psychopharmacol 21(5):484-487. https://doi.org/10.1097/00004714-200110000-00005

Goff DC, Lamberti JS, Leon AC, Green MF, Miller AL, Patel J, Manschreck T, Freudenreich O, Johnson SA (2008) A placebo-controlled add-on trial of the Ampakine, CX516, for cognitive deficits in schizophrenia. Neuropsychopharmacology 33(3):465-472. https://doi.org/10.1038/sj.npp.1301444

Chang PK, Prenosil GA, Verbich D, Gill R, McKinney RA (2014) Prolonged ampakine exposure prunes dendritic spines and increases presynaptic release probability for enhanced long-term potentiation in the hippocampus. Eur J Neurosci 40(5):2766-2776. https://doi.org/10.1111/ejn.12638

Mozafari N, Moghadam-Ahmadi A, Shamsizadeh A, Fatemi I, Allahtavakoli M, Kaeidi A (2018). The effect of ampakine Farampator (CX691) on working memory in a rat model of Alzheimer's disease induced by Amyloid beta 1-42. Iran J Physiol Pharmacol 2(2):107-100.

Klein C, Patte-Mensah C, Taleb O, Bourguignon JJ, Schmitt M, Bihel F, Maitre M, Mensah-Nyagan AG (2013) The neuroprotector kynurenic acid increases neuronal cell survival through neprilysin induction. Neuropharmacology 70:254-260. https://doi.org/10.1016/j.neuropharm.2013.02.006

Desbonnet L, O’Tuathaigh CM, Waddington JL (2012) Modeling schizophrenia: uncovering novel therapeutic targets. Expert Rev Clin Pharmacol 5(6):667-676. https://doi.org/10.1586/ecp.12.57

Faught E (2014) BGG492 (selurampanel), an AMPA/kainate receptor antagonist drug for epilepsy. Expert Opinion Investig Drugs 23(1):107-113. https://doi.org/10.1517/13543784.2014.848854

Stansley BJ, Conn PJ (2018) The therapeutic potential of metabotropic glutamate receptor modulation for schizophrenia. Current Opinion Pharmacol 38:31-36. https://doi.org/10.1016/j.coph.2018.02.003

Balu DT, Li Y, Takagi S, Presti KT, Ramikie TS, Rook JM, Jones CK, Lindsley CW, Conn PJ, Bolshakov VY, Coyle JT (2016) An mGlu5-Positive Allosteric Modulator Rescues the Neuroplasticity Deficits in a Genetic Model of NMDA Receptor Hypofunction in Schizophrenia. Neuropsychopharmacology 41(8):2052-2061. https://doi.org/10.1038/npp.2016.2

Marszalek-Grabska M, Gibula-Bruzda E, Bodzon-Kulakowska A, Suder P, Gawel K, Talarek S, Listos J, Kedzierska E, Danysz W, Kotlinska JH (2018) ADX-47273, a mGlu5 receptor positive allosteric modulator, attenuates deficits in cognitive flexibility induced by withdrawal from 'binge-like' ethanol exposure in rats. Behav Brain Res 338:9-16. https://doi.org/10.1016/j.bbr.2017.10.007

Shallcross J, Hámor P, Bechard AR, Romano M, Knackstedt L, Schwendt M (2019) The Divergent Effects of CDPPB and Cannabidiol on Fear Extinction and Anxiety in a Predator Scent Stress Model of PTSD in Rats. Front Behav Neurosci 13:91. https://doi.org/10.3389/fnbeh.2019.00091

Matosin N, Fernandez-Enright F, Lum JS, Newell KA (2017) Shifting towards a model of mGluR5 dysregulation in schizophrenia: Consequences for future schizophrenia treatment. Neuropharmacology 115:73-91. https://doi.org/10.1016/j.neuropharm.2015.08.003

Jin DZ, Xue B, Mao LM, Wang JQ (2015) Metabotropic glutamate receptor 5 upregulates surface NMDA receptor expression in striatal neurons via CaMKII. Brain Res 1624:414-423. https://doi.org/10.1016/j.brainres.2015.07.053

Terbeck S, Akkus F, Chesterman LP, Hasler G (2015) The role of metabotropic glutamate receptor 5 in the pathogenesis of mood disorders and addiction: combining preclinical evidence with human Positron Emission Tomography (PET) studies. Front Neurosci 9:86. https://doi.org/10.3389/fnins.2015.00086

Crupi R, Impellizzeri D, Cuzzocrea S (2019) Role of metabotropic glutamate receptors in neurological disorders. Front Mol Neurosci 12:20. https://doi.org/10.3389/fnmol.2019.00020

Ellaithy A, Younkin J, González-Maeso J, Logothetis DE (2015) Positive allosteric modulators of metabotropic glutamate 2 receptors in schizophrenia treatment. Trends Neurosci 38(8):506-516. https://doi.org/10.1016/j.tins.2015.06.002

Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: A randomized Phase 2 clinical trial. Nature Med 13(9):1102-1107. https://doi.org/10.1038/nm1632

Stauffer VL, Millen BA, Andersen S, Kinon BJ, LaGrandeur L, Lindenmayer JP, Gomez JC (2013) Pomaglumetad methionil: No significant difference as an adjunctive treatment for patients with prominent negative symptoms of schizophrenia compared to placebo. Schizophr Res 150(2-3):434-441. https://doi.org/10.1016/j.schres.2013.08.020

Hamadjida A, Nuara S, Gourdon J, Huot P (2019). Allosteric and orthosteric activation of mGlu2 receptors to alleviate dyskinesia and psychosis in the parkinsonian marmoset. The FASEB J 33(S1): lb73-lb73. https://doi.org/10.1096/fasebj.2019.33.1_supplement.lb73

