ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ РЕГУЛЯТОРНОЙ ФУНКЦИИ ТРОПОМИОЗИНА ПРИ РАЗЛИЧНЫХ ВАРИАНТАХ НАСЛЕДСТВЕННОЙ МИОПАТИИ
PDF

Ключевые слова

наследственная миопатия
мутации гена тропомиозина
молекулярные механизмы регуляции мышечного сокращения
актин-миозиновое взаимодействие
терапевтические мишени
этиотропное лечение

Как цитировать

Карпичева, О. Е. (2021). ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ РЕГУЛЯТОРНОЙ ФУНКЦИИ ТРОПОМИОЗИНА ПРИ РАЗЛИЧНЫХ ВАРИАНТАХ НАСЛЕДСТВЕННОЙ МИОПАТИИ. Российский физиологический журнал им. И. М. Сеченова, 107(6-7), 785–809. https://doi.org/10.31857/S0869813921060054

Аннотация

Наследственные миопатии – это группа редких клинически и генетически гетерогенных заболеваний, которые объединены первичным поражением скелетных мышц и характеризуются медленно прогрессирующей мышечной слабостью и гипотонией, а также морфологическими изменениями в мышечной ткани. Спектр вариантов наследственных миопатий довольно широк, а признаки неоднородны, поэтому постановка диагноза часто затруднена. До сих пор не существует эффективной терапии миопатий – применяется лишь симптоматическое лечение, направленное на улучшение метаболизма и микроциркуляции крови в мышцах. Вместе с тем, многие из этих заболеваний существенно снижают качество и продолжительность жизни человека. Накопление знаний, необходимых для ранней и точной диагностики наследственных миопатий и для разработки подходов эффективного лечения заболеваний дисфункции мышечной ткани является одной из актуальных задач биологии и медицины. В самое последнее время появилась серия работ, в которых делается попытка охарактеризовать молекулярные механизмы возникновения и развития ряда миопатий, вызванных генными мутациями мышечных белков тропомиозина, тропонина, небулина, актина и некоторых других. Представляется крайне важным проанализировать опубликованные данные и на основании этого выделить критические изменения структурно-функциональных свойств белков мышечного волокна, которые можно использовать в качестве тестов для дифференциальной диагностики миопатий, и определить молекулярные мишени для терапевтического воздействия. Кроме того, одной из задач обзора является анализ и обобщение литературных и оригинальных, полученных методом поляризационной микрофлуориметрии, данных о молекулярных механизмах регуляции мышечного сокращения мутантными формами тропомиозина, появляющимися в мышечной ткани при нескольких скелетно-мышечных заболеваниях человека.

https://doi.org/10.31857/S0869813921060054
PDF

Литература

Matyushenko AM, Levitsky DI (2020) Molecular Mechanisms of Pathologies of Skeletal and Cardiac Muscles Caused by Point Mutations in the Tropomyosin Genes. Biochemistry (Mosc) 85(Suppl 1):S20-S33. https://doi.org/10.1134/S0006297920140023

Moraczewska J (2020) Thin filament dysfunctions caused by mutations in tropomyosin Tpm3.12 and Tpm1.1. J Muscle Res Cell Motil 41(1):39-53. https://doi.org/10.1007/s10974-019-09532-y

Jungbluth H, Treves S, Zorzato F, Sarkozy A, Ochala J, Sewry C, Phadke R, Gautel M, Muntoni F (2018) Congenital myopathies: disorders of excitation-contraction coupling and muscle contraction. Nat Rev Neurol 14:151–167. https://doi.org/10.1038/nrneurol.2017.191

Ravenscroft G, Bryson-Richardson RJ, Nowak KJ, Laing NG (2018) Recent advances in understanding congenital myopathies. F1000Res 7:F1000 Faculty Rev-1921. https://doi.org/10.12688/f1000research.16422.1

Gonorazky HD, Bonnemann CG, Dowling JJ (2018) The genetics of congenital myopathies. Handb Clin Neurol 148:549–564. https://doi.org/10.1016/B978-0-444-64076-5.00036-3

Nance JR, Dowling JJ, Gibbs EM, Bönnemann CG (2012) Congenital myopathies: An update. Curr Neurol Neurosci Rep 12:165–174.https://doi.org/10.1007/s11910-012-0255-x

