МЕЗЕНХИМАЛЬНЫЕ СТВОЛОВЫЕ КЛЕТКИ И АКТИВАЦИЯ РЕПАРАТИВНЫХ ПРОЦЕССОВ В МОЗГЕ И СЕТЧАТКЕ
PDF

Ключевые слова

сетчатка глаза
подкорковые зрительные центры
энуклеация глаза
дегенеративный процесс
стволовые клетки

Как цитировать

Кульчицкий, В. А., Замаро, А. С., Шанько, Ю. Г., & Рубахова, В. М. (2021). МЕЗЕНХИМАЛЬНЫЕ СТВОЛОВЫЕ КЛЕТКИ И АКТИВАЦИЯ РЕПАРАТИВНЫХ ПРОЦЕССОВ В МОЗГЕ И СЕТЧАТКЕ. Российский физиологический журнал им. И. М. Сеченова, 107(10), 1250–1263. https://doi.org/10.31857/S0869813921100058

Аннотация

C целью моделирования процессов апоптоза в центральной нервной системе и сетчатке глаза проведена энуклеация одного глазного яблока у крыс самцов линии Вистар (n = 10) в возрасте 10 - 12 недель. Одновременно в одной серии опытов (n = 5) ввели парабульбарно на стороне интактного глаза 100 000 мезенхимальных стволовых клеток (МСК), меченных PKH67, в 100 мкл буферного раствора. В другой серии опытов на крысах (n = 5) непосредственно после энуклеации с одной стороны глаза осуществили интраназальное введение в верхнюю часть полости носа 100 000 МСК, окрашенных PKH67, в 100 мкл буферного раствора. На третьи сутки после энуклеации животных декапитировали и готовили срезы головного мозга и сетчатки глаза. Установили распределение флуоресцирующих МСК в структурах четверохолмия среднего мозга, в латеральном коленчатом теле промежуточного мозга и в сетчатке сохраненного глаза в обеих сериях опытов. Заключили, что интраназальная периневральная имплантация МСК перспективна в качестве альтернативного метода доставки МСК в сетчатку глаза пациентов с признаками дегенеративных процессов в этой структуре глаза.

https://doi.org/10.31857/S0869813921100058
PDF

Литература

Magharious MM, D'Onofrio PM, Koeberle PD (2011) Optic Nerve Transection: A Model of Adult Neuron Apoptosis in the Central Nervous System. J Vis Exp 51: 2241. https://doi: 10.3791/2241

Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng CY, Wong TY (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob Health 2: 106–116. https://doi: 10.1016/S2214-109X(13)70145-1

Weiss JN, Levy S (2020) Stem Cell Ophthalmology Treatment Study (SCOTS): Bone Marrow-Derived Stem Cells in the Treatment of Age-Related Macular Degeneration. Medicines (Basel) 7(4): 16. https://doi: 10.3390/medicines7040016

Akyol E, Lotery A (2020) Gene, Cell and Antibody-Based Therapies for the Treatment of Age-Related Macular Degeneration. Biologics 14: 83–94. https://doi: 10.2147/BTT.S252581

Levine ES, Crozier RA, Black IB, Plummer MR (1998) Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc Natl Acad Sci USA 95: 10235–10239. https://doi: 10.1073/pnas.95.17.10235

Wagenaar N, de Theije C, de Vries L, Groenendaal F, Benders MJNL, Nijboer CHA (2018) Promoting neuroregeneration after perinatal arterial ischemic stroke: neurotrophic factors and mesenchymal stem cells. Pediatr Res 83: 372–384. https://doi.org/10.1038/pr.2017.243

Shao A, Tu S, Lu J, Zhang J (2019) Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem Cell Res Ther 10 (1): 238. https://doi:10.1186/s13287-019-1357-z

Kulchitsky VA, Shanko YG, Molchanov PG, Cherehkevich SN, Chotianovich MO, Denisov AA, Pashkevich SG, Strizhak IV, Andrievskaya MV, Rodich AV, Pitlik TN, Bulay PM (2012) The direction of stem cells movement into the brain depends on the areas of their injection into peripheral parts of the nervous system. Biological Motility: Fundamental and Applied Science. Pushchino: Foton-Vek: 99–101. https://docplayer.net/129455540-Biological-motility-fundamental-and-applied-science.html

Davis BM, Crawley L, Pahlitzsch M, Javaid F, Cordeiro MF (2016) Glaucoma: the retina and beyond. Acta Neuropathol 132(6): 807–826. https://doi: 10.1007/s00401-016-1609-2

Repérant J, Médina M, Ward R, Miceli D, Kenigfest NB, Rio JP, Vesselkin NP (2007) The evolution of the centrifugal visual system of vertebrates. A cladistic analysis and new hypotheses. Brain Res Rev 53(1): 161–197. https://doi: 10.1016/j.brainresrev.2006.08.004

Behrens U, Wagner H-J (2004) Terminal nerve and vision. Microsc Res Tech 65(1-2): 25–32. https://doi: 10.1002/jemt.20108