Hanna L, Ceolin L, Lucas S, Monn J, Johnson B, Collingridge G, Bortolotto Z, Lodge D (2013) Differentiating the roles of mGlu2 and mGlu3 receptors using LY541850, an mGlu2 agonist/mGlu3 antagonist. Neuropharmacology 66:114-121. https://doi.org/10.1016/j.neuropharm.2012.02.023

Nuara SG, Hamadjida A, Gourdon JC, Huot P (2020) The mGlu2/3 antagonist LY-341,495 reverses the anti-dyskinetic and anti-psychotic effects of the mGlu2 activators LY-487,379 and LY-354,740 in the MPTP-lesioned marmoset. J Neural Transmis 127(7):1013-1021. https://doi.org/10.1007/s00702-020-02196-w

Chaki S (2019) mGlu2/3 receptor antagonists. Adv Pharmacol 86:97-120. https://doi.org/10.1016/bs.apha.2019.03.004

Gaddum JH, Hammed KA (1954) Drugs which antagonize 5-hydroxytryptamine. Br J Pharmacol Chemother 9(2):240-248. https://doi.org/10.1111/j.1476-5381.1954.tb00848.x

Woolley DW, Shaw E (1954) A biochemical and pharmacological suggestion about certain mental disorders. Proc Natl Acad Sci 40(4):228-231. https://doi.org/10.1073/pnas.40.4.228

Katzung BG (2017) Basic and clinical pharmacology 14th edition. McGraw Hill Professional: 512.

Ceglia I, Carli M, Baviera M, Renoldi G, Calcagno E, Invernizzi RW (2004) The 5-HT2A receptor antagonist M100,907 prevents extracellular glutamate rising in response to NMDA receptor blockade in the mPFC. J Neurochemi 91(1):189-199. https://doi.org/10.1111/j.1471-4159.2004.02704.x

Chagraoui A, Thibaut F, Skiba M, Thuillez C, Bourin M (2016) 5-HT2C receptors in psychiatric disorders: A review. Progr Neuro-Psychopharmacol Biol Psychiatry 66:120-135. https://doi.org/10.1016/j.pnpbp.2015.12.006

Eggers AE (2012) Extending David Horrobin’s membrane phospholipid theory of schizophrenia: Overactivity of cytosolic phospholipase A2 in the brain is caused by overdrive of coupled serotonergic 5HT2A/2C receptors in response to stress. Med Hypotheses 79(6):740-743. https://doi.org/10.1016/j.mehy.2012.08.016

Eggers AE (2013) A serotonin hypothesis of schizophrenia. Med Hypotheses 80(6):791-794. https://doi.org/10.1016/j.mehy.2013.03.013

Mombereau C, Arnt J, Mørk A (2017) Involvement of presynaptic 5-HT1A receptors in the low propensity of brexpiprazole to induce extrapyramidal side effects in rats. Pharmacol Biochem Behav 153:141-146. https://doi.org/10.1016/j.pbb.2016.12.015

de Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: A pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526(1-3):125-139. https://doi.org/10.1016/j.ejphar.2005.09.065

Meltzer HY, Sumiyoshi T (2008) Does stimulation of 5-HT1A receptors improve cognition in schizophrenia? Behav Brain Res 195(1):98-102. https://doi.org/10.1016/j.bbr.2008.05.016

Albert PR (2012) Transcriptional regulation of the 5-HT1A receptor: Implications for mental illness. Philosoph Transact Royal Soc B: Biol Sci 367(1601):2402-2415. https://doi.org/10.1098/rstb.2011.0376

Hereta M, Kamińska K, Rogóż Z (2019) Co-treatment with antidepressants and aripiprazole reversed the MK-801-induced some negative symptoms of schizophrenia in rats. Pharmacol Rep 71(5):768-773. https://doi.org/10.1016/j.pharep.2019.04.007

Khan UA, Parveen U, Hasan N, Ahmed MZ, Saad S, Ahmad FJ, Jain GK (2020) Parenteral sustained release lipid phase-transition system of ziprasidone: Fabrication and evaluation for schizophrenia therapy. Drug Design, Develop Therapy 14:2237-2247. https://doi.org/10.2147/DDDT.S247196

Li J, Yoshikawa A, Brennan MD, Ramsey TL, Meltzer HY (2018) Genetic predictors of antipsychotic response to lurasidone identified in a genome wide association study and by schizophrenia risk genes. Schizophr Res 192:194-204. https://doi.org/10.1016/j.schres.2017.04.009

Javed A, Arthur H, Curtis L, Hansen L, Pappa S (2019) Practical Guidance on the Use of Lurasidone for the Treatment of Adults with Schizophrenia. Neurol Therapy 8(2):215-230. https://doi.org/10.1007/s40120-019-0138-z

Frampton JE (2019) Brexpiprazole: A Review in Schizophrenia. Drugs 79(2):189-200. https://doi.org/10.1007/s40265-019-1052-5

Sokoloff P, le Foll B (2017) The dopamine D3 receptor, a quarter century later. Eur J Neurosci 45(1):2-19. https://doi.org/10.1111/ejn.13390

Bruno A, Zoccali RA, Troili GM, Scala L, Pandolfo G, Cedro C, Mento C, Santoro V, Spina E, Muscatello MRA (2020) Vortioxetine on Cognition in Schizophrenia: A Pilot Study. J Clin Psychopharmacol 40(4):381-385. https://doi.org/10.1097/JCP.0000000000001242

Pittalà V, Siracusa MA, Salerno L, Romeo G, Modica MN, Madjid N, Ogren SO (2015) Analysis of mechanisms for memory enhancement using novel and potent 5-HT1A receptor ligands. Eur Neuropsychopharmacol 25(8):1314-1323. https://doi.org/10.1016/j.euroneuro.2015.04.017

Veldman ER, Svedberg MM, Svenningsson P, Lundberg J (2017) Distribution and levels of 5-HT1B receptors in anterior cingulate cortex of patients with bipolar disorder, major depressive disorder and schizophrenia - An autoradiography study. Eur Neuropsychopharmacol 27(5):504-514. https://doi.org/10.1016/j.euroneuro.2017.02.011

