МОЛЕКУЛЯРНАЯ И ФУНКЦИОНАЛЬНАЯ ГЕТЕРОГЕННОСТЬ Na,K-АТФазы В СКЕЛЕТНОЙ МЫШЦЕ
PDF

Ключевые слова

Na,K-АТФаза
изоформы
никотиновый холинорецептор
липидные микродомены
кардиотонические стероиды
сигнальная функция
двигательная активность

Как цитировать

Кравцова, В. В., & Кривой, И. И. (2021). МОЛЕКУЛЯРНАЯ И ФУНКЦИОНАЛЬНАЯ ГЕТЕРОГЕННОСТЬ Na,K-АТФазы В СКЕЛЕТНОЙ МЫШЦЕ. Российский физиологический журнал им. И. М. Сеченова, 107(6-7), 695–716. https://doi.org/10.31857/S0869813921060066

Аннотация

Активность Na,K-АТФазы критически важна для поддержания электрогенеза, сократительной функции и работоспособности скелетных мышц. Данный обзор посвящен анализу результатов исследований последних лет в области молекулярного и функционального разнообразия Na,K-АТФазы в скелетных мышцах, ко-экспрессирующих a1- и a2-изоформы каталитической и транспортной a-субъединицы Na,K-АТФазы. Рассмотрены проблемы, которые представляются наиболее перспективными с точки зрения их дальнейшего развития. Накопленные факты свидетельствуют, что в отличие от a1-изоформы, демонстрирующей функциональную стабильность, a2-изоформа отличается высокой степенью пластичности, которая обусловлена ее специфической мембранной локализацией, функциональными и молекулярными взаимодействиями с белковым и липидным окружением, а также особенностями регуляции различными факторами. Функциональные нарушения a2-изоформы Na,K-АТФазы относятся к наиболее общим признакам, характерным как для хронических, так и кратковременных форм двигательной дисфункции.

https://doi.org/10.31857/S0869813921060066
PDF

Литература

Sejersted OM, Sjogaard G (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 80:1411–1481.doi: 10.1152/physrev.2000.80.4.1411

Clausen T (2003) Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev 83:1269–1324. doi: 10.1152/physrev.00011.2003

Clausen T (2013) Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: Functional significance. J Gen Physiol 142:327–345. doi: 10.1085/jgp.201310980

Clausen T (2015) Excitation of skeletal muscle is a self-limiting process, due to run-down of Na+,K+ gradients, recoverable by stimulation of the Na+,K+ pumps. Physiol Rep 3(4):e12373. doi: 10.14814/phy2.12373

DiFranco M, Hakimjavadi H, Lingrel JB, Heiny JA (2015) Na,K-ATPase a2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+. J Gen Physiol 146:281–294. doi: 10.1085/jgp.201511407

Matyushkin DP, Krivoi II, Drabkina TM (1995) Synaptic feed-backs mediated by potassium ions. Gen Physiol Biophys 14:369–381.

Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401. doi: 10.1016/0006- 3002(57)90343-8

Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: Heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F655. doi: 10.1152/ajprenal.1998.275.5.F633

Mijatovic T, Van Quaquebeke E, Delest B, Debeir O, Darro F, Kiss R (2007) Cardiotonic steroids on the road to anti-cancer therapy. Biochim Biophys Acta 1776:32–57. doi: 10.1016/j.bbcan.2007.06.002

Bagrov AY, Shapiro JI, Fedorova OV (2009) Endogenous cardiotonic steroids: Physiology, pharmacology, and novel therapeutic targets. Pharmacol Rev 61:9–38. doi: 10.1124/pr.108.000711

Pirkmajer S, Chibalin AV (2016) Na,K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab 311(1):E1–E31. doi: 10.1152/ajpendo.00539.2015

Clausen MV, Hilbers F, Poulsen H (2017) The Structure and Function of the Na,K-ATPase Isoforms in Health and Disease. Front Physiol 8:371. doi: 10.3389/fphys.2017.00371

Blaustein MP (1993) Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol Cell Physiol 264:C1367–C1387. doi: 10.1152/ajpcell.1993.264.6.C1367

Lingrel JB (2010) The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase. Annu Rev Physiol 72:395–412. doi: 10.1146/annurev-physiol-021909-135725

Blaustein MP, Hamlyn JM (2020) Ouabain, Endogenous Ouabain and Ouabain-like Factors: The Na+ Pump/Ouabain Receptor, its linkage to NCX, and its Myriad Functions. Cell Calcium 102159. doi: 10.1016/j.ceca.2020.102159