Amburgey K, McNamara N, Bennett LR, McCormick ME, Acsadi G, Dowling JJ (2011) Prevalence of congenital myopathies in a representative pediatric united states population. Ann Neurol 2011 70(4):662-665.https://doi.org/10.1002/ana.22510

Johnston JJ, Kelley RI, Crawford TO, Morton DH, Agarwala R, Koch T, Schäffer AA, Francomano CA, Biesecker LG (2000) A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am J Hum Genet 67(4):814-821. https://doi.org/10.1086/303089

Lehtokari VL, Kiiski K, Sandaradura SA, Laporte J, Repo P, Frey JA, Donner K, Marttila M, Saunders C, Barth PG, den Dunnen JT, Beggs AH, Clarke NF, North KN, Laing NG, Romero NB, Winder TL, Pelin K, Wallgren-Pettersson C (2014) Mutation update: the spectra of nebulin variants and associated myopathies. Hum Mutat 35(12):1418-1426. https://doi.org/10.1002/humu.22693

Shy GM, Magee KR (1956) A new congenital non-progressive myopathy. Brain 79(4):610–21.https://doi.org/10.1093/brain/79.4.610

Adams RD, Denny-Brown D, Pearson CM (1962) Diseases of muscle. A study in pathology, 2nd ed. New York: Harper and Brothers, 268-270.

Schnell C, Kan A, North KN (2000) “An artefact gone awry”: identification of the first case of nemaline myopathy by Dr RDK Reye. Neuromuscul Disord 10(4–5):307–312. https://doi.org/10.1016/s0960-8966(99)00123-6

Benarroch L, Bonne G, Rivier F, Hamroun D (2021) The 2021 version of the gene table of neuromuscular disorders (nuclear genome). Neuromuscul Disord 30(12):1008-1048. https://doi.org/10.1016/j.nmd.2020.11.009

Davidson AE, Siddiqui FM, Lopez MA, Lunt P, Carlson HA, Moore BE, Love S, Born DE, Roper H, Majumdar A, Jayadev S, Underhill HR, Smith CO, von der Hagen M, Hubner A, Jardine P, Merrison A, Curtis E, Cullup T, Jungbluth H, Cox MO, Winder TL, Abdel Salam H, Li JZ, Moore SA, Dowling JJ (2013) Novel deletion of lysine 7 expands the clinical, histopathological and genetic spectrum of TPM2-related myopathies. Brain 136:508–521. https://doi.org/10.1093/brain/aws344

Tajsharghi H, Ohlsson M, Palm L, Oldfors A (2012) Myopathies associated with β-tropomyosin mutations. Neuromuscul Disord 22:923–933.https://doi.org/10.1016/j.nmd.2012.05.018

Clarke NF, Kolski H, Dye DE, Lim E, Smith RL, Patel R, Fahey MC, Bellance R, Romero NB, Johnson ES, Labarre-Vila A, Monnier N, Laing NG, North KN (2008) Mutations in TPM3 are a common cause of congenital fiber type disproportion. Ann Neurol 63:329–337. https://doi.org/10.1002/ana.21308

Sewry CA, Laitila JM, Wallgren-Pettersson C (2019) Nemaline myopathies: a current view. J Muscle Res Cell Motil 40(2):111–126.https://doi.org/10.1007/s10974-019-09519-9

Lehtokari VL, Ceuterick-de Groote C, de Jonghe P, Marttila M, Laing NG, Pelin K, Wallgren-Pettersson C (2007) Cap disease caused by heterozygous deletion of the beta-tropomyosin gene TPM2. Neuromuscul Disord 17:433–442. https://doi.org/10.1016/j.nmd.2007.02.015

Brandis A, Aronica E, Goebel HH (2008) TPM2 mutation. Neuromuscular disorders: NMD. England 18:1005.