Mao QQ, Huang Z, Ip SP, Xian YF, Che CT (2011) Role of 5-HT(1A) and 5-HT(1B) receptors in the antidepressant-like effect of piperine in the forced swim test. Neurosci Lett 504(2):181-184. https://doi.org/10.1016/j.neulet.2011.09.038

Bartram LA, Lozano J, Coury DL (2019) Aripiprazole for treating irritability associated with autism spectrum disorders. Expert Opinion Pharmacother 20(12):1421-1427. https://doi.org/10.1080/14656566.2019.1626825

Miszkiel J, Przegaliński E (2013) Effects of serotonin (5-HT)1B receptor ligands on amphetamine-seeking behavior in rats. Pharmacol Rep 65(4):813-822. https://doi.org/10.1016/s1734-1140(13)71062-4

Aznar S, Hervig MES (2016) The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases. Neurosci Biobehav Rev 64:63-82. https://doi.org/10.1016/j.neubiorev.2016.02.008

Meltzer HY, Elkis H, Vanover K, Weiner DM, van Kammen DP, Peters P, Hacksell U (2012) Pimavanserin, a selective serotonin (5-HT)2A-inverse agonist, enhances the efficacy and safety of risperidone, 2mg/day, but does not enhance efficacy of haloperidol, 2mg/day: Comparison with reference dose risperidone, 6mg/day. Schizophr Res 141(2-3):144-152. https://doi.org/10.1016/j.schres.2012.07.029

Яковлев ДС, Науменко ЛВ, Султанова КТ, Спасов АА (2020) Гемореологические свойства 5-нт2а-антагониста производного 2-метоксифенил-имидазобензимидазола соединения ру-31 и ципрогептадина в сравнении с пентоксифиллином. Фармация и фармакол 8(5):345-353. [Yakovlev DS, Naumenko LV, Sultanova KT, Spasov AA (2020) Hemorheological properties of the 5-ht2a-antagonist of the 2-methoxyphenyl-imidazobenzimidazole derivative of the ru-31 compound and cyproheptadine, in comparison with penthoxyphylline. Pharmacy & Pharmacol 8(5):345-353. (In Russ)]. https://doi.org/10.19163/2307-9266-2020-8-5-345-353

Baltzersen OB, Meltzer HY, Frokjaer VG, Raghava JM, Baandrup L, Fagerlund B, Larsson HBW, Christian Fibiger H, Glenthøj BY, Knudsen GM, Ebdrup BH (2020) Identification of a serotonin 2a receptor subtype of schizophrenia spectrum disorders with pimavanserin: The sub-sero proofof-concept trial protocol. Front Pharmacol 11:591. https://doi.org/10.3389/fphar.2020.00591

Preller KH, Schilbach L, Pokorny T, Flemming J, Seifritz E, Vollenweider FX (2018) Role of the 5-HT2A Receptor in Self- and Other-Initiated Social Interaction in Lysergic Acid Diethylamide-Induced States: A Pharmacological fMRI Study. J Neurosci 38(14):3603-3611. https://doi.org/10.1523/jneurosci.1939-17.2018

Rambousek L, Palenicek T, Vales K, Stuchlik A (2014) The effect of psilocin on memory acquisition, retrieval, and consolidation in the rat. Front Behav Neurosci 8:180. https://doi.org/10.3389/fnbeh.2014.00180

Sakloth F, Leggett E, Moerke MJ, Townsend EA, Banks ML, Negus SS (2019) Effects of acute and repeated treatment with serotonin 5-HT2A receptor agonist hallucinogens on intracranial self-stimulation in rats. Exp Clin Psychopharmacol 27(3):215-226. https://doi.org/10.1037/pha0000253

Shah UH, Gaitonde SA, Moreno JL, Glennon RA, Dukat M, González-Maeso J (2019) Revised Pharmacophore Model for 5-HT2A Receptor Antagonists Derived from the Atypical Antipsychotic Agent Risperidone. ACS Chem Neurosci 10(5):2318-2331. https://doi.org/10.1021/acschemneuro.8b00637

Ebdrup BH, Rasmussen H, Arnt J, Glenthøj B (2011) Serotonin 2A receptor antagonists for treatment of schizophrenia. Expert Opinion Investigat Drugs 20(9):1211-1223. https://doi.org/10.1517/13543784.2011.601738

Wang SM, Han C, Lee SJ, Jun TY, Patkar AA, Masand PS, Pae CU (2017) Investigational dopamine antagonists for the treatment of schizophrenia. Expert Opinion Investig Drugs 26(6):687-698. https://doi.org/10.1080/13543784.2017.1323870

Keefe RSE, Harvey PD, Khan A, Saoud JB, Staner C, Davidson M, Luthringer R (2018) Cognitive effects of MIN-101 in patients with schizophrenia and negative symptoms: Results from a randomized controlled trial. J Clin Psychiatry 79(3):17m11753. https://doi.org/10.4088/JCP.17m11753

Vyas P, Hwang BJ, Brašić JR (2020) An evaluation of lumateperone tosylate for the treatment of schizophrenia. Expert Opinion Pharmacother 21(2):139-145. https://doi.org/10.1080/14656566.2019.1695778

Султанова КТ, Яковлев ДС, Мальцев ДВ, Мирошников МВ, Морковина ЯВ, Анисимова ВА, Морковник АС (2018) Анксиолитические свойства соединения РУ-31. Вестн Волгоградск гос мед универ 3(67):28-32 [Sultanova KT, Jakovlev DS, Mal'cev DV, Miroshnikov MV, Morkovina JaV, Anisimova VA, Morkovnik AS (2018) Anхiolytical properties of compound ru-31. Volgograd Med J 3(67):28-32. (In Russ)]. https://doi.org/10.19163/1994-9480-2018-3(67)-28-32