Matchkov VV, Krivoi II (2016) Specialized functional diversity and interactions of the Na,K-ATPase. Front Physiol 7:179. doi: 10.3389/fphys.2016.00179

Xie Z, Askari A (2002) Na+/K+-ATPase as a signal transducer. Eur J Biochem 269:2434–2439. doi: 10.1046/j.1432-1033.2002.02910.x

Schoner W, Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am J Cardiovasc Drugs 7:173–189. doi: 10.2165/00129784-200707030-00004

Reinhard L, Tidow H, Clausen MJ, Nissen P (2013) Na+,K+-ATPase as a docking station: protein-protein complexes of the Na+,K+-ATPase. Cell Mol Life Sci 70:205–222. doi: 10.1007/s00018-012-1039-9

Cui X, Xie Z (2017) Protein Interaction and Na/K-ATPase-Mediated Signal Transduction. Molecules 22:990. doi:10.3390/molecules22060990

Yu H, Cui X, Zhang J, Xie JX, Banerjee M, Pierre SV, Xie Z (2018) Heterogeneity of signal transduction by Na-K-ATPase alpha-isoforms: role of Src interaction. Am J Physiol Cell Physiol 314:C202–C210. doi: 10.1152/ajpcell.00124.2017

Orlowski J, Lingrel JB (1988) Tissue-specific and developmental regulation of rat Na,K-ATPase catalytic  isoform and β subunit mRNAs. J Biol Chem 263:10436–10442. doi: 10.1016/S0021-9258(19)81535-1

He S, Shelly DA, Moseley AE, James PF, James JH, Paul RJ, Lingrel JB (2001) The 1- and 2-isoforms of Na-K-ATPase play different roles in skeletal muscle contractility. Am J Physiol Regul Integr Comp Physiol 281:R917–R925.doi: 10.1152/ajpregu.2001.281.3.R917

Cherniavsky Lev M, Karlish SJ, Garty H (2015) Cardiac glycosides induced toxicity in human cells expressing 1-, 2-,or 3-isoforms of Na-K-ATPase. Am J Physiol Cell Physiol 309:C126–C135. doi: 10.1152/ajpcell.00089.2015

Radzyukevich TL, Neumann JC, Rindler TN, Oshiro N, Goldhamer DJ, Lingrel JB, Heiny JA (2013) Tissue-specific role of the Na,K-ATPase 2 isozyme in skeletal muscle. J Biol Chem 288:1226–1237. doi: 10.1074/jbc.M112.424663

Kravtsova VV, Petrov AM, Matchkov VV, Bouzinova EV, Vasiliev AN, Benziane B, Zefirov AL, Chibalin AV, Heiny JA, Krivoi II (2016) Distinct 2 Na,K-ATPase membrane pools are differently involved in early skeletal muscle remodeling during disuse. J Gen Physiol 147:175–188. doi: 10.1085/jgp.201511494

Kutz LC, Mukherji ST, Wang X, Bryant A, Larre I, Heiny JA, Lingrel JB, Pierre SV, Xie Z (2018) Isoform-specific role of Na/K-ATPase 1 in skeletal muscle. Am J Physiol Endocrinol Metab 314(6):E620–E629. doi: 10.1152/ajpendo.00275.2017

Krivoi I, Vasiliev A, Kravtsova V, Dobretsov M, Mandel F (2003) Porcine kidney extract contains factor(s) that inhibit the ouabain-sensitive isoform of Na,K-ATPase (a2) in rat skeletal muscle: A convenient electrophysiological assay. Ann NY Acad Sci 986:639–641. doi: 10.1111/j.1749-6632.2003.tb07272.x

Radzyukevich TL, Moseley AE, Shelly DA, Redden GA, Behbehani MM, Lingrel JB, Paul RJ, Heiny JA (2004) The Na,K-ATPase 2 subunit isoform modulates contractility in the perinatal mouse diaphragm. Am J Physiol Cell Physiol 287:C1300–C1310. doi: 10.1152/ajpcell.00231.2004

Heiny JA, Kravtsova VV, Mandel F, Radzyukevich TL, Benziane B, Prokofiev AV, Pedersen SE, Chibalin AV, Krivoi II (2010) The nicotinic acetylcholine receptor and the Na,K-ATPase 2 isoform interact to regulate membrane electrogenesis in skeletal muscle. J Biol Chem 285:28614–28626. doi: 10.1074/jbc.M110.150961

Kravtsova VV, Bouzinova EV, Matchkov VV, Krivoi II (2020) Skeletal Muscle Na,K-ATPase as a Target for Circulating Ouabain. Int J Mol Sci 21:2875.doi: 10.3390/ijms21082875