Malfatti E, Schaeffer U, Chapon F, Yang Y, Eymard B, Xu R, Laporte J, Romero NB (2013) Combined cap disease and nemaline myopathy in the same patient caused by an autosomal dominant mutation in the TPM3 gene. Neuromuscul Disord 23(12):992–997. https://doi.org/10.1016/j.nmd.2013.07.003

Marston S, Memo M, Messer A, Papadaki M, Nowak K, McNamara E, Ong R, El-Mezgueldi M, Li X, Lehman W (2013) Mutations in repeating structural motifs of TM cause gain of function in skeletal muscle myopathy patients. Hum Mol Genet 22:4978–4987. https://doi.org/10.1093/hmg/ddt345

Lee E-J, De Winter JM, Buck D, Jasper JR, Malik FI, Labeit S, Ottenheijm CA, Granzier H (2013) Fast skeletal muscle troponin activation increases force of mouse fast skeletal muscle and ameliorates weakness due to nebulin-deficiency. PLoS One. 8(2):e55861. https://doi.org/10.1371/journal.pone.0055861

Boussouf SE, Geeves MA (2007) Tropomyosin and troponin cooperativity on the thin filament. Adv Exp Med Biol 592:99-109. https://doi.org/10.1007/978-4-431-38453-3_10

Geeves MA, Lehrer SS, Lehman W (2019) The mechanism of thin filament regulation: Models in conflict? J Gen Physiol 151(11):1265-1271. https://doi.org/10.1085/jgp.201912446

Borovikov YS, Karpicheva OE, Avrova SV, Redwood CS (2009) Modulation of the effects of tropomyosin on actin and myosin conformational changes by troponin and Ca2+. Biochim Biophys Acta 1794(7):985–994.https://doi.org/10.1016/j.bbapap.2008.11.014

Li XE, Lehman W, Fischer S (2010) The relationship between curvature, flexibility and persistence length in the tropomyosin coiled-coil. J Struct Biol 170:313–318. https://doi.org/10.1016/j.jsb.2010.01.016

Borovikov YS, Simonyan AO, Avrova SV, Sirenko VV, Redwood CS, Karpicheva OE (2020) Molecular Mechanisms of Muscle Weakness Associated with E173A Mutation in Tpm3.12. Troponin Ca2+ Sensitivity Inhibitor W7 Can Reduce the Damaging Effect of This Mutation. Int J Mol Sci 21(12):4421. https://doi.org/10.3390/ijms21124421

Craig R, Lehman W (2001) Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments. J Mol Biol 311(5):1027-1036. https://doi.org/10.1006/jmbi.2001.4897

Lehman W, Orzechowski M, Li XE, Fischer S, Raunser S (2013) Gestalt-Binding of tropomyosin on actin during thin filament activation. J Muscle Res Cell Motil 34:155–163.https://doi.org/10.1007/s10974-013-9342-0

Gunning P (Ed) (2008). Tropomyosin. Advances in Experimental Medicine and Biology. doi:10.1007/978-0-387-85766-4

Mason JM, Arndt KM (2004) Coiled coil domains: stability, specificity, and biological implications. Chembiochem 5(2):170-176. https://doi.org/10.1002/cbic.200300781

McLachlan AD, Stewart M (1976) The 14-fold periodicity in alpha-tropomyosin and the interaction with actin. J Mol Biol 103(2):271-298. https://doi.org/10.1016/0022-2836(76)90313-2

Orzechowski M, Li XE, Fischer S, Lehman W (2014) An atomic model of the tropomyosin cable on F-actin. Biophys J 107(3):694-699. https://doi.org/10.1016/j.bpj.2014.06.034

Brown JH, Zhou Z, Reshetnikova L, Robinson H, Yammani RD, Tobacman LS, Cohen C. (2005) Structure of the mid-region of tropomyosin: bending and binding sites for actin. Proc Natl Acad Sci USA 102 18878–18883. http://dx.doi.org/10.1073/pnas.0509269102

Avrova SV, Karpicheva OE, Simonyan AO, Sirenko VV, Redwood CS, Borovikov YS (2019) The molecular mechanisms of a high Ca2+-sensitivity and muscle weakness associated with the Ala155Thr substitution in Tpm3.12. Biochem Biophys Res Commun 515(2):372-377. https://doi.org/10.1016/j.bbrc.2019.05.146

Hitchcock-DeGregori SE, Barua B (2017) Tropomyosin Structure, Function, and Interactions: A Dynamic Regulator. Subcell Biochem 82:253-284. https://doi.org/10.1007/978-3-319-49674-0_9