Pogorelov VM, Rodriguiz RM, Cheng J, Huang M, Schmerberg CM, Meltzer HY, Roth BL, Kozikowski AP, Wetsel WC (2017) 5-HT2C Agonists Modulate Schizophrenia-Like Behaviors in Mice. Neuropsychopharmacology 42(11):2163-2177. https://doi.org/10.1038/npp.2017.52

Rosenzweig-Lipson S, Comery TA, Marquis KL, Gross J, Dunlop J (2012) 5-HT2C agonists as therapeutics for the treatment of schizophrenia. Handbook Exp Pharmacol 213: 147-165. https://doi.org/10.1007/978-3-642-25758-2_6

Shen JH, Zhao Y, Rosenzweig-Lipson S, Popp D, Williams JB, Giller E, Detke MJ, Kane JM (2014) A 6-week randomized, double-blind, placebo-controlled, comparator referenced trial of vabicaserin in acute schizophrenia. J Psychiatr Res 53:14-22. https://doi.org/10.1016/j.jpsychires.2014.02.012

Pogorelov VM, Rodriguiz RM, Cheng J, Huang M, Schmerberg CM, Meltzer HY, Roth BL, Kozikowski AP, Wetsel WC (2017) 5-HT2C Agonists Modulate Schizophrenia-Like Behaviors in Mice. Neuropsychopharmacology 42(11):2163-2177. https://doi.org/10.1038/npp.2017.52

Wood MD, Heidbreder C, Reavill C, Ashby CR, Middlemiss DN (2001) 5-HT2C receptor antagonists: Potential in schizophrenia. Drug Development Res 54(2): 88-94. https://doi.org/10.1002/ddr.1208

Lo Iacono L, Ielpo D, Parisi C, Napoli G, Accoto A, Di Segni M, Babicola L, D'Addario SL, Guzzo SM, Pascucci T, Ventura R, Andolina D (2021) MicroRNA-34a regulates 5-HT2C expression in dorsal raphe and contributes to the anti-depressant-like effect of fluoxetine. Neuropharmacology 190:108559. https://doi.org/10.1016/j.neuropharm.2021.108559

Gravius A, Dekundy A, Vanaga A, Franke L, Danysz W (2017) Further pharmacological characterization of eltoprazine: focus on its anxiolytic, anorexic, and adverse-effect potential. Acta Neurobiol Exp (Wars) 77(1):77-85. https://doi.org/10.21307/ane-2017-038

Kishi T, Mukai T, Matsuda Y, Iwata N (2014) Selective serotonin 3 receptor antagonist treatment for schizophrenia: Meta-analysis and systematic review. Neuromol Med 16(1):61-69. https://doi.org/10.1007/s12017-013-8251-0

Zheng W, Cai D bin, Zhang QE, He J, Zhong LY, Sim K, Ungvari GS, Ning YP, Xiang YT (2019) Adjunctive ondansetron for schizophrenia: A systematic review and meta-analysis of randomized controlled trials. J Psychiatr Res 113:27-33. https://doi.org/10.1016/j.jpsychires.2019.02.024

du Jardin KG, Jensen JB, Sanchez C, Pehrson AL (2014) Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: A potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism. Eur Neuropsychopharmacol 24(1):160-171. https://doi.org/10.1016/j.euroneuro.2013.07.001

Ellenbroek BA, Prinssen EPM (2015) Can 5-HT3 antagonists contribute toward the treatment of schizophrenia? Behav Pharmacol 26(1-2):33-44. https://doi.org/10.1097/fbp.0000000000000102

Ahmadi-Mahmoodabadi N, Nasehi M, Emam Ghoreishi M, Zarrindast MR (2016) Synergistic effect between prelimbic 5-HT3 and CB1 receptors on memory consolidation deficit in adult male Sprague-Dawley rats: An isobologram analysis. Neuroscience 317:173-183. https://doi.org/10.1016/j.neuroscience.2015.12.010

Bading-Taika B, Akinyeke T, Magana AA, Choi J, Ouanesisouk M, Torres ERS, Lione LA, Maier CS, Bobe G, Raber J, Miranda CL, Stevens JF (2018) Phytochemical characterization of Tabernanthe iboga root bark and its effects on dysfunctional metabolism and cognitive performance in high-fat-fed C57BL/6J mice. J Food Bioact 3:111-123. https://doi.org/10.31665/jfb.2018.3154

Sumaya IC, Bailey D, Catlett SL (2016) Differential effects of a short-term high-fat diet in an animal model of depression in rats treated with the 5-HT3 receptor antagonist, ondansetron, the 5-HT3 receptor agonist, 2-methyl-5-HT, and the SSRI, fluoxetine. Pharmacol Biochem Behav 144:78-84. https://doi.org/10.1016/j.pbb.2016.03.005

Jack T, Simonin J, Ruepp MD, Thompson AJ, Gertsch J, Lochner M (2015) Characterizing new fluorescent tools for studying 5-HT₃ receptor pharmacology. Neuropharmacology 90:63-73. https://doi.org/10.1016/j.neuropharm.2014.11.007

Marazziti D, Baroni S, Pirone A, Giannaccini G, Betti L, Schmid L, Vatteroni E, Palego L, Borsini F, Bordi F, Piano I, Gargini C, Castagna M, Catena-Dell’Osso M, Lucacchini A (2012) Distribution of serotonin receptor of type 6 (5-HT6) in human brain post-mortem. A pharmacology, autoradiography and immunohistochemistry study. Neurochem Res 37(5):920-927. https://doi.org/10.1007/s11064-011-0684-y

Ochi S, Inoue S, Yoshino Y, Shimizu H, Iga JI, Ueno SI (2019) Efficacy of asenapine in schizophrenia resistant to clozapine combined with electroconvulsive therapy: A case report. Clin Psychopharmacol Neurosci 17(4):559-563. https://doi.org/10.9758/cpn.2019.17.4.559