Cornelius F, Habeck M, Kanai R, Toyoshima C, Karlish SJ (2015) General and specific lipid-protein interactions in Na,K-ATPase. Biochim Biophys Acta 1848:1729–1743. doi: 10.1016/j.bbamem.2015.03.012

Levitan I, Singh DK, Rosenhouse-Dantsker A (2014) Cholesterol binding to ion channels. Front Physiol 5:65. doi: 10.3389/fphys.2014.00065

Krivoi II, Petrov AM (2019) Cholesterol and the Safety Factor for Neuromuscular Transmission. Int J Mol Sci 20:1046. doi: 10.3390/ijms20051046

Wyckelsma VL, McKenna MJ (2016) Effects of Age on Na+,K+-ATPase Expression in Human and Rodent Skeletal Muscle. Front Physiol 7:316. doi: 10.3389/fphys.2016.00316.

Kravtsova VV, Bouzinova EV, Chibalin AV, Matchkov VV, Krivoi II (2020) Isoform-Specific Na,K-ATPase and Membrane Cholesterol Remodeling in the Motor Endplates in Distinct Mouse Models of Myodystrophy. Am J Physiol Cell Physiol 318:C1030–C1041. doi: 10.1152/ajpcell.00453.2019

Guo Q, Mi X, Sun X, Li X, Fu W, Xu S, Wang Q, Arfat Y, Wang H, Chang H, Gao Y (2017) Remarkable plasticity of Na+,K+-ATPase, Ca2+-ATPase and SERCA contributes to muscle disuse atrophy resistance in hibernating Daurian ground squirrels. Sci Rep 7:10509. doi: 10.1038/s41598-017-10829-6

Shenkman BS, Kozlovskaya IB (2019) Cellular Responses of Human Postural Muscle to Dry Immersion. Front Physiol 10:187. doi: 10.3389/fphys.2019.00187

Shenkman BS (2020) How Postural Muscle Senses Disuse? Early Signs and Signals. Int J Mol Sci 21:5037. doi:10.3390/ijms21145037

Vilchinskaya NA, Krivoi II, Shenkman BS (2018) AMP-Activated Protein Kinase as a Key Trigger for the Disuse-Induced Skeletal Muscle Remodeling. Int J Mol Sci 19: 3558. doi:10.3390/ijms19113558

Blaustein MP, Chen L, Hamlyn JM, Leenen FH, Lingrel JB, Wier WG, Zhang J (2016) Pivotal role of 2 Na+ pumps and their high affinity ouabain binding site in cardiovascular health and disease. J Physiol 594:6079–6103. doi: 10.1113/JP272419

Krivoi II, Drabkina TM, Kravtsova VV, Vasiliev AN, Vashchinkina EV, Prokofiev AV, Kubasov IV (2006) Role of the Na+,K+-ATPase a2 isoform in the positive inotropic effect of ouabain and marinobufagenin in the rat diaphragm. Biophysics 51:799–804. doi: 10.1134/S0006350906050228

Kotova O, Al-Khalili L, Talia S, Hooke C, Fedorova OV, Bagrov AY, Chibalin AV (2006) Cardiotonic steroids stimulate glycogen synthesis in human skeletal muscle cells via a Src- and ERK1/2-dependent mechanism. J Biol Chem 281:20085–20094. doi: 10.1074/jbc.M601577200

Radzyukevich TL, Lingrel JB, Heiny JA (2009) The cardiac glycoside binding site on the Na,K-ATPase 2 isoform plays a role in the dynamic regulation of active transport in skeletal muscle. Proc Natl Acad Sci USA 106:2565–2570. doi: 10.1073/pnas.0804150106

Pirkmajer S, Bezjak K, Matkovic U, Dolinar K, Jiang LQ, Miš K, Gros K, Milovanova K, Pirkmajer KP, Marš T, Kapilevich L, Chibalin AV (2020) Ouabain Suppresses IL-6/STAT3 Signaling and Promotes Cytokine Secretion in Cultured Skeletal Muscle Cells. Front Physiol 11:566584. doi: 10.3389/fphys.2020.566584

Hazelwood L, Free RB, Cabrera DM, Skinbjerg M, Sibley DR (2008) Reciprocal modulation of function between the D1 and D2 dopamine receptors and the Na+,K+-ATPase. J Biol Chem 283(52): 36441–36453. doi: 10.1074/jbc.M805520200

Sibarov DA, Bolshakov AE, Abushik PA, Krivoi II, Antonov SM (2012) Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J Pharmacol Exp Ther 343:596–607. doi: 10.1124/jpet.112.198341