Marttila M, Lemola E, Wallefeld W, Memo M, Donner K, Laing NG, Marston S, Grönholm M, Wallgren-Pettersson C (2012) Abnormal actin binding of aberrant β-tropomyosins is a molecular cause of muscle weakness in TPM2-related nemaline and cap myopathy. Biochem J 442(1):231-239. https://doi.org/10.1042/BJ20111030

Robaszkiewicz K, Dudek E, Kasprzak AA, Moraczewska J (2012) Functional effects of congenital myopathy-related mutations in gamma-tropomyosin gene. Biochim Biophys Acta 1822(10):1562-1569. https://doi.org/10.1016/j.bbadis.2012.06.009

Zheng W, Hitchcock-DeGregori SE, Barua B (2016) Investigating the effects of tropomyosin mutations on its flexibility and interactions with filamentous actin using molecular dynamics simulation. J Muscle Res Cell Motil 37(4-5):131-147. https://doi.org/10.1007/s10974-016-9447-3

Moraczewska J, Robaszkiewicz K, Śliwinska M, Czajkowska M, Ly T, Kostyukova A, Wen H, Zheng W (2019) Congenital myopathy-related mutations in tropomyosin disrupt regulatory function through altered actin affinity and tropomodulin binding. FEBS J 286:1877–1893. https://doi.org/10.1111/febs.14787

Marttila M, Hanif M, Lemola E, Nowak KJ, Laitila J, Grönholm M, Wallgren-Pettersson C, Pelin K (2014) Nebulin interactions with actin and tropomyosin are altered by disease-causing mutations. Skelet Muscle 4:15. https://doi.org/10.1186/2044-5040-4-15

Ly T, Moroz N, Pappas CT, Novak SM, Tolkatchev D, Wooldridge D, Mayfield RM, Helms G, Gregorio CC, Kostyukova AS (2016) The N-terminal tropomyosin- and actin-binding sites are important for leiomodin 2′s function. Mol Biol Cell 27:2565–2575. https://doi.org/10.1091/mbc.E16-03-0200

Robaszkiewicz K, Ostrowska Z, Marchlewicz K, Moraczewska J (2016) Tropomyosin isoforms differentially modulate the regulation of actin filament polymerization and depolymerization by cofilins. FEBS J 283:723–737.https://doi.org/10.1111/febs.13626

Fischer S, Rynkiewicz MJ, Moore JR, Lehman W (2016) Tropomyosin diffusion over actin subunits facilitates thin filament assembly. Struct Dyn 3(1):012002. https://doi.org/10.1063/1.4940223

Vilfan A (2001) The binding dynamics of tropomyosin on actin. Biophys J 81:3146–3155.https://doi.org/10.1016/S0006-3495(01)75951-6

Karpicheva OE, Simonyan AO, Kuleva NV, Redwood CS, Borovikov YS (2016) Myopathy-causing Q147P TPM2 mutation shifts tropomyosin strands further towards the open position and increases the proportion of strong-binding cross-bridges during the ATPase cycle. Biochim Biophys Acta 1864(3):260-267. https://doi.org/10.1016/j.bbapap.2015.12.004

Borovikov YS, Rysev NA, Karpicheva OE, Sirenko VV, Avrova SV, Piers A, Redwood CS (2017) Molecular mechanisms of dysfunction of muscle fibres associated with Glu139 deletion in TPM2 gene. Sci Rep 7(1):16797. https://doi.org/10.1038/s41598-017-17076-9

Janco M, Kalyva A, Scellini B, Piroddi N, Tesi C, Poggesi C, Geeves MA (2012) alpha-Tropomyosin with a D175N or E180G mutation in only one chain differs from tropomyosin with mutations in both chains. Biochemistry 51(49):9880-9890. https://doi.org/10.1021/bi301323n

Matyushenko AM, Shchepkin DV, Susorov DS, Nefedova VV, Kopylova GV, Berg VY, Kleymenov SY, Levitsky DI (2019) Structural and functional properties of αβ-heterodimers of tropomyosin with myopathic mutations Q147P and K49del in the β-chain. Biochem Biophys Res Commun 508(3):934-939. https://doi.org/10.1016/j.bbrc.2018.12.019