Morozova M, Burminskiy D, Rupchev G, Lepilkina T, Potanin S, Beniashvili A, Lavrovsky Y, Vostokova N, Ivaschenko A (2017) 5-HT6 Receptor Antagonist as an Adjunct Treatment Targeting Residual Symptoms in Patients With Schizophrenia. J Clin Psychopharmacol 37(2):169-175. https://doi.org/10.1097/jcp.0000000000000673

Rychtyk J, Partyka A, Gdula-Argasińska J, Mysłowska K, Wilczyńska N, Jastrzębska-Więsek M, Wesołowska A (2019) 5-HT6 receptor agonist and antagonist improve memory impairments and hippocampal BDNF signaling alterations induced by MK-801. Brain Res 1722:146375. https://doi.org/10.1016/j.brainres.2019.146375

Pereira M, Martynhak BJ, Andreatini R, Svenningsson P (2015) 5-HT6 receptor agonism facilitates emotional learning. Front Pharmacol 6:200. https://doi.org/10.3389/fphar.2015.00200

Suárez-Santiago JE, Briones-Aranda A, Espinosa-Raya J, Picazo O (2017) Agonist E-6837 and antagonist SB-271046 of 5-HT6 receptors both reverse the depressive-like effect induced in mice by subchronic ketamine administration. Behav Pharmacol 28 (7):582-585. https://doi.org/10.1097/fbp.0000000000000327

Balcer OM, Seager MA, Gleason SD, Li X, Rasmussen K, Maxwell JK, Nomikos G, Degroot A, Witkin JM (2019) Evaluation of 5-HT7 receptor antagonism for the treatment of anxiety, depression, and schizophrenia through the use of receptor-deficient mice. Behav Brain Res 360:270-278. https://doi.org/10.1016/j.bbr.2018.12.019

Maxwell J, Gleason SD, Falcone J, Svensson K, Balcer OM, Li X, Witkin JM (2019) Effects of 5-HT7 receptor antagonists on behaviors of mice that detect drugs used in the treatment of anxiety, depression, or schizophrenia. Behav Brain Res 359:467-473. https://doi.org/10.1016/j.bbr.2018.11.019

Carbonaro TM, Gatch MB (2016) Neuropharmacology of N,N-dimethyltryptamine. Brain Res Bull 126(Pt 1):74-88. https://doi.org/10.1016/j.brainresbull.2016.04.016

Abi-Dargham A (2007) Alterations of Serotonin Transmission in Schizophrenia. Int Rev Neurobiol 78:133-164. https://doi.org/10.1016/s0074-7742(06)78005-9

Guidotti A, Auta J, Davis JM, Dong E, Grayson DR, Veldic M, Zhang X, Costa E (2005) GABAergic dysfunction in schizophrenia: New treatment strategies on the horizon. Psychopharmacology 180(2):191-205. https://doi.org/10.1007/s00213-005-2212-8

Cansler HL, Wright KN, Stetzik LA, Wesson DW (2020) Neurochemical organization of the ventral striatum's olfactory tubercle. J Neurochem 152(4):425-448. https://doi.org/10.1111/jnc.14919

Martin-Lopez E, Xu C, Liberia T, Meller SJ, Greer CA (2019) Embryonic and postnatal development of mouse olfactory tubercle. Mol Cell Neurosci 98:82-96. https://doi.org/10.1016/j.mcn.2019.06.002

Gonzalez-Burgos G, Cho RY, Lewis DA (2015) Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol Psychiatry 77(12):1031-1040. https://doi.org/10.1016/j.biopsych.2015.03.010

Kaar SJ, Angelescu I, Marques TR, Howes OD (2019) Pre-frontal parvalbumin interneurons in schizophrenia: a meta-analysis of post-mortem studies. J Neural Transmis 126(12):1637-1651. https://doi.org/10.1007/s00702-019-02080-2

Сорокина НД, Перцов СС, Селицкий ГВ (2018) Роль биоэлектрической активности головного мозга в диапазоне гамма-ритма в обеспечении психических процессов. Рос физиол журн им ИМ Сеченова 104(10):1163-1175 [Sorokina ND, Percov SS, Selickij GV (2018) Role of brain bioelectric activity in the range of gamma frequencies in mental processes. Russ J Physiol 104(10):1163-1175. (In Russ)]. https://doi.org/10.7868/s0869813918100040

Antonoudiou P, Tan YL, Kontou G, Louise Upton A, Mann EO (2020) Parvalbumin and somatostatin interneurons contribute to the generation of hippocampal gamma oscillations. J Neurosci 40(40):7668-7687. https://doi.org/10.1523/JNEUROSCI.0261-20.2020

McCutcheon RA, Krystal JH, Howes OD (2020) Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 19(1):15-33. https://doi.org/10.1002/wps.20693

Garbutt JC, van Kammen DP (1983) The interaction between GABA and dopamine: Implications for schizophrenia. Schizophr Bull 9(3):336-353. https://doi.org/10.1093/schbul/9.3.336

Nair PC, McKinnon RA, Miners JO, Bastiampillai T (2020) Binding of clozapine to the GABAB receptor: clinical and structural insights. Mol Psychiatry 25(9):1910-1919. https://doi.org/10.1038/s41380-020-0709-5

Werner FM, Coveñas R (2017) Long-term administration of antipsychotic drugs in schizophrenia and influence of substance and drug abuse on the disease outcome. Current Drug Abuse Rev 10(1):19-24. https://doi.org/10.2174/1874473710666171020104524

John J, Kukshal P, Bhatia T, Chowdari KV, Nimgaonkar VL, Deshpande SN, Thelma BK (2017) Possible role of rare variants in Trace amine associated receptor 1 in schizophrenia. Schizophr Res 189:190-195. https://doi.org/10.1016/j.schres.2017.02.020