Matos M, Augusto E, Agostinho P, Cunha RA, Chen J-F (2013) Interaction between adenosine A2A receptors and α2 Na,K-ATPase controlling glutamate uptake in astrocytes. J Neurosci 33 (47): 18492–18502. doi: 10.1523/JNEUROSCI.1828-13.2013

Illarionava NB, Brismar H, Aperia A, Gunnarson E (2014) Role of Na,K-ATPase a1 and a2 isoforms in the support of astrocyte glutamate uptake. PLoS ONE 9(6): e98469. doi: 10.1371/journal.pone.0098469

Akkuratov EE, Westin L, Vazquez-Juarez E, de Marothy M, Melnikova AK, Blom H, Lindskog M, Brismar H, Aperia A (2020) Ouabain Modulates the Functional Interaction Between Na,K-ATPase and NMDA Receptor. Mol Neurobiol 57(10): 4018–4030. doi: 10.1007/s12035-020-01984-5

Krivoi II, Drabkina TM, Kravtsova VV, Vasiliev AN, Eaton MJ, Skatchkov SN, Mandel F (2006) On the functional interaction between nicotinic acetylcholine receptor and Na+,K+-ATPase. Pflugers Arch 452:756–765. doi: 10.1007/s00424-006-0081-6

Vyskocil F, Nikolsky E, Edwards C (1983) An analysis of the mechanisms underlying the non–quantal release of acetylcholine at the mouse neuromuscular junction. Neuroscience 9(2):429–435. doi: 10.1016/0306-4522(83)90305-6

Nikolsky EE, Zemkova H, Voronin VA, Vyskocil F (1994) Role of non-quantal acetylcholine release in surplus polarization of mouse diaphragm fibres at the endplate zone. J Physiol 477:497–502. doi: 10.1113/jphysiol.1994.sp020210

Vyskocil F, Malomouzh AI, Nikolsky EE (2009) Non-quantal acetylcholine release at the neuromuscular junction. Physiol Res 58:763–784.

Chibalin AV, Heiny JA, Benziane B, Prokofiev AV, Vasiliev AN, Kravtsova VV, Krivoi II (2012) Chronic nicotine exposure modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman. PLoS One 7:e33719. doi: 10.1371/journal.pone.0033719

Petrov AM, Kravtsova VV, Matchkov VV, Vasiliev AN, Zefirov AL, Chibalin AV, Heiny JA, Krivoi II (2017) Membrane lipid rafts are disturbed in the response of rat skeletal muscle to short-term disuse. Am J Physiol Cell Physiol 312:C627–C637. doi: 10.1152/ajpcell.00365.2016

Hezel M, de Groat WC, Galbiati F (2010) Caveolin-3 promotes nicotinic acetylcholine receptor clustering and regulates neuromuscular junction activity. Mol Biol Cell. 21(2):302–310. doi: 10.1091/mbc.E09-05-0381

Prince RJ, Sine SM (1999) Acetylcholine and epibatidine binding to muscle acetylcholine receptors distinguish between concerted and uncoupled models. J Biol Chem 274:19623–19629. doi: 10.1074/jbc.274.28.19623

Mourot A, Rodrigo J, Kotzyba-Hibert F, Bertrand S, Bertrand D, Goeldner M (2006) Probing the Reorganization of the Nicotinic Acetylcholine Receptor during Desensitization by Time-Resolved Covalent Labeling Using [3H]AC5, a Photoactivatable Agonist. Mol Pharmacol 69:452–461. doi: 10.1124/mol.105.017566

Lester RA, Dani JA (1995) Acetylcholine receptor desensitization induced by nicotine in rat medial habenula neurons. J Neurophysiol 74:195–206. doi: 10.1152/jn.1995.74.1.195

Benowitz NL, Zevin S, Jacob P (1997) Sources of variability in nicotine and cotinine levels with use of nicotine nasal spray, transdermal nicotine, and cigarette smoking. Br J Clin Pharmacol 43:259–267. doi: 10.1111/j.1365-2125.1997.00566.x

Larsson L, Orlander J, Ansved T, Edstrom L (1988) Effects of chronic nicotine exposure on contractile enzyme-histochemical and biochemical properties of fast- and slow-twitch muscles in the rat. Acta Physiol Scand 134:519–527.doi: 10.1111/j.1748-1716.1998.tb08526.x

Nakatani T, Nakashima T, Kita T, Ishihara A (2003) Effects of exposure to cigarette smoke at different dose levels on extensor digitorum longus muscle fibres in Wistar-Kyoto and spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 30:671–677. doi: 10.1046/j.1440-1681.2003.03898.x

