АМИГДАЛОФУГАЛЬНАЯ МОДУЛЯЦИЯ ВИСЦЕРАЛЬНОЙ НОЦИЦЕПТИВНОЙ ТРАНСМИССИИ В КАУДАЛЬНОЙ ВЕНТРОЛАТЕРАЛЬНОЙ РЕТИКУЛЯРНОЙ ОБЛАСТИ ПРОДОЛГОВАТОГО МОЗГА КРЫСЫ В НОРМЕ И ПРИ КИШЕЧНОМ ВОСПАЛЕНИИ
PDF

Ключевые слова

центральное ядро амигдалы
каудальная вентролатеральная ретикулярная область
кишечная ноцицепция
нейрональная активность
колит

Как цитировать

Любашина, О. А., Сиваченко, И. Б., & Бусыгина , И. И. (2021). АМИГДАЛОФУГАЛЬНАЯ МОДУЛЯЦИЯ ВИСЦЕРАЛЬНОЙ НОЦИЦЕПТИВНОЙ ТРАНСМИССИИ В КАУДАЛЬНОЙ ВЕНТРОЛАТЕРАЛЬНОЙ РЕТИКУЛЯРНОЙ ОБЛАСТИ ПРОДОЛГОВАТОГО МОЗГА КРЫСЫ В НОРМЕ И ПРИ КИШЕЧНОМ ВОСПАЛЕНИИ. Российский физиологический журнал им. И. М. Сеченова, 107(10), 1219–1234. https://doi.org/10.31857/S086981392110006X

Аннотация

Амигдала – одна из ключевых лимбических структур головного мозга, обеспечивающих центральную регуляцию функций автономной нервной системы. Центральному ядру амигдалы (ЦеА) отводят ведущую роль в эмоционально-аффективной оценке и модуляции поступающей в мозг висцеросенсорной информации, в том числе ноцицептивных сигналов от желудочно-кишечного тракта. Недавно полученные данные о нейропластических перестройках в ЦеА при воспалении толстой кишки указывают на возможность влияния периферической патологии на процессы амигдалярного контроля висцеральных болевых сигналов. Однако конкретные механизмы реализации этих процессов и изменения в них при органических заболеваниях остаются малоизученными, сдерживая разработку эффективных методов лечения абдоминальных болевых синдромов. Целью наших нейрофизиологических экспериментов на анестезированных крысах являлось определение нейрональных механизмов, обеспечивающих амигдалофугальную модуляцию висцеральной ноцицептивной трансмиссии на уровне продолговатого мозга, с оценкой особенностей их реализации при кишечном воспалении. Для этого у здоровых животных и крыс с экспериментальным колитом изучали эффекты электрической стимуляции ЦеА на импульсную активность нейронов бульбарной каудальной вентролатеральной ретикулярной области (кВЛРО), вызванную ноцицептивным колоректальным растяжением (КРР). Установлено, что ЦеА оказывает подавляющее действие на нейрональные процессы обработки кВЛРО ноцицептивных сигналов от толстой кишки, которое проявляется в уменьшении возбуждающих и ослаблении тормозных реакций бульбарных нейронов на КРР. Такой эффект может способствовать уменьшению восходящего болевого потока и инициируемых им рефлекторных реакций бульбарного уровня, т. е. является антиноцицептивным. Впервые показано, что колит сопровождается ослаблением угнетающих влияний ЦеА на возбуждающиеся в ответ на КРР клетки кВЛРО при сохранении амигдалофугального подавления тормозных ноцицептивных нейрональных реакций. Выявленные изменения могут приводить к усилению супраспинальной трансмиссии болевых сигналов от кишки, т. е. лежать в основе центральных механизмов патогенеза кишечной гипералгезии и хронической абдоминальной боли.

https://doi.org/10.31857/S086981392110006X
PDF

Литература

Любашина ОА, Пантелеев СС, Ноздрачев АД (2009) Амигдалофугальная модуляция вегетативных центров мозга. СПб Наука. [Ljubashina OA, Panteleev SS, Nozdrachev AD (2009) Amigdalofugal'naja moduljacija vegetativnyh centrov mozga [Amygdalofugal modulation of the autonomic centers of the brain]. SPb Nauka (In Russ)].