Schwartz MD, Canales JJ, Zucchi R, Espinoza S, Sukhanov I, Gainetdinov RR (2018) Trace amine-associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opinion Therap Targets 22(6):513-526. https://doi.org/10.1080/14728222.2018.1480723

Полякова НВ, Виноградова ЕП, Александров АА, Гайнетдинов РР (2018) Преимпульсное торможение у мышей-нокаутов по TAAR1 рецептору. Рос физиол журн им ИМ Сеченова 104(9):1098-1105 [Poljakova NV, Vinogradova EP, Aleksandrov AA, Gajnetdinov RR (2018) Prepulse inhibition in the TAAR1 knockout mice. Russ J Physiol 104(9):1098-1105. (In Russ)]. https://doi.org/10.7868/s0869813918090083

Муртазина РЗ, Гайнетдинов РР (2019) Трансгенные животные в экспериментальной фармакологии: фокус на рецепторах следовых аминов. Рос физиол журн им ИМ Сеченова 105(11):1373-1380 [Murtazina RZ, Gainetdinov RR (2019) Transgenic Animal Models in Experimental Pharmacology: Focus on Trace Amine-Associated Receptors. Russ J Physiol 105(11):1373-1380. (In Russ)]. https://doi.org/10.1134/s0869813919110098

Espinoza S, Leo D, Sotnikova TD, Shahid M, Kääriäinen TM, Gainetdinov RR (2018) Biochemical and functional characterization of the trace amine-associated receptor 1 (TAAR1) agonist RO5263397. Front Pharmacol 9:645. https://doi.org/10.3389/fphar.2018.00645

Dodd S, F Carvalho A, Puri BK, Maes M, Bortolasci CC, Morris G, Berk M (2021) Trace Amine-Associated Receptor 1 (TAAR1): A new drug target for psychiatry? Neurosci Biobehav Rev 120:537-541. https://doi.org/10.1016/j.neubiorev.2020.09.028

Espinoza S, Sukhanov I, Efimova EV, Kozlova A, Antonova KA, Illiano P, Leo D, Merkulyeva N, Kalinina D, Musienko P, Rocchi A, Mus L, Sotnikova TD, Gainetdinov RR (2020) Trace Amine-Associated Receptor 5 Provides Olfactory Input Into Limbic Brain Areas and Modulates Emotional Behaviors and Serotonin Transmission. Front Mol Neurosci 13:18. https://doi.org/10.3389/fnmol.2020.00018

Белов ДР, Фесенко ЗС, Лакстыгал АМ, ГАйнетдинов РР, Колодяжный СФ (2018) Эффект агониста рецептора TAAR5 следовых аминов как модель шизофрении по данным электрокортикографии крыс. Рос физиол журн им ИМ Сеченова 104(11):1275-1290 [Belov DR, Fesenko ZS, Lakstygal AM, Gainetdinov RR, Kolodyazhnyi SF (2020) Effects of a Trace Amine-Associated Receptor TAAR5 Agonist as a Model of Schizophrenia Using Electrocorticography Data from Rats. Russ J Physiol 104(11):1275-1290. (In Russ)]. https://doi.org/10.1134/s0869813918110023

Rutigliano G, Zucchi R (2020) Molecular Variants in Human Trace Amine-Associated Receptors and Their Implications in Mental and Metabolic Disorders. Cell Mol Neurobiol 40(2):239-255. https://doi.org/10.1007/s10571-019-00743-y

Khattak NA, Sehgal SA, Bai Y, Deng Y (2017) Structure modeling and molecular docking studies of schizophrenia candidate genes, synapsins 2 (SYN2) and trace amino acid receptor (TAAR6). In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): 291-301. https://doi.org/10.1007/978-3-319-59575-7_26

Johansson EM, Bouchet D, Tamouza R, Ellul P, Morr AS, Avignone E, Germi R, Leboyer M, Perron H, Groc L (2020) Human endogenous retroviral protein triggers deficit in glutamate synapse maturation and behaviors associated with psychosis. Sci Advanc 6(29):eabc0708. https://doi.org/10.1126/sciadv.abc0708

Breier A, Buchanan RW, D’Souza D, Nuechterlein K, Marder S, Dunn W, Preskorn S, Macaluso M, Wurfel B, Maguire G, Kakar R, Highum D, Hoffmeyer D, Coskinas E, Litman R, Vohs JL, Radnovich A, Francis MM, Metzler E, Visco A, Mehdiyoun N, Yang Z, Zhang Y, Yolken RH, Dickerson FB (2019) Herpes simplex virus 1 infection and valacyclovir treatment in schizophrenia: Results from the VISTA study. Schizophr Res 206:291-299. https://doi.org/10.1016/j.schres.2018.11.002

Altamura AC, Buoli M, Pozzoli S (2014): Comparison with schizophrenia. Psychiatr Clin Neurosci 68(1):21-36. https://doi.org/10.1111/pcn.12089

Nettis MA, Pariante CM, Mondelli V (2020) Early-Life Adversity, Systemic Inflammation and Comorbid Physical and Psychiatric Illnesses of Adult Life. Current Topics Behav Neurosci 44:207-225. https://doi.org/10.1007/7854_2019_89

Trépanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP (2016) Postmortem evidence of cerebral inflammation in schizophrenia: A systematic review. Mol Psychiatry 21(8):1009-1026. https://doi.org/10.1038/mp.2016.90

Markkanen E, Meyer U, Dianov GL (2016) Dna damage and repair in schizophrenia and autism: Implications for cancer comorbidity and beyond. Int J Mol Sci 17(6):856. https://doi.org/10.3390/ijms17060856

Steullet P, Cabungcal JH, Monin A, Dwir D, O’Donnell P, Cuenod M, Do KQ (2016) Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A “central hub” in schizophrenia pathophysiology? Schizophr Res 176(1):41-51. https://doi.org/10.1016/j.schres.2014.06.021

Cabungcal JH, Steullet P, Kraftsik R, Cuenod M, Do KQ (2013) Early-life insults impair parvalbumin interneurons via oxidative stress: Reversal by N-acetylcysteine. Biol Psychiatry 73(6):574-582. https://doi.org/10.1016/j.biopsych.2012.09.020

Зубарева ОЕ, Клименко ВМ (2011) Повышение уровня провоспалительных цитокинов в раннем возрасте как фактор риска развития нервной и психической патологии. Рос физиол журн им ИМ Сеченова 97(10):1048-1059 [Zubareva OE, Klimenko VM (2011) Elevation of proinflammatory cytokines level at early age as the risk factor of neurological and mental pathology development. Russ J Physiol 97(10):1048-1059. (In Russ)].