Degens H, Gayan-Ramirez G, van Hees HWH (2015) Smoking-induced Skeletal Muscle Dysfunction. From Evidence to Mechanisms. Am J Respir Crit Care Med 191(6):620–625. doi: 10.1164/rccm.201410-1830pp

Wang H, Sun X (2005) Desensitized nicotinic receptors in brain. Brain Res Rev 48:420–437. doi: 10.1016/j.brainresrev.2004.09.003

Wang L, McComb JG, Weiss MH, McDonough AA, Zlokovic BV (1994) Nicotine downregulates 2 isoform of Na,K-ATPase at the blood-brain barrier and brain in rats. Biochem Biophys Res Commun 199:1422–1427. doi: 10.1006/bbrc.1994.1389

Bao H, Sun H, Xiao Y, Zhang Y, Wang X, Xu X, Liu Z, Fang J, Li Z (2015) Functional interaction of nicotinic acetylcholine receptors and Na+/K+ ATPase from Locusta migratoria manilensis (Meyen). Sci Rep 5:8849. doi: 10.1038/srep08849

Zhu D, Xiong WC, Mei L (2006) Lipid rafts serve as a signaling platform for nicotinic acetylcholine receptor clustering. J Neurosci 26:4841–4851. doi: 10.1523/JNEUROSCI.2807-05.2006

Willmann R, Pun S, Stallmach L, Sadasivam G, Santos AF, Caroni P, Fuhrer C (2006) Cholesterol and lipid microdomains stabilize the postsynapse at the neuromuscular junction. EMBO J 25:4050–4060. doi: 10.1038/sj.emboj.7601288

Brannigan G, LeBard DN, Henin J, Eckenhoff RG, Klein ML (2010) Multiple binding sites for the general anesthetic isoflurane identified in the nicotinic acetylcholine receptor transmembrane domain. Proc Natl Acad Sci USA 107(32):14122–14127. doi: 10.1073/pnas.1008534107

Haviv H, Habeck M, Kanai R, Toyoshima C, Karlish SJ (2013) Neutral phospholipids stimulate Na,K-ATPase activity: a specific lipid-protein interaction. J Biol Chem 288:10073–10081. doi: 10.1074/jbc.M112.446997

Habeck M, Kapri-Pardes E, Sharon M, Karlish SJ (2017) Specific phospholipid binding to Na,K-ATPase at two distinct sites. Proc Natl Acad Sci USA 114(11):2904–2909. doi: 10.1073/pnas.1620799114

Zhang J, Li X, Yu H, Larre I, Dube PR, Kennedy DJ, Tang WHW, Westfall K, Pierre SV, Xie Z, Chen Y (2020) Regulation of Na/K-ATPase expression by cholesterol: isoform specificity and the molecular mechanism. Am J Physiol Cell. Physiol 319:C1107–C1119. doi: 10.1152/ajpcell.00083.2020

Chen Y, Li X, Ye Q, Tian J, Jing R, Xie Z (2011) Regulation of 1 Na/K-ATPase expression by cholesterol. J Biol Chem 286:15517–15524. doi: 10.1074/jbc.M110.204396

Lifshitz Y, Petrovich E, Haviv H, Goldshleger R, Tal DM, Garty H, Karlish SJD (2007) Purification of the human a2 isoform of Na,K-ATPase expressed in Pichia pastoris. Stabilization by lipids and FXYD1. Biochemistry 46:14937–14950. doi: 10.1021/bi701812c

Kapri-Pardes E, Katz A, Haviv H, Mahmmoud Y, Ilan M, Khalfin-Penigel I, Carmeli S, Yarden O, Karlish SJD (2011) Stabilization of the a2 isoform of Na,K-ATPase by mutations in a phospholipid binding pocket. J Biol Chem 286:42888–42899. doi: 10.1074/jbc.M111.293852

Kravtsova VV, Petrov AM, Vasiliev AN, Zefirov AL, Krivoi II (2015) Role of cholesterol in the maintenance of endplate electrogenesis in rat diaphragm. Bull Exp Biol Med 158:298–300. doi: 10.1007/s10517-015-2745-8

Boon H, Kostovski E, Pirkmajer S, Song M, Lubarski I, Iversen PO, Hjeltnes N, Widegren U, Chibalin AV (2012) Influence of chronic and acute spinal cord injury on skeletal muscle Na+-K+-ATPase and phospholemman expression in humans. Am J Physiol Endocrinol Metab 302:E864–E871. doi: Org/10.1152/ajpendo.00625.2011

Perry BD, Levinger P, Morris HG, Petersen AC, Garnham AP, Levinger I, McKenna MJ (2015) The effects of knee injury on skeletal muscle function, Na+,K+-ATPase content, and isoform abundance. Physiol Rep 3:e12294. doi: 10.14814/phy2.12294