Karpicheva OE, Simonyan AO, Rysev NA, Redwood CS, Borovikov YS (2020) Looking for Targets to Restore the Contractile Function in Congenital Myopathy Caused by Gln147Pro Tropomyosin. Int J Mol Sci 21(20):7590. https://doi.org/10.3390/ijms21207590

Jin JP, Chong SM (2010) Localization of the two tropomyosin-binding sites of troponin T. Arch Biochem Biophys 500:144–150. https://doi.org/10.1016/j.abb.2010.06.001

Robaszkiewicz K, Ostrowska Z, Cyranka-Czaja A, Moraczewska J (2015) Impaired tropomyosin-troponin interactions reduce activation of the actin thin filament. Biochim Biophys Acta 1854:381–390. https://doi.org/10.1016/j.bbapap.2015.01.004

Lindqvist J, Ma W, Li F, Hernandez Y, Kolb J, Kiss B, Tonino P, van der Pijl R, Karimi E, Gong H, Strom J, Hourani Z, Smith JE 3rd, Ottenheijm C, Irving T, Granzier H (2020) Triggering typical nemaline myopathy with compound heterozygous nebulin mutations reveals myofilament structural changes as pathomechanism. Nat Commun 11(1):2699. https://doi.org/10.1038/s41467-020-16526-9

Marston SB (2016) Why Is there a Limit to the Changes in Myofilament Ca2+-Sensitivity Associated with Myopathy Causing Mutations? Front Physiol 7:415. https://doi.org/10.3389/fphys.2016.00415

Karpicheva OE, Sirenko VV, Rysev NA, Simonyan AO, Borys D, Moraczewska J, Borovikov YS. (2017) Deviations in conformational rearrangements of thin filaments and myosin caused by the Ala155Thr substitution in hydrophobic core of tropomyosin. Biochim Biophys Acta - Proteins Proteomics 1865:1790–1799. https://doi.org/10.1016/j.bbapap.2017.09.008

Borovikov YS, Simonyan AO, Karpicheva OE, Avrova SV, Rysev NA, Sirenko VV, Piers A, Redwood CS. (2017) The reason for a high Ca2+-sensitivity associated with Arg91Gly substitution in TPM2 gene is the abnormal behavior and high flexibility of tropomyosin during the ATPase cycle. Biochem Biophys Res Commun 494(3-4):681-686. https://doi.org/10.1016/j.bbrc.2017.10.161

Avrova SV, Karpicheva OE, Rysev NA, Simonyan AO, Sirenko VV, Redwood CS, Borovikov YS (2018) The reason for the low Ca2+-sensitivity of thin filaments associated with the Glu41Lys mutation in the TPM2 gene is "freezing" of tropomyosin near the outer domain of actin and inhibition of actin monomer switching off during the ATPase cycle. Biochem Biophys Res Commun 502(2):209-214. https://doi.org/10.1016/j.bbrc.2018.05.145

Karpicheva OE, Robinson P, Piers A, Borovikov YS, Redwood CS (2013) The nemaline myopathy-causing E117K mutation in β-tropomyosin reduces thin filament activation. Arch Biochem Biophys 536(1):25-30. https://doi.org/10.1016/j.abb.2013.05.001

Borovikov YS, Rysev NA, Avrova SV, Karpicheva OE, Borys D, Moraczewska J (2017) Molecular mechanisms of deregulation of the thin filament associated with the R167H and K168E substitutions in tropomyosin Tpm1.1. Arch Biochem Biophys 614:28-40. https://doi.org/10.1016/j.abb.2016.12.004

Borovikov YS, Rysev NA, Chernev AA, Avrova SV, Karpicheva OE, Borys D, Śliwińska M, Moraczewska J (2016) Abnormal movement of tropomyosin and response of myosin heads and actin during the ATPase cycle caused by the Arg167His, Arg167Gly and Lys168Glu mutations in TPM1 gene. Arch Biochem Biophys 606:157-166. https://doi.org/10.1016/j.abb.2016.07.022

