САТЕЛЛИТНЫЕ КЛЕТКИ СКЕЛЕТНЫХ МЫШЦ В УСЛОВИЯХ ГРАВИТАЦИОННОЙ РАЗГРУЗКИ
PDF

Ключевые слова

сателлитные клетки мышц
гравитационная разгрузка
регенерация

Как цитировать

Вильчинская, Н. А., & Шенкман, Б. С. (2021). САТЕЛЛИТНЫЕ КЛЕТКИ СКЕЛЕТНЫХ МЫШЦ В УСЛОВИЯХ ГРАВИТАЦИОННОЙ РАЗГРУЗКИ. Российский физиологический журнал им. И. М. Сеченова, 107(6-7), 717–729. https://doi.org/10.31857/S0869813921060145

Аннотация

Как известно, скелетная мышца обладает высокой степенью пластичности. Гравитационная разгрузка оказывает глубокое влияние на структурно-функциональную организацию постуральных мышц. Скелетные мышцы обладают уникальной способностью восстанавливаться при повреждении. Восстановление мышц (регенерация) осуществляется с помощью сателлитных клеток. Миосателлиты - это покоящиеся одноядерные клетки (фаза G0 клеточного цикла), расположенные на периферии мышечного волокна. При повреждении мышц происходит активация сателлитных клеток, они вступают в пролиферацию и дают начало новым сателлитным клеткам и миобластам. Дифференцированные миобласты могут сливаться с мышечными волокнами при гипертрофии и регенерации мышечной ткани и друг с другом, формируя новые мышечные волокна. Исследования влияния гравитационной разгрузки на состояние мышечных сателлитных клеток малочисленны. В настоящем обзоре рассматривается влияние гравитационной разгрузки на механизмы регенерации скелетных мышц при их повреждении и состояние пула мышечных сателлитных клеток. На основе данных литературы авторы обнаружили, что механизмы, лежащие в основе изменения регенераторного потенциала мышц при действии гравитационной разгрузки, мало изучены. Авторы подчеркивают необходимость дальнейших исследований регенераторного потенциала сателлитных клеток в условиях микрогравитации.

https://doi.org/10.31857/S0869813921060145
PDF

Литература

Seale P, Asakura A, Rudnicki MA (2001) The potential of muscle stem cells. Dev Cell 1 (3):333-342. doi:10.1016/s1534-5807(01)00049-1

Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102 (6):777-786. doi:10.1016/s0092-8674(00)00066-0

Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84 (1):209-238. doi:10.1152/physrev.00019.2003

Bailey P, Holowacz T, Lassar AB (2001) The origin of skeletal muscle stem cells in the embryo and the adult. Curr Opin Cell Biol 13 (6):679-689. doi:10.1016/s0955-0674(00)00271-4

Шенкман БС, Туртикова ОВ, Немировская ТЛ, Григорьев АИ (2010) Сократительная активность скелетной мышцы и судьба миоядер. Acta naturae 2 (5):62-69. [Shenkman BS, Turtikova OV, Nemirovskaya TL, Grigor′yev AI (2010) Skeletal muscle contractile activity and the fate of myonucle. Acta Natyrae 2 (5):62-69 (In Russ)].

Гаин ЮМ, Кулинич СС, Зафранская ММ, Шахрай СВ, Гаин МЮ (2014) Морфо-фенотипическая характеристика миогенных клеток-предшественников поперечнополосатой мышечной ткани. Военная медицина (4): 80-84. [Gain YUM, Kulinich SS, Zafranskaya MM, Shakhray SV, Gain MYU (2014) Morpho-phenotypic characteristics of myogenic progenitor cells of striated muscle tissue. Voyennaya meditsina (4): 80-84 (In Russ)].