Pardo-de-Santayana G, Juncal-Ruiz M, Vázquez-Bourgon J, Riesco-Dávila L, Ortiz-Garcia de la Foz V, Pelayo-Terán JM, López-Hoyos M, Crespo-Facorro B (2021) Active psychosis and pro-inflammatory cytokines in first-episode of psychosis. J Psychiatr Res 134:150-157. https://doi.org/10.1016/j.jpsychires.2020.12.060

Rodrigues-Amorim D, Rivera-Baltanás T, Spuch C, Caruncho HJ, González-Fernandez Á, Olivares JM, Agís-Balboa RC (2018) Cytokines dysregulation in schizophrenia: A systematic review of psychoneuroimmune relationship. Schizophr Res 197:19-33. https://doi.org/10.1016/j.schres.2017.11.023

Al-Asmari AK, Khan MW (2014) Inflammation and schizophrenia: Alterations in cytokine levels and perturbation in antioxidative defense systems. Human Exp Toxicol 33(2):115-122. https://doi.org/10.1177/0960327113493305

Upthegrove R, Khandaker GM (2020) Cytokines, Oxidative Stress and Cellular Markers of Inflammation in Schizophrenia. Current Topics Behav Neurosci 44:49-66. https://doi.org/10.1007/7854_2018_88

Piccioli P, Rubartelli A (2013) The secretion of IL-1β and options for release. Seminars Immunol 25(6):425-429. https://doi.org/10.1016/j.smim.2013.10.007

Трофимов АН, Зубарева ОЕ, Шварц АП, Ищенко АМ, Клименко ВМ (2014) Экспрессия генов FGF2 и TIMP1 в мозге взрослых крыс после введений интерлейкина-lß в раннем постнатальном онтогенезе. Рос физиол журн им ИМ Сеченова 100(9): 1025-1037 [Trofimov AN, Zubareva OE, Shvarc AP, Ishhenko AM, Klimenko VM (2014) The administration of interleukin-1ß during early postnatal development impairs FGF2, but not TIMP1, mRNA expression in brain structures of adult rats. Russ J Physiol 100(9): 1025-1037. (In Russ)].

Stapel B, Sieve I, Falk CS, Bleich S, Hilfiker-Kleiner D, Kahl KG (2018) Second generation atypical antipsychotics olanzapine and aripiprazole reduce expression and secretion of inflammatory cytokines in human immune cells. J Psychiatr Res 105:95-102. https://doi.org/10.1016/j.jpsychires.2018.08.017

Giridharan V, Scaini G, Colpo GD, Doifode T, Pinjari OF, Teixeira AL, Petronilho F, Macêdo D, Quevedo J, Barichello T (2020) Clozapine Prevents Poly (I:C) Induced Inflammation by Modulating NLRP3 Pathway in Microglial Cells. Cells 9(3):577. https://doi.org/10.3390/cells9030577

Kindler J, Lim CK, Weickert CS, Boerrigter D, Galletly C, Liu D, Jacobs KR, Balzan R, Bruggemann J, O’Donnell M, Lenroot R, Guillemin GJ, Weickert TW (2020) Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol Psychiatry 25(11):2860-2872. https://doi.org/10.1038/s41380-019-0401-9

Hunter CA, Jones SA (2015) IL-6 as a keystone cytokine in health and disease. Nature Immunol 16(5):448-457. https://doi.org/10.1038/ni.3153

Garcia-Rizo C, Fernandez-Egea E, Oliveira C, Justicia A, Bernardo M, Kirkpatrick B (2012) Inflammatory markers in antipsychotic-naïve patients with nonaffective psychosis and deficit vs. nondeficit features. Psychiatr Res 198(2):212-215. https://doi.org/10.1016/j.psychres.2011.08.014

Kluge M, Schuld A, Schacht A, Himmerich H, Dalal MA, Wehmeier PM, Hinze-Selch D, Kraus T, Dittmann RW, Pollmächer T (2009) Effects of clozapine and olanzapine on cytokine systems are closely linked to weight gain and drug-induced fever. Psychoneuroendocrinology 34(1):118-128. https://doi.org/10.1016/j.psyneuen.2008.08.016

Juncal-Ruiz M, Riesco-Dávila L, Ortiz-García de la Foz V, Martínez-Garcia O, Ramírez-Bonilla M, Ocejo-Viñals JG, Leza JC, López-Hoyos M, Crespo-Facorro B (2018) Comparison of the anti-inflammatory effect of aripiprazole and risperidone in 75 drug-naïve first episode psychosis individuals: A 3 months randomized study. Schizophr Res 202:226-233. https://doi.org/10.1016/j.schres.2018.06.039

Seki Y, Kato TA, Monji A, Mizoguchi Y, Horikawa H, Sato-Kasai M, Yoshiga D, Kanba S (2013) Pretreatment of aripiprazole and minocycline, but not haloperidol, suppresses oligodendrocyte damage from interferon-γ-stimulated microglia in co-culture model. Schizophr Res 151(1-3):20-28. https://doi.org/10.1016/j.schres.2013.09.011