Kravtsova VV, Timonina NA, Zakir’yanova GF, Sokolova AV, Mikhailov VM, Zefirov AL, Krivoi II (2018) The Structural and Functional Characteristics of the Motor End Plates of Dysferlin-Deficient Mice. Neurochem J 12:305–310. doi: 10.1134/S1819712418040049

Kravtsova VV, Bouzinova EV, Machkov VV, Timonina NA, Zakyrjanova GF, Zefirov AL, Krivoi II (2019) Abnormal membrane localization of 2 isoform of Na,K-ATPase in m. soleus of dysferlin-deficient mice. Bull Exp Biol Med 166:593–597. doi: 10.1007/s10517-019-04398-z

Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF-1 and MAFbx/Atrogin-1. Am J Physiol Endocrinol Metab 307:E469–E484. doi: 10.1152/ajpendo.00204.2014

Vilchinskaya NA, Mochalova EP, Nemirovskaya TL, Mirzoev TM, Turtikova OV, Shenkman BS (2017) Rapid decline in MyHC I(β) mRNA expression in rat soleus during hindlimb unloading is associated with AMPK dephosphorylation. J Physiol 595:7123–7134. doi: 10.1113/JP275184

Gorza L, SorgeM, Seclì L, Brancaccio M (2021) Master Regulators of Muscle Atrophy: Role of Costamere Components. Cells 10:61. doi: org/10.3390/cells10010061

Kravtsova VV, Matchkov VV, Bouzinova EV, Vasiliev AN, Razgovorova IA, Heiny JA, Krivoi II (2015) Isoform-specific Na,K-ATPase alterations precede disuse-induced atrophy of rat soleus muscle. Biomed Res Int 720172. doi: 10.1155/2015/720172

Bryndina IG, Shalagina MN, Protopopov VA, Sekunov AV, Zefirov AL, Zakirjanova GF, Petrov AM (2021) Early Lipid Raft-Related Changes: Interplay between Unilateral Denervation and Hindlimb Suspension. Int J Mol Sci 22: 2239. doi: 10.3390/ijms22052239

Rudolf R, Khan MM, Labeit S, Deschenes MR (2014) Degeneration of neuromuscular junction in age and dystrophy. Front Aging Neurosci 6:99. doi: 10.3389/fnagi.2014.00099

Tintignac LA, Brenner HR, Rüegg MA (2015) Mechanisms regulating neuromuscular junction development and function and causes of muscle wasting. Physiol Rev 95:809–852. doi: 10.1152/physrev.00033.2014

Slater CR (2020) ‘Fragmentation’ of NMJs: a sign of degeneration or regeneration? A long journey with many junctions. Neuroscience 439:28–40. doi: 10.1016/j.neuroscience.2019.05.017

Chibalin AV, Benziane B, Zakyrjanova GF, Kravtsova VV, Krivoi II (2018) Early endplate remodeling and skeletal muscle signaling events following rat hindlimb suspension. J Cell Physiol 233:6329–6336. doi: 10.1002/jcp.26594

Pirkmajer S, Petric M, Chibalin AV (2021) The role of AMPK in regulation of Na+,K+-ATPase in skeletal muscle: does the gauge always plug the sink? J Muscle Res Cell Motil 42(1):77–97. doi: 10.1007/s10974-020-09594-3

Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, Reischl M, Canepari M, Loefler S, Kern H, Blaauw B, Friguet B, Bottinelli R, Rudolf R, Sandri M (2014) Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 8:1509–1521. doi: 10.1016/j.celrep.2014.07.061

Cervero C, Montull N, Tarabal O, Piedrafita L, Esquerda JE, Calderó J (2016) Chronic treatment with the AMPK agonist AICAR prevents skeletal muscle pathology but fails to improve clinical outcome in a mouse model of severe spinal muscular atrophy. Neurotherapeutics 13:198–216. doi: 10.1007/s13311-015-0399-x

Dial AG, Ng SY, Manta A, Ljubicic V (2018) The Role of AMPK in Neuromuscular Biology and Disease. Trends Endocrinol Metab 29:300–312. doi: 10.1016/j.tem.2018.02.010

Ambery AG, Tackett L, Penque BA, Brozinick JT, Elmendorf JS (2017) Exercise training prevents skeletal muscle plasma membrane cholesterol accumulation, cortical actin filament loss, and insulin resistance in C57BL/6J mice fed a western-style high-fat diet. Physiol Rep 5:e13363. doi: 10.14814/phy2.13363

