ВЛИЯНИЕ ОСТРОГО ПЛАВАТЕЛЬНОГО СТРЕССА НА ПОВЕДЕНЧЕСКИЕ И НЕЙРОХИМИЧЕСКИЕ ЭФФЕКТЫ ПРОИЗВОДНОГО ПИРАЗОЛО[C]ПИРИДИНА ГИЖ-72 И ДИАЗЕПАМА У МЫШЕЙ BALB/C И C57BL/6
PDF

Ключевые слова

стресс
BALB/c
C57BL/6
диазепам
ГИЖ-72
анксиолитические средства
моноамины

Как цитировать

Кудряшов, Н. В., Наплёкова , П. Л., Волкова, А. В., Касабов, К. А., Наркевич, В. Б., Кудрин, В. С., Калинина, Т. С., & Воронина, Т. А. (2021). ВЛИЯНИЕ ОСТРОГО ПЛАВАТЕЛЬНОГО СТРЕССА НА ПОВЕДЕНЧЕСКИЕ И НЕЙРОХИМИЧЕСКИЕ ЭФФЕКТЫ ПРОИЗВОДНОГО ПИРАЗОЛО[C]ПИРИДИНА ГИЖ-72 И ДИАЗЕПАМА У МЫШЕЙ BALB/C И C57BL/6. Российский физиологический журнал им. И. М. Сеченова, 107(8), 973–995. https://doi.org/10.31857/S0869813921080082

Аннотация

Изучено влияние острого плавательного стресса (ОПС) на поведенческие и нейрохимические эффекты производного пиразоло[c]пиридина ГИЖ-72 (20 мг/кг, в/б) и диазепама (1 мг/кг, в/б). Установлено, что через 1 ч после ОПС происходило усиление тревожных реакций в тесте «открытое поле» у мышей линии BALB/c и в тесте «закапывание шариков» у мышей линии С57BL/6. Через 24 ч наблюдалось ослабление тревожных реакций мышей BALB/c и С57BL/6 в тесте «открытое поле» и С57BL/6 в тесте «закапывание шариков». Через 1 ч после ОПС происходило повышение уровня серотонина и снижение норадреналина в гипоталамусе мышей BALB/c и С57BL/6, а в префронтальной коре – повышение норадреналина, 3,4-диоксифенилуксусной кислоты и соотношения 3,4-диоксифенилуксусная кислота/дофамин у животных линии BALB/c. Эти изменения коррелировали с усилением тревожных реакций, а их ослабление под действием ГИЖ-72, диазепама или через 24 ч после ОПС совпадало с ослаблением тревожных реакций мышей. Диазепам и ГИЖ-72 ослабляли тревожные реакции мышей BALB/c и C57BL/6 в тестах «открытое поле» и «закапывание шариков» при отсутствии стресса. Через 1 ч после ОПС эффекты ГИЖ-72 сохранялись в тестах «открытое поле» и «закапывание шариков» у мышей BALB/c и С57BL/6, в то время как эффекты диазепама сохранились у С57BL/6 и усиливались у BALB/c в тесте «открытое поле». Через 24 ч эффекты ГИЖ-72 в тесте «открытое поле» усиливались у мышей BALB/c, но ослаблялись и сопровождались тенденцией к седативному эффекту у С57BL/6. Эффекты диазепама в «открытом поле» усиливались только у С57BL/6 и отсутствовали у BALB/c. Эффекты ГИЖ-72 и диазепама в тесте «закапывание шариков» через 24 ч после ОПС сохранялись у BALB/c, но не C57BL/6.

https://doi.org/10.31857/S0869813921080082
PDF

Литература

Biggio G, Concas A, Serra M, Salis M, Corda MG, Nurchi V, Crisponi C, Gessa GL (1984) Stress and beta-carbolines decrease the density of low affinity GABA binding sites; an effect reversed by diazepam. Brain Res 305:13-18. https://doi.org/10.1016/0006-8993(84)91114-4