Benarroch EE (2012) Central autonomic control. In: Robertson D, Biaggioni I, Burnstock G, Low PA, Paton JFR (eds) Primer on the autonomic nervous system. 3rd ed. Elsevier Amsterdam. 9–12. https://doi.org/10.1016/B978-0-12-386525-0.00002-0

Pitkänen A (2000) Connectivity of the rat amygdaloid complex. In: Aggleton JP (ed) The amygdala: a functional analysis. Oxford Univer Press New York 31–115.

Browning KN, Travagli RA (2014) Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 4(4):1339–1368. https://doi.org/10.1002/cphy.c130055

Critchley HD, Harrison NA (2013) Visceral influences on brain and behavior. Neuron 77(4):624–638. https://doi.org/10.1016/j.neuron.2013.02.008

Meerveld BG, Johnson AC (2018) Mechanisms of stress-induced visceral pain. J Neurogastroenterol Motil 24(1):7–18. https://doi.org/10.5056/jnm17137

Bonaz B, Baciu M, Papillon E, Bost R, Gueddah N, Le Bas JF, Fournet J, Segebarth C (2002) Central processing of rectal pain in patients with irritable bowel syndrome: an fMRI study. Am J Gastroenterol 97(3):654–661. https://doi.org/10.1111/j.1572-0241.2002.05545.x

Rubio A, Pellissier S, Van Oudenhove L, Ly HG, Dupont P, Tack J, Dantzer C, Delon-Martin C, Bonaz B (2016) Brain responses to uncertainty about upcoming rectal discomfort in quiescent Crohn's disease - a fMRI study. Neurogastroenterol Motil 28(9):1419–1432. https://doi.org/10.1111/nmo.12844

Lazovic J, Wrzos HF, Yang QX, Collins CM, Smith MB, Norgren R, Matyas K, Ouyang A (2005) Regional activation in the rat brain during visceral stimulation detected by c-fos expression and fMRI. Neurogastroenterol Motil 17(4):548–556. https://doi.org/10.1111/j.1365-2982.2005.00655.x

Nakagawa T, Katsuya A, Tanimoto S, Yamamoto J, Yamauchi Y, Minami M, Satoh M (2003) Differential patterns of c-fos mRNA expression in the amygdaloid nuclei induced by chemical somatic and visceral noxious stimuli in rats. Neurosci Lett 344(3):197–200. https://doi.org/10.1016/S0304-3940(03)00465-8

Crock LW, Kolber BJ, Morgan CD, Sadler KE, Vogt SK, Bruchas MR, Gereau RW (2012) Central amygdala metabotropic glutamate receptor 5 in the modulation of visceral pain. J Neurosci 32(41):14217–14226. https://doi.org/10.1523/JNEUROSCI.1473-12.2012

Prusator DK, Greenwood-Van Meerveld B (2017) Amygdala-mediated mechanisms regulate visceral hypersensitivity in adult females following early life stress: importance of the glucocorticoid receptor and corticotropin-releasing factor. Pain 158(2):296–305. https://doi.org/10.1097/j.pain.0000000000000759

Su J, Tanaka Y, Muratsubaki T, Kano M, Kanazawa M, Fukudo S (2015) Injection of corticotropin-releasing hormone into the amygdala aggravates visceral nociception and induces noradrenaline release in rats. Neurogastroenterol Motil 27(1):30–39. https://doi.org/10.1111/nmo.12462

Johnson AC, Tran L, Greenwood-Van Meerveld B (2015) Knockdown of corticotropin-releasing factor in the central amygdala reverses persistent viscerosomatic hyperalgesia. Transl Psychiatry 5(3):e517. https://doi.org/10.1038/tp.2015.16

Taché Y (2015) Corticotrophin-releasing factor 1 activation in the central amygdale and visceral hyperalgesia. Neurogastroenterol Motil 27(1):1–6. https://doi.org/10.1111/nmo.12495