Kravtsova VV, Vilchinskaya NA, Rozlomii VL, Shenkman BS, Krivoi II (2019) Low Ouabain Doses and AMP-Activated Protein Kinase as Factors Supporting Electrogenesis in Skeletal Muscle. Biochemistry (Moscow) 84:1085–1092.doi: org/10.1134/S0006297919090116

Juel C (2016) Nitric oxide and Na,K-ATPase activity in rat skeletal muscle. Acta Physiol (Oxf) 216(4):447–453. doi: 10.1111/apha.12617

Vitadello M, Sorge M, Percivalle E, Germinario E, Danieli-Betto D, Turco E, Tarone G, Brancaccio M, Gorza L (2020) Loss of melusin is a novel, neuronal NO synthase/FoxO3-independent master switch of unloading-induced muscle atrophy. J Cachexia Sarcopenia Muscle 11:802–819. doi: 10.1002/jcsm.12546

Sharlo KA, Paramonova II, Lvova ID, Mochalova EP, Kalashnikov VE, Vilchinskaya NA, Tyganov SA, Konstantinova TS, Shevchenko TF, Kalamkarov GR, Shenkman BS (2021) Plantar Mechanical Stimulation Maintains Slow Myosin Expression in Disused Rat Soleus Muscle via NO-Dependent Signaling. Int J Mol Sci 22:1372. doi: 10.3390/ijms22031372

Zhao C, Yu Y, Zhang Y, Shen J, Jiang L, Sheng G, Zhang W, Xu L, Jiang K, Mao S, Jiang P, Gao F (2019) β-Catenin Controls the Electrophysiologic Properties of Skeletal Muscle Cells by Regulating the 2 Isoform of Na+/K+-ATPase. Front Neurosci 13:831. doi: 10.3389/fnins.2019.00831

Doris PA, Bagrov AY (1998) Endogenous sodium pump inhibitors and blood pressure regulation: an update on recent progress. Proc Soc Exp Biol Med 218:156–167. doi: 10.3181/00379727-218-44283

Blaustein MP, Golovina VA (2001) Structural complexity and functional diversity of endoplasmic reticulum Ca2+ stores. Trends Neurosci 24:602–608. doi: 10.1016/S0166-2236(00)01891-9

Sacchetto R, Margreth A, Pelosi M, Carafoli E (1996) Colocalization of the dihydropyridine receptor, the plasma-membrane calcium ATPase isoform 1 and the sodium/calcium exchanger to the junctional membrane domain of transverse tubules of rabbit skeletal muscle. Eur J Biochem 237:483–488.

Altamirano F, Eltit JM, Robin G, Linares N, Ding X, Pessah IN, Allen PD, López JR (2014) Ca2+ influx via the Na+/Ca2+ exchanger is enhanced in malignant hyperthermia skeletal muscle. J Biol Chem 289:19180–19190. doi: 10.1074/jbc.M114.550764

Gao J, Wymore RS, Wang Y, Gaudette GR, Krukenkamp IB, Cohen IS, Mathias RT (2002) Isoform-specific stimulation of cardiac Na/K pumps by nanomolar concentrations of glycosides. J Gen Physiol 119:297–312. doi: 10.1085/jgp.20028501

Holthouser KA, Mandal A, Merchant ML, Schelling JR, Delamere NA, Valdes RR Jr, Tyagi SC, Lederer ED, Khundmiri SJ (2010) Ouabain stimulates Na-K-ATPase through a sodium/hydrogen exchanger-1 (NHE-1)-dependent mechanism in human kidney proximal tubule cells. Am J Physiol Renal Physiol 299:F77–F90. doi: 10.1152/ajprenal.00581.2009

Ketchem CJ, Conner CD, Murray RD, DuPlessis M, Lederer ED, Wilkey D, Merchant M, Khundmiri SJ (2016) Low dose ouabain stimulates Na-K ATPase α1 subunit association with angiotensin II type 1 receptor in renal proximal tubule cells. Biochim Biophys Acta 1863:2624–2636. doi: 10.1016/j.bbamcr.2016.07.008

Tverskoi AM, Sidorenko SV, Klimanova EA, Akimova OA, Smolyaninova LV, Lopina OD, Orlov SN (2016) Effects of ouabain on proliferation of human endothelial cells correlate with Na+,K+-ATPase activity and intracellular ratio of Na+ and K+. Biochemistry (Moscow) 81:876–883. doi: 10.1134/S0006297916080083

Orlov SN, Klimanova EA, Tverskoi AM, Vladychenskaya EA, Smolyaninova LV, Lopina OD (2017) Na+i,K+i-Dependent and -Independent Signaling Triggered by Cardiotonic Steroids: Facts and Artifacts. Molecules 22:635. doi: 10.3390/molecules22040635