File SE (1993) The interplay of learning and anxiety in the elevated plus-maze. Behav Brain Res 58:199-202. https://doi.org/10.1016/0166-4328(93)90103-w

McDonald BJ, Amato A, Connolly CN, Benke D, Moss SJ, Smart TG (1998) Adjacent phosphorylation sites on GABAA receptor beta subunits determine regulation by cAMP-dependent protein kinase. Nat Neurosci 1:23-28. https://doi.org/10.1038/223

Nusser Z (1999) A new approach to estimate the number, density and variability of receptors at central synapses. Eur J Neurosci 11:745-752. https://doi.org/10.1046/j.1460-9568.1999.00535.x

Purdy RH, Morrow AL, Moore PH, Jr., Paul SM (1991) Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A 88:4553-4557. https://doi.org/10.1073/pnas.88.10.4553

Park CH, Hitri A, Lukacs LG, Deutsch SI (1993) Swim stress selectively alters the specific binding of a benzodiazepine antagonist in mice. Pharmacol Biochem Behav 45:299-304. https://doi.org/10.1016/0091-3057(93)90242-l

Deutsch SI, Rosse RB, Huntzinger JA, Novitzki MR, Mastropaolo J (1990) Profound stress-induced alterations in flurazepam's antiseizure efficacy can be attenuated. Brain Res 520:272-276. https://doi.org/10.1016/0006-8993(90)91715-s

Briones-Aranda A, Rocha L, Picazo O (2005) Alterations in GABAergic function following forced swimming stress. Pharmacol Biochem Behav 80:463-470. https://doi.org/10.1016/j.pbb.2005.01.002

Vallee M, Rivera JD, Koob GF, Purdy RH, Fitzgerald RL (2000) Quantification of neurosteroids in rat plasma and brain following swim stress and allopregnanolone administration using negative chemical ionization gas chromatography/mass spectrometry. Anal Biochem 287:153-166. https://doi.org/10.1006/abio.2000.4841

Reddy DS, Rogawski MA (2002) Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA(A) receptor function and seizure susceptibility. J Neurosci 22:3795-3805. https://doi.org/20026274

Batarseh A, Papadopoulos V (2010) Regulation of translocator protein 18 kDa (TSPO) expression in health and disease states. Mol Cell Endocrinol 327:1-12. https://doi.org/10.1016/j.mce.2010.06.013

Середенин СБ (2003) Фармакологическая регуляция эмоционально-стрессовых реакций. Вестник Рос акад мед наук 35-37. [Seredenin SB (2003) Pharmacological regulation of emotional stress reactions. Vestn Ross Akad Med Nauk 35-37(In Russ)].

Seredenin SB, Nadorova AV, Kolik LG, Yarkova MA (2013) Effects of phenazepam on the behavior of C57BL/6 and BALB/c mice in the open field test after naloxone pretreatment. Bull Exp Biol Med 155:346-349. https://doi.org/10.1007/s10517-013-2150-0

Miura H, Naoi M, Nakahara D, Ohta T, Nagatsu T (1993) Changes in monoamine levels in mouse brain elicited by forced-swimming stress, and the protective effect of a new monoamine oxidase inhibitor, RS-8359. J Neural Transm Gen Sect 94:175-187. https://doi.org/10.1007/BF01277023

Sasaki K, Suzuki K, Ueno M, Takako K, Yoshizaki F (1998) Increase in monoamine levels caused by emotional stress in mice brain regions is attenuated by Saiko-ka-ryukotsu-borei-to. Methods Find Exp Clin Pharmacol 20:27-30. https://doi.org/10.1358/mf.1998.20.1.485628

Shanks N, Zalcman S, Zacharko RM, Anisman H (1991) Alterations of central norepinephrine, dopamine and serotonin in several strains of mice following acute stressor exposure. Pharmacol Biochem Behav 38:69-75. https://doi.org/10.1016/0091-3057(91)90591-o

Кудряшов НВ, Калинина ТС, Касабов КА, Шимширт АА, Волкова АВ, Жмуренко ЛА, Воронина ТА (2018) Роль метаболизма нейростероидов в антикомпульсивном эффекте производного пиразоло[c]пиридина - ГИЖ-72. Экспер и клин фармакол 81:7-11. [Kudryashov NV, Kalinina TS, Kasabov KA, Shimshirt AA, Volkova AV, Zhmurenko LA, Voronina TA (2018) The role of neurosteroids metabolism in anticompulsive effect of pyrazole[c]pyridine derivative GIZH-72. Eksper i Klin Farmakol 81:7-11(In Russ)].

Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327-336.

Калинина ТС, Шимширт АА, Кудряшов НВ, Воронина ТА, Середенин СБ (2014) Нейростероидогенез и ориентировочно-исследовательское поведение грызунов. Экспер и клин фармакол 77:3-7. [Kalinina TS, Shimshirt AA, Kudryashov NV, Voronina TA, Seredenin SB (2014) Neurosteroidogenesis and exploratory responses in rodents. Eksper i Klin Farmakol 77:3-7(In Russ)]. https://doi.org/10.30906/0869-2092-2014-77-2-3-7

Witkin JM (2008) Animal models of obsessive-compulsive disorder. Curr Protoc Neurosci Chapter 9:Unit 9 30. https://doi.org/10.1002/0471142301.ns0930s45

Anderzhanova EA, Bachli H, Buneeva OA, Narkevich VB, Medvedev AE, Thoeringer CK, Wotjak CT, Kudrin VS (2013) Strain differences in profiles of dopaminergic neurotransmission in the prefrontal cortex of the BALB/C vs. C57Bl/6 mice: consequences of stress and afobazole. Eur J Pharmacol 708:95-104. https://doi.org/10.1016/j.ejphar.2013.03.015

Garrett KM, Niekrasz I, Haque D, Parker KM, Seale TW (1998) Genotypic differences between C57BL/6 and A inbred mice in anxiolytic and sedative actions of diazepam. Behav Genet 28:125-136. https://doi.org/10.1023/a:1021424108213

Avital A, Richter-Levin G, Leschiner S, Spanier I, Veenman L, Weizman A, Gavish M (2001) Acute and repeated swim stress effects on peripheral benzodiazepine receptors in the rat hippocampus, adrenal, and kidney. Neuropsychopharmacology 25:669-678. https://doi.org/10.1016/S0893-133X(01)00286-X

Vanover KE (1997) Discriminative stimulus effects of the endogenous neuroactive steroid pregnanolone. Eur J Pharmacol 327:97-101. https://doi.org/10.1016/s0014-2999(97)89647-1

de Kloet ER, Molendijk ML (2016) Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism. Neural Plast 2016:6503162. https://doi.org/10.1155/2016/6503162

Shinohara R, Taniguchi M, Ehrlich AT, Yokogawa K, Deguchi Y, Cherasse Y, Lazarus M, Urade Y, Ogawa A, Kitaoka S, Sawa A, Narumiya S, Furuyashiki T (2018) Dopamine D1 receptor subtype mediates acute stress-induced dendritic growth in excitatory neurons of the medial prefrontal cortex and contributes to suppression of stress susceptibility in mice. Mol Psychiatry 23:1717-1730. https://doi.org/10.1038/mp.2017.177

Anderson EM, Gomez D, Caccamise A, McPhail D, Hearing M (2019) Chronic unpredictable stress promotes cell-specific plasticity in prefrontal cortex D1 and D2 pyramidal neurons. Neurobiol Stress 10:100152. https://doi.org/10.1016/j.ynstr.2019.100152

Mikkelsen JD, Soderman A, Kiss A, Mirza N (2005) Effects of benzodiazepines receptor agonists on the hypothalamic-pituitary-adrenocortical axis. Eur J Pharmacol 519:223-230. https://doi.org/10.1016/j.ejphar.2005.06.049

Belujon P, Grace AA (2015) Regulation of dopamine system responsivity and its adaptive and pathological response to stress. Proc Biol Sci 282 https://doi.org/10.1098/rspb.2014.2516