Borovikov YS, Karpicheva OE, Simonyan AO, Avrova SV, Rogozovets EA, Sirenko VV, Redwood CS (2018) The Primary Causes of Muscle Dysfunction Associated with the Point Mutations in Tpm3.12; Conformational Analysis of Mutant Proteins as a Tool for Classification of Myopathies. Int J Mol Sci 19(12):3975. https://doi.org/10.3390/ijms19123975

Donner K, Ollikainen M, Ridanpää M, Christen HJ, Goebel HH, de Visser M, Pelin K, Wallgren-Pettersson C (2002) Mutations in the beta-tropomyosin (TPM2) gene--a rare cause of nemaline myopathy. Neuromuscul Disord 12(2):151-158. https://doi.org/10.1016/s0960-8966(01)00252-8

Andrews JA, Miller TM, Vijayakumar V, Stoltz R, James JK, Meng L, Wolff AA, Malik FI (2018) CK-2127107 amplifies skeletal muscle response to nerve activation in humans. Muscle Nerve 57(5):729–734. https://doi.org/10.1002/mus.26017

Collibee SE, Bergnes G, Muci A, Browne WF 4th, Garard M, Hinken AC, Russell AJ, Suehiro I, Hartman J, Kawas R, Lu PP, Lee KH, Marquez D, Tomlinson M, Xu D, Kennedy A, Hwee D, Schaletzky J, Leung K, Malik FI, Morgans DJ Jr, Morgan BP (2018) Discovery of Tirasemtiv, the First Direct Fast Skeletal Muscle Troponin Activator. ACS Med Chem Lett 9(4):354–358. https://doi.org/10.1021/acsmedchemlett.7b00546

Shefner JM, Cudkowicz ME, Hardiman O, Cockcroft BM, Lee JH, Malik FI, Meng L, Rudnicki SA, Wolff AA, Andrews JA; VITALITY-ALS Study Group (2019) A phase III trial of tirasemtiv as a potential treatment for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 0(0):1–11. https://doi.org/10.1080/21678421.2019.1612922

Pinniger GJ, Bruton JD, Westerblad H, Ranatunga KW (2005) Effects of a myosin-II inhibitor (N-benzyl-p-toluene sulphonamide, BTS) on contractile characteristics of intact fast-twitch mammalian muscle fibres. J Muscle Res Cell Motil 26(2–3):135–141.https://doi.org/10.1007/s10974-005-2679-2

Shaw MA, Ostap EM, Goldman YE (2003) Mechanism of inhibition of skeletal muscle actomyosin by N-benzyl-p-toluenesulfonamide. Biochemistry 42(20):6128–6135.https://doi.org/10.1021/bi026964f

de Winter JM, Buck D, Hidalgo C, Jasper JR, Malik FI, Clarke NF, Stienen GJ, Lawlor MW, Beggs AH, Ottenheijm CA, Granzier H (2013) Troponin activator augments muscle force in nemaline myopathy patients with nebulin mutations. J Med Genet. 2013;50(6):383–92. https://doi.org/10.1136/jmedgenet-2012-101470

Cheng AJ, Hwee DT, Kim LH, Durham N, Yang HT, Hinken AC, Kennedy AR, Terjung RL, Jasper JR, Malik FI, Westerblad H (2019) Fast skeletal muscle troponin activator CK-2066260 increases fatigue resistance by reducing the energetic cost of muscle contraction. J Physiol 597(17):4615–4625.https://doi.org/10.1113/JP278235

Ochala J (2010) Ca2+ sensitizers: An emerging class of agents for counterbalancing weakness in skeletal muscle diseases? Neuromuscul Disord 20(2):98–101. https://doi.org/10.1016/j.nmd.2009.11.010

Ochala J, Gokhin DS, Pénisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM (2012) Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 21(20):4473–4485. https://doi.org/10.1093/hmg/dds289

Limouze J, Straight AF, Mitchison T, Sellers JR (2004) Specificity of blebbistatin, an inhibitor of myosin II. J Muscle Res Cell Motil 25(4–5):337–341. https://doi.org/10.1074/jbc.M405319200

Rauscher AA, Gyimesi M, Kovacs M, Malnasi-Csizmadia A (2018) Targeting Myosin by Blebbistatin Derivatives: Optimization and Pharmacological Potential. Trends Biochem Sci 43(9):700–713. https://doi.org/10.1016/j.tibs.2018.06.006