Romeo B, Brunet-Lecomte M, Martelli C, Benyamina A (2018) Kinetics of cytokine levels during antipsychotic treatment in schizophrenia: A meta-Analysis. Int J Neuropsychopharmacol 21(9):828-836. https://doi.org/10.1093/ijnp/pyy062

Hayley S, Wall P, Anisman H (2002) Sensitization to the neuroendocrine, central monoamine and behavioural effects of murine tumor necrosis factor-α: Peripheral and central mechanisms. Eur J Neurosci 15(6):1061-1076. https://doi.org/10.1046/j.1460-9568.2002.01936.x

Ajami A, Abedian F, Hamzeh Hosseini S, Akbarian E, Alizadeh-Navaei R, Taghipour M (2014) Serum TNF-α, IL-10 and IL-2 in schizophrenic patients before and after treatment with risperidone and clozapine. Iran J Immunol: IJI 11(3):200-209.

Faisal IM, Almukhtar HM, Merkhan MM, Alobaidi RW (2019) Comparative anti-inflammatory effect of risperidone versus olanzapine in schizophrenic patients. Indian J Publ Health Res Develop 10(8):964-969. https://doi.org/10.5958/0976-5506.2019.02019.9

Maurer M, von Stebut E (2004) Macrophage inflammatory protein-1. Int J Biochem Cell Biol 36(10):1882-1886. https://doi.org/10.1016/j.biocel.2003.10.019

Vidal PM, Pacheco R (2020) The Cross-Talk Between the Dopaminergic and the Immune System Involved in Schizophrenia. Front Pharmacol 11:394. https://doi.org/10.3389/fphar.2020.00394

Müller N, Weidinger E, Leitner B, Schwarz MJ (2016) In: The Neurobiology of Schizophrenia. Eds Abel T, Nickl-Jockschat T. Acad Press: 179-193. https://doi.org/10.1016/B978-0-12-801829-3.00019-7

Müller N (2018) Inflammation in schizophrenia: Pathogenetic aspects and therapeutic considerations. Schizophr Bull 44(5):973-982. https://doi.org/10.1093/schbul/sby024

Костюкова АБ, Мосолов СН (2013). Нейровоспалительная гипотеза шизофрении и некоторые новые терапевтические подходы. Совр терапия псих расстройств (4):8-17 [Kostyukova AB, Mosolov SN (2013) Neuroinflammatory hypothesis of schizophrenia and new therapeutical approaches. Sovrem ter psih rasstrojstv (Current Therapy of Mental Disorders) (4):8-17. (In Russ)].

Mongan D, Ramesar M, Föcking M, Cannon M, Cotter D (2020) Role of inflammation in the pathogenesis of schizophrenia: A review of the evidence, proposed mechanisms and implications for treatment. Early Interv Psychiatry 14(4):385-397. https://doi.org/10.1111/eip.12859

Rodríguez B, Nani JV, Almeida PGC, Brietzke E, Lee RS, Hayashi MAF (2020) Neuropeptides and oligopeptidases in schizophrenia. Neurosci Biobehav Rev 108:679-693. https://doi.org/10.1016/j.neubiorev.2019.11.024

Tschumi CW, Beckstead MJ (2018) Neurotensin speeds inhibition of dopamine neurons through temporal modulation of GABAA and GABAB receptor-mediated synaptic input. Neuropharmacology 131:414-423. https://doi.org/10.1016/j.neuropharm.2018.01.004

Singh S, Khanna D, Kalra S (2020) Role of Neurochemicals in Schizophrenia. Current Psychopharmacol 9(2):144-161. https://doi.org/10.2174/2211556009666200401150756

Borroto-Escuela DO, Pintsuk J, Schäfer T, Friedland K, Ferraro L, Tanganelli S, Liu F, Fuxe K (2016) Multiple D2 heteroreceptor complexes: new targets for treatment of schizophrenia. Ther Adv Psychopharmacol 6(2):77-94. https://doi.org/10.1177/2045125316637570

Woodworth HL, Brown JA, Batchelor HM, Bugescu R, Leinninger GM (2018) Determination of neurotensin projections to the ventral tegmental area in mice. Neuropeptides 68:57-74. https://doi.org/10.1016/j.npep.2018.02.003

Kost NV, Meshavkin VK, Khashaba EY, Sokolov OY, Voevodina ME, Zolotarev YA, Andreeva LA, Myasoedov NF (2014) Neurotensin-like peptides as potential antipsychotics: modulation of the serotonin system. Bull Exp Biol Med 157(6):738-741. https://doi.org/10.1007/s10517-014-2656-0

Moustafa SR, Al-Rawi KF, Stoyanov D, Al-Dujaili AH, Supasitthumrong T, Al-Hakeim HK, Maes M (2020) The Endogenous Opioid System in Schizophrenia and Treatment Resistant Schizophrenia: Increased Plasma Endomorphin 2, and κ and μ Opioid Receptors Are Associated with Interleukin-6. Diagnostics (Basel) 10(9):633. https://doi.org/10.3390/diagnostics10090633

Hu M, Zheng P, Xie Y, Boz Z, Yu Y, Tang R, Jones A, Zheng K, Huang XF (2018) Propionate Protects Haloperidol-Induced Neurite Lesions Mediated by Neuropeptide Y. Front Neurosci 12:743. https://doi.org/10.3389/fnins.2018.00743

Gulliver D, Werry E, Reekie TA, Katte TA, Jorgensen W, Kassiou M (2019) Targeting the Oxytocin System: New Pharmacotherapeutic Approaches. Trends Pharmacol Sci 40(1):22-37. https://doi.org/10.1016/j.tips.2018.11.001

Vyas P, Hwang BJ, Brasic JR (2020) An evaluation of lumateperone tosylate for the treatment of schizophrenia. Expert Opinion Pharmacother 21 (2):139-145. https://doi.org/10.1080/14656566.2019.1695778