Ji JF, He BP, Dheen ST, Tay SSW. (2004) Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22(3): 415–427. https://doi: 10.1634/stemcells.22-3-415

Kaneko N, Sawada M, Sawamoto K (2017) Mechanisms of neuronal migration in the adult brain. J Neurochem 141(6): 835–847. https://doi: 10.1111/jnc.14002

Hayashi Y, Jinnou H, Sawamoto K, Hitoshi S (2018) Adult neurogenesis and its role in brain injury and psychiatric diseases. J Neurochem 147(5): 584–594. https://doi: 10.1111/jnc.14557

Li Q, Siri T, Bressan C, de Koninck Y, Saghatelyan A (2020) Developmental Potential and Plasticity of Olfactory Epithelium Stem Cells Revealed by Heterotopic Grafting in the Adult Brain. Stem Cell Reports 14(4): 692–702. https://doi: 10.1016/j.stemcr.2020.03.008

Ferri ALM, Bersano A, Lisini D, Boncoraglio G, Frigerio S, Parati E (2016) Mesenchymal Stem Cells for Ischemic Stroke: Progress and Possibilities. Curr Med Chem 23(16): 1598–1608. https://doi: 10.2174/0929867323666160222113702

Detante O, Rome C, Papassin J (2017) How to use stem cells for repair in stroke patients. Rev Neurol (Paris) 173(9): 572–576. https://doi: 10.1016/j.neurol.2017.09.003

Levy ML, Crawford JR, Dib N, Verkh L, Tankovich N, Cramer SC (2019) Phase I/II Study of Safety and Preliminary Efficacy of Intravenous Allogeneic Mesenchymal Stem Cells in Chronic Stroke. Stroke 50(10): 2835–2841. https://doi: 10.1161/STROKEAHA.119.026318

Mead B, Berry M, Logan A, Scott RA, Leadbeater W, Scheven BA (2015) Stem cell treatment of degenerative eye disease. Stem Cell Res 14(3): 243257. https://doi: 10.1016/j.scr.2015.02.003

West SK (2000) Looking forward to 20/20: a focus on the epidemiology of eye diseases. Epidemiol Rev 22(1): 64–70. https://doi: 10.1093/oxfordjournals.epirev.a018025

Camelo S, Latil M, Veillet S, Dilda PJ, Lafont R (2020) Beyond AREDS Formulations, What Is Next for Intermediate Age-Related Macular Degeneration (iAMD) Treatment? Potential Benefits of Antioxidant and Anti-inflammatory Apocarotenoids as Neuroprotectors. Oxid Med Cell Longev 2020: 4984927. https://doi: 10.1155/2020/4984927

Li HY, Ruan YW, Ren CR, Cui Q, So KF (2014) Mechanisms of secondary degeneration after partial optic nerve transection. Neural Regen Res 9(6): 565–574. https://doi: 10.4103/1673-5374.130093

Guedes ME, Almeida AC, Patricio MS, Costa JM (2011) Acquired retrograde transsynaptic degeneration. BMJ Case Rep 2011:bcr0820114653. https://doi: 10.1136/bcr.08.2011.4653

Gennarelli TA, Thibault LE, Tipperman R, Tomei G, Sergot R, Brown M, Maxwell WL, Graham DI, Adams JH, Irvine A, Gennarelli LM, Duhaime AC, Boock R, Greenberg J (1989) Axonal injury in the optic nerve: a model simulating diffuse axonal injury in the brain. J Neurosurg 71(2): 244–253. https://doi: 10.3171/jns.1989.71.2.0244

Weishaupt JH, Bahr M (2001) Degeneration of axotomized retinal ganglion cells as a model for neuronal apoptosis in the central nervous system - molecular death and survival pathways. Restor Neurol Neurosci 19(1-2): 19–27. https://pubmed.ncbi.nlm.nih.gov/12082226/

Gokoffski KK, Peng M, Alas B, Lam P (2020) Neuro-protection and neuro-regeneration of the optic nerve: recent advances and future directions. Curr Opin Neurol 33(1): 93–105. https://doi: 10.1097/WCO.0000000000000777

Savvaki M, Kafetzis G, Kaplanis S-I, Ktena N, Theodorakis K, Karagogeos D (2021) Neuronal, but not glial Contactin 2, negatively regulates axon regeneration in the injured adult optic nerve. Eur J Neurosci 53(6): 1705-1721. https://doi: 10.1111/ejn.15121

Silva-Junior AJ, Mesentier-Louro LA, Nascimento-Dos-Santos G, Teixeira-Pinheiro LC, Vasquez JF, Chimeli-Ormonde L, Bodart-Santos V, Carvalho LRP, Santiago MF, Mendez-Otero R (2021) Human mesenchymal stem cell therapy promotes retinal ganglion cell survival and target reconnection after optic nerve crush in adult rats. Stem Cell Res Ther 12(1): 69. https://doi: 10.1186/s13287-020-02130-7

Wolter JR (1965) The centrifugal nerves in the human optic tract, chiasm, optic nerve, and retina. Trans Am Ophthalmol Soc 63: 678–707. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1310211/pdf/taos00036-0690.pdf