Ginovart N, Marcel D, Bezin L, Gagne C, Pujol JF, Weissmann D (1996) Tyrosine hydroxylase expression within Balb/C and C57black/6 mouse locus coeruleus. II. Quantitative study of the enzyme level. Brain Res 719:45-55. https://doi.org/10.1016/0006-8993(96)00075-3

Belzung C, El Hage W, Moindrot N, Griebel G (2001) Behavioral and neurochemical changes following predatory stress in mice. Neuropharmacology 41:400-408. https://doi.org/10.1016/s0028-3908(01)00072-7

Konstandi M, Johnson E, Lang MA, Malamas M, Marselos M (2000) Noradrenaline, dopamine, serotonin: different effects of psychological stress on brain biogenic amines in mice and rats. Pharmacol Res 41:341-346. https://doi.org/10.1006/phrs.1999.0597

Nadaoka I, Yasue M, Sami M, Kitagawa Y (2012) Oral administration of Cimicifuga racemosa extract affects immobilization stress-induced changes in murine cerebral monoamine metabolism. Biomed Res 33:133-137. https://doi.org/10.2220/biomedres.33.133

Rowland NE, Dunn AJ (1995) Effect of dexfenfluramine on metabolic and neurochemical measures in restraint-stressed ob/ob mice. Physiol Behav 58:749-754. https://doi.org/10.1016/0031-9384(95)00105-r

Takamura N, Nakagawa S, Masuda T, Boku S, Kato A, Song N, An Y, Kitaichi Y, Inoue T, Koyama T, Kusumi I (2014) The effect of dopamine on adult hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 50:116-124. https://doi.org/10.1016/j.pnpbp.2013.12.011

Kirby ED, Muroy SE, Sun WG, Covarrubias D, Leong MJ, Barchas LA, Kaufer D (2013) Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. Elife 2:e00362. https://doi.org/10.7554/eLife.00362

Gemmel M, Rayen I, Lotus T, van Donkelaar E, Steinbusch HW, De Lacalle S, Kokras N, Dalla C, Pawluski JL (2016) Developmental fluoxetine and prenatal stress effects on serotonin, dopamine, and synaptophysin density in the PFC and hippocampus of offspring at weaning. Dev Psychobiol 58:315-327. https://doi.org/10.1002/dev.21372

de Andrade JS, Cespedes IC, Abrao RO, Dos Santos TB, Diniz L, Britto LR, Spadari-Bratfisch RC, Ortolani D, Melo-Thomas L, da Silva RC, Viana MB (2013) Chronic unpredictable mild stress alters an anxiety-related defensive response, Fos immunoreactivity and hippocampal adult neurogenesis. Behav Brain Res 250:81-90. https://doi.org/10.1016/j.bbr.2013.04.031

Mineur YS, Belzung C, Crusio WE (2007) Functional implications of decreases in neurogenesis following chronic mild stress in mice. Neuroscience 150:251-259. https://doi.org/10.1016/j.neuroscience.2007.09.045

Alenina N, Klempin F (2015) The role of serotonin in adult hippocampal neurogenesis. Behav Brain Res 277:49-57. https://doi.org/10.1016/j.bbr.2014.07.038

Anacker C, Zunszain PA, Cattaneo A, Carvalho LA, Garabedian MJ, Thuret S, Price J, Pariante CM (2011) Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol Psychiatry 16:738-750. https://doi.org/10.1038/mp.2011.26

Kudryashov NV, Kalinina TS, Shimshirt AA, Volkova AV, Narkevich VB, Naplekova PL, Kasabov KA, Kudrin VS, Voronina TA, Fisenko VP (2020) The Behavioral and Neurochemical Aspects of the Interaction between Antidepressants and Unpredictable Chronic Mild Stress. Acta Naturae 12:63-72. https://doi.org/10.32607/actanaturae.10942