Bao CH, Liu P, Liu HR, Wu LY, Shi Y, Chen WF, Qin W, Lu Y, Zhang JY, Jin XM, Wang XM, Zhao JM, Liu XM, Tian J, Wu HG (2015) Alterations in brain grey matter structures in patients with crohn’s disease and their correlation with psychological distress. J Crohns Colitis 9(7):532–540. https://doi.org/10.1093/ecco-jcc/jjv057

Jarcho JM, Feier NA, Bert A, Labus JA, Lee M, Stains J, Ebrat B, Groman SM, Tillisch K, Brody AL, London ED, Mandelkern MA, Mayer EA (2013) Diminished neurokinin-1 receptor availability in patients with two forms of chronic visceral pain. Pain 154(7):987–996. https://doi.org/10.1016/j.pain.2013.02.026

Nair VA, Beniwal-Patel P, Mbah I, Young BM, Prabhakaran V, Saha S (2016) Structural imaging changes and behavioral correlates in patients with Crohn’s disease in remission. Front Hum Neurosci 10:460. https://doi.org/10.3389/fnhum.2016.00460

Agostini A, Filippini N, Benuzzi F, Bertani A, Scarcelli A, Leoni C, Farinelli V, Riso D, Tambasco R, Calabrese C, Rizzello F, Gionchetti P, Ercolani M, Nichelli P, Campieri M (2013) Functional magnetic resonance imaging study reveals differences in the habituation to psychological stress in patients with Crohn's disease versus healthy controls. J Behav Med 36(5):477–487. https://doi.org/10.1007/s10865-012-9441-1

Jain P, Hassan AM, Koyani CN, Mayerhofer R, Reichmann F, Farzi A, Schuligoi R, Malle E, Holzer P (2015) Behavioral and molecular processing of visceral pain in the brain of mice: impact of colitis and psychological stress. Front Behav Neurosci 9:177. https://doi.org/10.3389/fnbeh.2015.00177

Ji G, Li Z, Neugebauer V (2015) Reactive oxygen species mediate visceral pain-related amygdala plasticity and behaviors. Pain 156(5):825–836. https://doi.org/10.1097/j.pain.0000000000000120

Reichmann F, Painsipp E, Holzer P (2013) Environmental enrichment and gut inflammation modify stress-induced c-Fos expression in the mouse corticolimbic system. PLoS One 8(1):e54811. https://doi.org/10.1371/journal.pone.0054811

Greenwood-Van Meerveld B, Johnson AC, Schulkin J, Myers DA (2006) Long-term expression of corticotropin-releasing factor (CRF) in the paraventricular nucleus of the hypothalamus in response to an acute colonic inflammation. Brain Res 1071(1):91–96. https://doi.org/10.1016/j.brainres.2005.11.071

Reichmann F, Hassan A, Farzi A, Jain P, Schuligoi R, Holzer P (2015) Dextran sulfate sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression in the amygdala-hippocampus network of mice. Sci Rep 5:9970. https://doi.org/10.1038/srep09970

Moshiree B, Zhou Q, Price DD, Verne GN (2006) Central sensitisation in visceral pain disorders. Gut 55(7):905–958. https://doi.org/10.1136/gut.2005.078287

Siegel CA, MacDermott RP (2009) Is chronic pain an extraintestinal manifestation of IBD? Inflammatory Bowel Diseases 15(5):769–771. https://doi.org/10.1002/ibd.20844

Al-Chaer ED, Willis WD (2007) Neuroanatomy of visceral pain: pathways and processes. In: Pasricha PJ, Willis WD, Gebhart GF (eds) Chronic abdominal and visceral pain. Theory and practice. New York Informa Healthcare USA 33–44.

Cortelli P, Giannini G, Favoni V, Cevoli S, Pierangeli G (2013) Nociception and autonomic nervous system. Neurol Sci 34(Suppl 1):S41–S46. https://doi.org/10.1007/s10072-013-1391-z

Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. 4th ed London Acad Press.