McKillop DF, Fortune NS, Ranatunga KW, Geeves MA (1994) The influence of 2,3-butanedione 2-monoxime (BDM) on the interaction between actin and myosin in solution and in skinned muscle fibres. J Muscle Res Cell Motil 15(3):309–318. https://doi.org/10.1007/BF00123483

Oleszczuk M, Robertson IM, Li MX, Sykes BD (2010) Solution structure of the regulatory domain of human cardiac troponin C in complex with the switch region of cardiac troponin I and W7: the basis of W7 as an inhibitor of cardiac muscle contraction. J Mol Cell Cardiol 48(5):925–933. https://doi.org/10.1016/j.yjmcc.2010.01.016

Adhikari BB, Wang K (2004) Interplay of troponin- and Myosin-based pathways of calcium activation in skeletal and cardiac muscle: the use of W7 as an inhibitor of thin filament activation. Biophys J 86(1):359–370.https://doi.org/10.1016/S0006-3495(04)74112-0

Kischel P, Bastide B, Potter JD, Mounier Y (2000) The role of the Ca(2+) regulatory sites of skeletal troponin C in modulating muscle fibre reactivity to the Ca(2+) sensitizer bepridil. Br J Pharmacol 131(7):1496–1502. https://doi.org/10.1038/sj.bjp.0703727

Wahr PA, Metzger JM (1999) Role of Ca2+ and cross-bridges in skeletal muscle thin filament activation probed with Ca2+ sensitizers. Biophys J 76(4):2166–2176. https://doi.org/10.1016/S0006-3495(99)77371-6

Lipscomb S, Preston LC, Robinson P, Redwood CS, Mulligan IP, Ashley CC (2005) Effects of troponin C isoform on the action of the cardiotonic agent EMD 57033. Biochem J 388(Pt 3):905–912. https://doi.org/10.1042/BJ20041841

Kraft T, Brenner B (1997) Force enhancement without changes in cross-bridge turnover kinetics: the effect of EMD 57033. Biophys J 72(1):272–281. https://doi.org/10.1016/S0006-3495(97)78666-1

Malik FI, Hartman JJ, Elias KA, Morgan BP, Rodriguez H, Brejc K, Anderson RL, Sueoka SH, Lee KH, Finer JT, Sakowicz R, Baliga R, Cox DR, Garard M, Godinez G, Kawas R, Kraynack E, Lenzi D, Lu PP, Muci A, Niu C, Qian X, Pierce DW, Pokrovskii M, Suehiro I, Sylvester S, Tochimoto T, Valdez C, Wang W, Katori T, Kass DA, Shen YT, Vatner SF, Morgans DJ (2011) Cardiac myosin activation: a potential therapeutic approach for systolic heart failure. Science 331(6023):1439–1443.https://doi.org/10.1126/science.1200113

Ochala J, Li M, Ohlsson M, Oldfors A, Larsson L (2008) Defective regulation of contractile function in muscle fibres carrying an E41K beta-tropomyosin mutation. J Physiol 586(Pt 12):2993–3004. https://doi.org/10.1113/jphysiol.2008.153650

Solaro RJ, Gambassi G, Warshaw DM, Keller MR, Spurgeon HA, Beier N, Lakatta EG (1993) Stereoselective actions of thiadiazinones on canine cardiac myocytes and myofilaments. Circ Res 73(6):981–990. https://doi.org/10.1161/01.res.73.6.981

Kopylova GV, Shchepkin DV, Nabiev SR, Matyushenko AM, Koubassova NA, Levitsky DI, Bershitsky SY (2019) Cardiomyopathy-associated mutations in tropomyosin differently affect actin-myosin interaction at single-molecule and ensemble levels. J Muscle Res Cell Motil 40(3-4):299-308. https://doi.org/10.1007/s10974-019-09560-8

Shchepkin DV, Nabiev SR, Nikitina LV, Kochurova AM, Berg VY, Bershitsky SY, Kopylova GV (2020) Myosin from the ventricle is more sensitive to omecamtiv mecarbil than myosin from the atrium. Biochem Biophys Res Commun 528(4):658-663. https://doi.org/10.1016/j.bbrc.2020.05.108