Kapitza IG, Kalinina TS, Nerobkova LN, Voronina TA, Klodt PM, Narkevich VB, Kudrin VS (2008) Relationship between the severity of hypokinesia induced by neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and neurochemical changes in brain structures of C57Bl/6 mice. Bull Exp Biol Med 146:52-55. https://doi.org/10.1007/s10517-008-0204-5

Zhao M, Momma S, Delfani K, Carlen M, Cassidy RM, Johansson CB, Brismar H, Shupliakov O, Frisen J, Janson AM (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A 100:7925-7930. https://doi.org/10.1073/pnas.1131955100

Shan X, Chi L, Bishop M, Luo C, Lien L, Zhang Z, Liu R (2006) Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease-like mice. Stem Cells 24:1280-1287. https://doi.org/10.1634/stemcells.2005-0487

Tagawa N, Sugimoto Y, Yamada J, Kobayashi Y (2006) Strain differences of neurosteroid levels in mouse brain. Steroids 71:776-784. https://doi.org/10.1016/j.steroids.2006.05.008

Miller WL, Auchus RJ (2019) The "backdoor pathway" of androgen synthesis in human male sexual development. PLoS Biol 17:e3000198. https://doi.org/10.1371/journal.pbio.3000198

Sanchez MG, Bourque M, Morissette M, Di Paolo T (2010) Steroids-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 16:e43-71. https://doi.org/10.1111/j.1755-5949.2010.00163.x

Schneier FR, Martinez D, Abi-Dargham A, Zea-Ponce Y, Simpson HB, Liebowitz MR, Laruelle M (2008) Striatal dopamine D(2) receptor availability in OCD with and without comorbid social anxiety disorder: preliminary findings. Depress Anxiety 25:1-7. https://doi.org/10.1002/da.20268

Zhang H, Wang B, Li K, Wang X, Li X, Zhu J, Zhao Q, Yang Y, Lv L, Zhang M, Zhang H (2019) Altered Functional Connectivity Between the Cerebellum and the Cortico-Striato-Thalamo-Cortical Circuit in Obsessive-Compulsive Disorder. Front Psychiatry 10:522. https://doi.org/10.3389/fpsyt.2019.00522

DiCarlo GE, Aguilar JI, Matthies HJ, Harrison FE, Bundschuh KE, West A, Hashemi P, Herborg F, Rickhag M, Chen H, Gether U, Wallace MT, Galli A (2019) Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors. J Clin Invest 129:3407-3419. https://doi.org/10.1172/JCI127411

Saadat KS, Elliott JM, Colado MI, Green AR (2006) The acute and long-term neurotoxic effects of MDMA on marble burying behaviour in mice. J Psychopharmacol 20:264-271. https://doi.org/10.1177/0269881106058022

Fujino K, Yoshitake T, Inoue O, Ibii N, Kehr J, Ishida J, Nohta H, Yamaguchi M (2002) Increased serotonin release in mice frontal cortex and hippocampus induced by acute physiological stressors. Neurosci Lett 320:91-95. https://doi.org/10.1016/s0304-3940(02)00029-0

Heisler LK, Pronchuk N, Nonogaki K, Zhou L, Raber J, Tung L, Yeo GS, O'Rahilly S, Colmers WF, Elmquist JK, Tecott LH (2007) Serotonin activates the hypothalamic-pituitary-adrenal axis via serotonin 2C receptor stimulation. J Neurosci 27:6956-6964. https://doi.org/10.1523/JNEUROSCI.2584-06.2007

Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI (1998) Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci 18:2697-2708.

Giros B, Wang YM, Suter S, McLeskey SB, Pifl C, Caron MG (1994) Delineation of discrete domains for substrate, cocaine, and tricyclic antidepressant interactions using chimeric dopamine-norepinephrine transporters. J Biol Chem 269:15985-15988.

Gu H, Wall SC, Rudnick G (1994) Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J Biol Chem 269:7124-7130.