Neugebauer V (2015) Amygdala pain mechanisms. Handb Exp Pharmacol 227:261–284. https://doi.org/10.1007/978-3-662-46450-2_13

Veinante P, Yalcin I, Barrot M (2013) The amygdala between sensation and affect: a role in pain. J Mol Psychiatr 1(1):9. https://doi.org/10.1186/2049-9256-1-9

Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96 (3):795–803. PMID: 2914642

Martins I, Tavares I (2017). Reticular formation and pain: the past and the future. Front Neuroanat 11:51. https://doi.org/10.3389/fnana.2017.00051

Tavares I, Lima D (2007) From neuroanatomy to gene therapy: searching for new ways to manipulate the supraspinal endogenous pain modulatory system. J Anat 211(2):261–268. https://doi.org/10.1111/j.1469-7580.2007.00759.x

Robbins MT, Uzzell TW, Aly S, Ness TJ (2005) Visceral nociceptive input to the area of the medullary lateral reticular nucleus ascends in the lateral spinal cord. Neurosci Lett 381(3):329–333. https://doi.org/10.1016/j.neulet.2005.02.046

Ness TJ, Follett KA, Piper J, Dirks BA (1998) Characterization of neurons in the area of the medullary lateral reticular nucleus responsive to noxious visceral and cutaneous stimuli. Brain Res 802(1–2):163–174. https://doi.org/10.1016/s0006-8993(98)00608-8

Panteleev SS, Martseva AА, Lyubashina OА (2015) The inhibitory effect of granisetron on ventrolateral medulla neuron responses to colorectal distension in rats. Eur J Pharmacol 749:49–55. https://doi.org/10.1016/j.ejphar.2015.01.002

Pinto-Ribeiro F, Ansah OB, Almeida A, Pertovaara A (2011) Response properties of nociceptive neurons in the caudal ventrolateral medulla (CVLM) in monoarthritic and healthy control rats: modulation of responses by the paraventricular nucleus of the hypothalamus (PVN). Brain Res Bull 86(1–2):82–90. https://doi.org/10.1016/j.brainresbull.2011.06.014

Lyubashina OA, Sivachenko IB, Panteleev SS, Nozdrachev AD (2016) Effects of 5-HT3 receptor blockade on visceral nociceptive neurons in the ventrolateral reticular field of the rat medulla oblongata. J Evol Biochem Phys 52(4):313–325. https://doi.org/10.1134/S0022093016040062

Lyubashina OA, Sivachenko IB, Busygina II, Panteleev SS (2018) Colitis-induced alterations in response properties of visceral nociceptive neurons in the rat caudal medulla oblongata and their modulation by 5-HT3 receptor blockade. Brain Res Bull 142:183–196. https://doi.org/10.1016/j.brainresbull.2018.07.013

Lyubashina OA, Sivachenko IB, Sokolov AY (2019) Differential responses of neurons in the rat caudal ventrolateral medulla to visceral and somatic noxious stimuli and their alterations in colitis. Brain Res Bull 152:299–310. https://doi.org/10.1016/j.brainresbull.2019.07.030

Wang G, Tang B, Traub RJ (2005) Differential processing of noxious colonic input by thoracolumbar and lumbosacral dorsal horn neurons in the rat. J Neurophysiol 94 (6):3788–3794. https://doi.org/10.1152/jn.00230.2005

Panteleev SS, Sivachenko IB, Lyubashina OA (2021) The buspirone-dependent abdominal pain transmission within the nucleus tractus solitarius in the rat. Neuroscience 452:326–334. https://doi.org/10.1016/j.neuroscience.2020.11.032

Brink TS, Mason P (2003) Raphe magnus neurons respond to noxious colorectal distension. J Neurophysiol 89(5):2506–2015. https://doi.org/10.1152/jn.00825.2002

Zhang HQ, Al-Chaer ED, Willis WD (2002) Effect of tactile inputs on thalamic responses to noxious colorectal distension in rat. J Neurophysiol 88(3):1185–1196. https://doi.org/10.1152/jn.2002.88.3.1185