Dobretsov M, Stimers JR (2005) Neuronal function and alpha3 isoform of the Na/K–ATPase. Front Biosci 10:2373–2396. doi: 10.2741/1704

Khalaf FK, Dube P, Mohamed A, Tian J, Malhotra D, Haller ST, Kennedy DJ (2018) Cardiotonic steroids and the sodium trade balance: new insights into trade-off mechanisms mediated by the Na+/K+-ATPase. Int J Mol Sci 19:2576. doi: 10.3390/ijms19092576

Bauer N, Müller-Ehmsen J, Krämer U, Hambarchian N, Zobel C, Schwinger RH, Neu H, Kirch U, Grünbaum EG, Schoner W (2005) Ouabain-like compound changes rapidly on physical exercise in humans and dogs: Effects of β-blockade and angiotensin-converting enzyme inhibition. Hypertension 45:1024–1028. doi: 10.1161/01.HYP.0000165024.47728.f7

Hamlyn JM, Manunta P (2015) Endogenous cardiotonic steroids in kidney failure: A review and an hypothesis. Adv Chronic Kidney Dis 22:232–244. doi: 10.1053/j.ackd.2014.12.005

Lichtstein D, Ilani A, Rosen H, Horesh N, Singh SV, Buzaglo N, Hodes A (2018) Na+,K+-ATPase Signaling and Bipolar Disorder. Int J Mol Sci 19:2314. doi: 10.3390/ijms19082314

Markov AG, Fedorova AA, Kravtsova VV, Bikmurzina AE, Okorokova LS, Matchkov VV, Cornelius V, Amasheh S, Krivoi1 II (2020) Circulating Ouabain Modulates Expression of Claudins in Rat Intestine and Cerebral Blood Vessels. Int J Mol Sci 21:5067. doi:10.3390/ijms21145067

Agalakova NI, Kolodkin NI, Adair CD, Trashkov AP, Bagrov AY (2021) Preeclampsia: Cardiotonic Steroids, Fibrosis, Fli1 and Hint to Carcinogenesis. Int J Mol Sci 22:1941. doi: 10.3390/ijms22041941

Shelkovnikova TA, Peters OM, Deykin AV, Connor-Robson N, Robinson H, Ustyugov AA, Bachurin SO, Ermolkevich TG, Goldman IL, Sadchikova ER, Kovrazhkina EA, Skvortsova VI, Ling SC, Da Cruz S, Parone PA, Buchman VL, Ninkina NN (2013) Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice. J Biol Chem 288:25266–25274. doi: 10.1074/jbc.M113.492017

Bogdanova A, Petrushanko IY, Hernansanz-Agustin P, Martínez-Ruiz A (2016) “Oxygen Sensing” by Na,K-ATPase: These Miraculous Thiols. Front Physiol 7:314. doi:10.3389/fphys.2016.00314

Chuang C-C, Zhou T, Olfert IM, Zuo L (2018) Hypoxic Preconditioning Attenuates Reoxygenation-Induced Skeletal Muscle Dysfunction in Aged Pulmonary TNF- Overexpressing Mice. Front Physiol 9:1720. doi: 10.3389/fphys.2018.01720

Vyskocil F, Di Gregorio F, Gorio A (1985) The facilitating effect of gangliosides on the electrogenic (Na+/K+) pump and on the resistance of the membrane potential to hypoxia in neuromuscular preparation. Pflugers Arch 403:1–6. doi: 10.1007/BF00583273

De Angelis C, Haupert GT Jr. (1998) Hypoxia triggers release of an endogenous inhibitor of Na+-K+-ATPase from midbrain and adrenal. Am J Physiol 274:F182–F188. doi:10.1152/ajprenal.1998.274.1.F182

Lewis P, O’Halloran KD (2016) Diaphragm Muscle Adaptation to Sustained Hypoxia: Lessons from Animal Models with Relevance to High Altitude and Chronic Respiratory Diseases. Front Physiol 7:623. doi: 10.3389/fphys.2016.00623

Iannello S, Milazzo P, Belfiore F (2007) Animal and human tissue Na,K-ATPase in normal and insulin-resistant states: regulation, behaviour and interpretative hypothesis on NEFA effects. Obes Rev 8:231–251. doi: 10.1111/j.1467-789X.2006.00276.x

Kawakami K, Onaka T, Iwase M, Homma I, Ikeda K (2005) Hyperphagia and obesity in Na,K-ATPase alpha2 subunit-defective mice. Obes Res 13:1661–1671. doi: 10.1038/oby.2005.204