Xing B, Li YC, Gao WJ (2016) Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex. Brain Res 1641:217-233. https://doi.org/10.1016/j.brainres.2016.01.005

Ranjbar-Slamloo Y, Fazlali Z (2019) Dopamine and Noradrenaline in the Brain; Overlapping or Dissociate Functions? Front Mol Neurosci 12:334. https://doi.org/10.3389/fnmol.2019.00334

Paschalis A, Churchill L, Marina N, Kasymov V, Gourine A, Ackland G (2009) beta1-Adrenoceptor distribution in the rat brain: an immunohistochemical study. Neurosci Lett 458:84-88. https://doi.org/10.1016/j.neulet.2009.04.023

Hara M, Fukui R, Hieda E, Kuroiwa M, Bateup HS, Kano T, Greengard P, Nishi A (2010) Role of adrenoceptors in the regulation of dopamine/DARPP-32 signaling in neostriatal neurons. J Neurochem 113:1046-1059. https://doi.org/10.1111/j.1471-4159.2010.06668.x

Nomura S, Bouhadana M, Morel C, Faure P, Cauli B, Lambolez B, Hepp R (2014) Noradrenalin and dopamine receptors both control cAMP-PKA signaling throughout the cerebral cortex. Front Cell Neurosci 8:247. https://doi.org/10.3389/fncel.2014.00247

Hayley S, Borowski T, Merali Z, Anisman H (2001) Central monoamine activity in genetically distinct strains of mice following a psychogenic stressor: effects of predator exposure. Brain Res 892:293-300. https://doi.org/10.1016/s0006-8993(00)03262-5

Кондаурова ЕМ, Антонов ЮВ, Баженова ЕЮ, Базовкина ДВ, Науменко ВС (2020) Эффекты острого стресса у мышей, различающихся чувствительностью 5-HT1A-рецепторов к хронической активации с помощью 8-OH-DPAT. Рос физиол журн им ИМ Сеченова 106(9): 1069-1084. [Kondaurova EM, Antonov YV, Bazhenova EY, Bazovkina DV, Naumenko VS (2020) Acute Stress Effects on Mice Differeding by Sensivity of 5-HT1A-Receptor to Chronic Activation with 8-OH-DPAT. Russ J Physiol 106(9): 1069–1084 (In Russ)]. https://doi.org/10.31857/S0869813920090010

Tajima T, Endo H, Suzuki Y, Ikari H, Gotoh M, Iguchi A (1996) Immobilization stress-induced increase of hippocampal acetylcholine and of plasma epinephrine, norepinephrine and glucose in rats. Brain Res 720:155-158. https://doi.org/10.1016/0006-8993(96)00046-7

Osborne DM, Pearson-Leary J, McNay EC (2015) The neuroenergetics of stress hormones in the hippocampus and implications for memory. Front Neurosci 9:164. https://doi.org/10.3389/fnins.2015.00164

Subbarao KV, Hertz L (1990) Effect of adrenergic agonists on glycogenolysis in primary cultures of astrocytes. Brain Res 536:220-226. https://doi.org/10.1016/0006-8993(90)90028-a

Gibbs ME, Hutchinson DS, Summers RJ (2008) Role of beta-adrenoceptors in memory consolidation: beta3-adrenoceptors act on glucose uptake and beta2-adrenoceptors on glycogenolysis. Neuropsychopharmacology 33:2384-2397. https://doi.org/10.1038/sj.npp.1301629

Irwin J, Ahluwalia P, Anisman H (1986) Sensitization of norepinephrine activity following acute and chronic footshock. Brain Res 379:98-103. https://doi.org/10.1016/0006-8993(86)90260-x

Pacak K, Palkovits M, Kopin IJ, Goldstein DS (1995) Stress-induced norepinephrine release in the hypothalamic paraventricular nucleus and pituitary-adrenocortical and sympathoadrenal activity: in vivo microdialysis studies. Front Neuroendocrinol 16:89-150. https://doi.org/10.1006/frne.1995.1004

Tanaka M, Yoshida M, Emoto H, Ishii H (2000) Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies. Eur J Pharmacol 405:397-406. https://doi.org/10.1016/s0014-2999(00)00569-0