Gao J, Wu X, Owyang C, Li Y (2006) Enhanced responses of the anterior cingulate cortex neurones to colonic distension in viscerally hypersensitive rats. J Physiol 570(Pt 1):169–183. https://doi.org/10.1113/jphysiol.2005.096073

Han F, Zhang YF, Li YQ (2003) Fos expression in tyrosine hydroxylase-containing neurons in rat brainstem after visceral noxious stimulation: an immunohistochemical study. World J Gastroenterol 9(5):1045–1050. https://doi.org/10.3748/wjg.v9.i5.1045

Wang L, Martínez V, Larauche M, Taché Y (2009) Proximal colon distension induces Fos expression in oxytocin-, vasopressin-, CRF- and catecholamines-containing neurons in rat brain. Brain Res 1247:79–91. https://doi.org/10.1016/j.brainres.2008.09.094

Almeida A, Leite-Almeida H, Tavares I (2006) Medullary control of nociceptive transmission: Reciprocal dual communication with the spinal cord. Drug Discov Today Dis Mech 3(3):305–312. https://doi.org/10.1016/j.ddmec.2006.09.001

Lyubashina OA, Sivachenko IB (2017) The 5-HT4 receptor-mediated inhibition of visceral nociceptive neurons in the rat caudal ventrolateral medulla. Neuroscience 359:277–288. https://doi.org/10.1016/j.neuroscience.2017.07.039

Panteleev SS, Sivachenko IB, Lyubashina OA (2018) The central effects of buspirone on abdominal pain in rats. Neurogastroenterol Motil 30(11):e13431. https://doi.org/10.1111/nmo.13431

Пантелеев СС, Сиваченко ИБ, Бусыгина ИИ, Любашина ОА (2020) Эффекты стимуляции инфралимбической коры на реакции нейронов каудальной вентролатеральной ретикулярной формации, вызванные ноцицептивным раздражением толстой кишки крысы. Рос физиол журн им ИМ Сеченова 106(12):1524–1540. [Panteleev SS, Sivachenko IB, Busygina II, Lyubashina OA (2020) Effects of the infralimbic cortex stimulation on the caudal ventrolateral reticular formation neuron responses to the nociceptive rat colon distension. Russ J Physiol 106(12):1524–1540. (In Russ)]. https://doi.org/10.31857/S0869813920120067

Campos RR, Carillo BA, Oliveira-Sales EB, Silva AM, Silva NF, Futuro Neto HA, Bergamaschi CT (2008). Role of the caudal pressor area in the regulation of sympathetic vasomotor tone. Braz J Med Biol Res 41(7):557–562. https://doi.org/10.1590/s0100-879x2008000700002

Han Y, Yu LC (2009) Involvement of oxytocin and its receptor in nociceptive modulation in the central nucleus of amygdala of rats. Neurosci Lett 454(1):101–104. https://doi.org/10.1016/j.neulet.2009.02.062

Ortiz JP, Heinricher MM, Selden NR (2007) Noradrenergic agonist administration into the central nucleus of the amygdala increases the tail-flick latency in lightly anesthetized rats. Neuroscience 148(3):737–743. https://doi.org/10.1016/j.neuroscience.2007.07.003

Cobos A, Lima D, Almeida A, Tavares I (2003) Brain afferents to the lateral caudal ventrolateral medulla: a retrograde and anterograde tracing study in the rat. Neuroscience 120(2):485–498. https://doi.org/10.1016/s0306-4522(03)00209-4

Saha S (2005) Role of the central nucleus of the amygdala in the control of blood pressure: descending pathways to medullary cardiovascular nuclei. Clin Exp Pharmacol Physiol 32(5–6):450–456. https://doi.org/10.1111/j.1440-1681.2005.04210.x

Jia HG, Rao ZR, Shi JW (1997) Evidence of gamma-aminobutyric acidergic control over the catecholaminergic projection from the medulla oblongata to the central nucleus of the amygdala. J Comp Neurol 381(3):262–281. https://doi.org/10.1002/(sici)1096-9861(19970512)381:3<262::aid-cne2>3.0.co;2-0

Pinto M, Lima D, Castro-Lopes J, Tavares I (2003) Noxious-evoked c-fos expression in brainstem neurons immunoreactive for GABAB, mu-opioid and NK-1 receptors. Eur J Neurosci 17(7):1393–1402. https://doi.org/10.1046/j.1460-9568.2003.02586.x

Gieroba ZJ, Li YW, Blessing WW (1992) Characteristics of caudal ventrolateral medullary neurons antidromically activated from rostral ventrolateral medulla in the rabbit. Brain Res 582(2):196–207. https://doi.org/10.1016/0006-8993(92)90133-t

Oshima N, Kumagai H, Iigaya K, Onimaru H, Kawai A, Nishida Y, Saruta T, Itoh H (2012) Baro-excited neurons in the caudal ventrolateral medulla (CVLM) recorded using the whole-cell patch-clamp technique. Hypertens Res 35(5):500–506. https://doi.org/10.1038/hr.2011.211

Chapp AD, Gui L, Huber MJ, Liu J, Larson RA, Zhu J, Carter JR, Chen QH (2014) Sympathoexcitation and pressor responses induced by ethanol in the central nucleus of amygdala involves activation of NMDA receptors in rats. Am J Physiol Heart Circ Physiol 307(5):H701–H709. https://doi.org/10.1152/ajpheart.00005.2014

Li JN, Sheets PL (2018) The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain. J Physiol 596(24):6289–6305. https://doi.org/10.1113/JP276935

Benarroch EE (2012) Periaqueductal gray: an interface for behavioral control. Neurology 78(3):210–217. https://doi.org/10.1212/WNL.0b013e31823fcdee

Samineni VK, Grajales-Reyes JG, Copits BA, O'Brien DE, Trigg SL, Gomez AM, Bruchas MR, Gereau RW 4th (2017) Divergent modulation of nociception by glutamatergic and GABAergic neuronal subpopulations in the periaqueductal gray. eNeuro 4(2):ENEURO.0129-16.2017. https://doi.org/10.1523/ENEURO.0129-16.2017

Ji G, Neugebauer V (2010) Reactive oxygen species are involved in group I mGluR-mediated facilitation of nociceptive processing in amygdala neurons. J Neurophysiol 104(1):218–229. https://doi.org/10.1152/jn.00223.2010

Gonçalves L, Dickenson AH (2012) Asymmetric time-dependent activation of right central amygdala neurones in rats with peripheral neuropathy and pregabalin modulation. Eur J Neurosci 36(9):3204–3213. https://doi.org/10.1111/j.1460-9568.2012.08235.x

Lyubashina OA, Itsev DE (2007) NO-Dependent mechanisms of amygdalofugal modulation of hypothalamic autonomic neurons. Neurosci Behav Physiol 37(9):895–901. https://doi.org/10.1007/s11055-007-0096-2

Callahan LB, Tschetter KE, Ronan PJ (2013) Inhibition of corticotropin releasing factor expression in the central nucleus of the amygdala attenuates stress-induced behavioral and endocrine responses. Front Neurosci 7:195. https://doi.org/10.3389/fnins.2013.00195

Marcilhac A, Siaud P (1997) Identification of projections from the central nucleus of the amygdala to the paraventricular nucleus of the hypothalamus which are immunoreactive for corticotrophin-releasing hormone in the rat. Exp Physiol 82(2):273–281. https://doi.org/10.1113/expphysiol.1997.sp004022

Bowman BR, Kumar NN, Hassan SF, McMullan S, Goodchild AK (2013) Brain sources of inhibitory input to the rat rostral ventrolateral medulla. J Comp Neurol 521(1):213–232. https://doi.org/10.1002/cne.23175

Geerling JC, Shin JW, Chimenti PC, Loewy AD (2010) Paraventricular hypothalamic nucleus: axonal projections to the brainstem. J Comp Neurol 518(9):1460–1499. https://doi.org/10.1002/cne.22283

Yang Z, Coote J (1999) The influence of the paraventricular nucleus on baroreceptor dependent caudal ventrolateral medullary neurones of the rat. Pflügers Arch 438(1):47–52. https://doi.org/10.1007/s004240050878