Mitchell PO, Pavlath GK (2004) Skeletal muscle atrophy leads to loss and dysfunction of muscle precursor cells. Am J Physiol Cell Physiol 287 (6):C1753-1762. doi:10.1152/ajpcell.00292.2004

Hikida RS, Van Nostran S, Murray JD, Staron RS, Gordon SE, Kraemer WJ (1997) Myonuclear loss in atrophied soleus muscle fibers. Anat Rec 247 (3):350-354. doi:10.1002/(SICI)1097-0185(199703)247:3<350::AID-AR6>3.0.CO;2-Y

Schultz E, McCormick KM (1994) Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol 123: 213-257. doi:10.1007/BFb0030904

Ohira Y, Yoshinaga T, Nomura T, Kawano F, Ishihara A, Nonaka I, Roy RR, Edgerton VR (2002) Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number. Adv Space Res 30 (4):777-781. doi:10.1016/s0273-1177(02)00395-2

Thomason DB, Biggs RB, Booth FW (1989) Protein metabolism and beta-myosin heavy-chain mRNA in unweighted soleus muscle. Am J Physiol 257 (2 Pt 2):R300-305. doi:10.1152/ajpregu.1989.257.2.R300

Goldspink DF, Morton AJ, Loughna P, Goldspink G (1986) The effect of hypokinesia and hypodynamia on protein turnover and the growth of four skeletal muscles of the rat. Pflugers Archiv: Eur J Physiol 407 (3): 333-340. doi:10.1007/BF00585311

Matsuba Y, Goto K, Morioka S, Naito T, Akema T, Hashimoto N, Sugiura T, Ohira Y, Beppu M, Yoshioka T (2009) Gravitational unloading inhibits the regenerative potential of atrophied soleus muscle in mice. Acta Physiol 196 (3):329-339. doi:10.1111/j.1748-1716.2008.01943.x

Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9: 493-495. doi:10.1083/jcb.9.2.493

Katz B (1961) The terminations of the afferent nerve fibre in the muscle spindle of the frog. Philos Trans Royal Soc Lond [Biol] 243: 221–240.

Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93 (1):23-67. doi:10.1152/physrev.00043.2011

Wang XD, Kawano F, Matsuoka Y, Fukunaga K, Terada M, Sudoh M, Ishihara A, Ohira Y (2006) Mechanical load-dependent regulation of satellite cell and fiber size in rat soleus muscle. Am J Physiol Cell Physiol 290 (4):C981-989. doi:10.1152/ajpcell.00298.2005

Nakanishi R, Hirayama Y, Tanaka M, Maeshige N, Kondo H, Ishihara A, Roy RR, Fujino H (2016) Nucleoprotein supplementation enhances the recovery of rat soleus mass with reloading after hindlimb unloading-induced atrophy via myonuclei accretion and increased protein synthesis. Nutr Res 36 (12):1335-1344. doi:10.1016/j.nutres.2016.10.007

Schmalbruch H, Hellhammer U (1977) The number of nuclei in adult rat muscles with special reference to satellite cells. Anat Rec 189 (2):169-175. doi:10.1002/ar.1091890204

Snow MH (1983) A quantitative ultrastructural analysis of satellite cells in denervated fast and slow muscles of the mouse. Anat Rec 207 (4):593-604. doi:10.1002/ar.1092070407

Gibson MC, Schultz E (1983) Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle & Nerve 6 (8):574-580. doi:10.1002/mus.880060807

Charge SB, Brack AS, Hughes SM (2002) Aging-related satellite cell differentiation defect occurs prematurely after Ski-induced muscle hypertrophy. Am J Physiol Cell Physiol 283 (4):C1228-1241. doi:10.1152/ajpcell.00206.2002

Murach KA, Fry CS, Kirby TJ, Jackson JR, Lee JD, White SH, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2018) Starring or Supporting Role? Satellite Cells and Skeletal Muscle Fiber Size Regulation. Physiology 33 (1):26-38. doi:10.1152/physiol.00019.2017

Bischoff R, Heintz C (1994) Enhancement of skeletal muscle regeneration. Developmental dynamics: an official publication of the American Association of Anatomists 201 (1):41-54. doi:10.1002/aja.1002010105

Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127 (6 Pt 1):1755-1766. doi:10.1083/jcb.127.6.1755

Teboul L, Gaillard D, Staccini L, Inadera H, Amri EZ, Grimaldi PA (1995) Thiazolidinediones and fatty acids convert myogenic cells into adipose-like cells. J Biol Chem 270 (47):28183-28187. doi:10.1074/jbc.270.47.28183

Озернюк НД, Балан ОВ (2007) Сателлитные клетки мышечной системы и регуляция восстановительного потенциала мышцы. Известия РАН Серия биол (6): 650-660 [Ozernyuk ND, Balan OV (2007) Satellite cells of the muscular system and the regulation of the regenerative potential of the muscle. Izvestiya RAN Seriya Biol (6): 650-660 (In Russ)].

Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309 (5743):2064-2067. doi:10.1126/science.1114758

Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172 (1):91-102. doi:10.1083/jcb.200508044

Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151 (6):1221-1234. doi:10.1083/jcb.151.6.1221

Lindstrom M, Pedrosa-Domellof F, Thornell LE (2010) Satellite cell heterogeneity with respect to expression of MyoD, myogenin, Dlk1 and c-Met in human skeletal muscle: application to a cohort of power lifters and sedentary men. Histochem Cell Biol 134 (4):371-385. doi:10.1007/s00418-010-0743-5

Tanaka KK, Hall JK, Troy AA, Cornelison DD, Majka SM, Olwin BB (2009) Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell 4 (3):217-225. doi:10.1016/j.stem.2009.01.016

Parise G, O'Reilly CE, Rudnicki MA (2006) Molecular regulation of myogenic progenitor populations. Appl Physiol Nutr Metab 31 (6):773-781. doi:10.1139/h06-055

Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159 (1):123-134. doi:10.1083/jcb.200202092

Goloviznina NA, Kyba M (2017) Twist of fate for skeletal muscle mesenchymal cells. Nat Cell Biol 19 (3):153-154. doi:10.1038/ncb3482

Conboy MJ, Karasov AO, Rando TA (2007) High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. PLoS Biol 5 (5):e102. doi:10.1371/journal.pbio.0050102

Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129 (5):999-1010. doi:10.1016/j.cell.2007.03.044

Shinin V, Gayraud-Morel B, Gomes D, Tajbakhsh S (2006) Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 8 (7):677-687. doi:10.1038/ncb1425

Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3 (3):397-409. doi:10.1016/s1534-5807(02)00254-x

Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA (2015) Satellite Cells and Skeletal Muscle Regeneration. Compar Physiol 5 (3):1027-1059. doi:10.1002/cphy.c140068

Kuang S, Charge SB, Seale P, Huh M, Rudnicki MA (2006) Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 172 (1):103-113. doi:10.1083/jcb.200508001

Gunther S, Kim J, Kostin S, Lepper C, Fan CM, Braun T (2013) Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 13 (5):590-601. doi:10.1016/j.stem.2013.07.016

von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA (2013) Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci U S A 110 (41):16474-16479. doi:10.1073/pnas.1307680110

McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont-Versteegden EE, Peterson CA (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138 (17):3657-3666. doi:10.1242/dev.068858

Wagers AJ, Conboy IM (2005) Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 122 (5):659-667. doi:10.1016/j.cell.2005.08.021

Husmann I, Soulet L, Gautron J, Martelly I, Barritault D (1996) Growth factors in skeletal muscle regeneration. CYTOKINE GROWTH F R 7 (3):249-258. doi:10.1016/s1359-6101(96)00029-9

Pola R, Ling LE, Aprahamian TR, Barban E, Bosch-Marce M, Curry C, Corbley M, Kearney M, Isner JM, Losordo DW (2003) Postnatal recapitulation of embryonic hedgehog pathway in response to skeletal muscle ischemia. Circulation 108 (4):479-485. doi:10.1161/01.CIR.0000080338.60981.FA

Polesskaya A, Seale P, Rudnicki MA (2003) Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113 (7):841-852. doi:10.1016/s0092-8674(03)00437-9

Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Compar Physiol 288 (2):R345-R353. doi:10.1152/ajpregu.00454.2004

Chazaud B, Sonnet C, Lafuste P, Bassez G, Rimaniol AC, Poron F, Authier FJ, Dreyfus PA, Gherardi RK (2003) Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol 163 (5):1133-1143. doi:10.1083/jcb.200212046

Jejurikar SS, Kuzon WM, Jr. (2003) Satellite cell depletion in degenerative skeletal muscle. Apoptosis 8 (6):573-578. doi:10.1023/A:1026127307457

Lescaudron L, Peltekian E, Fontaine-Perus J, Paulin D, Zampieri M, Garcia L, Parrish E (1999) Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant. Neuromuscul Disord 9 (2):72-80. doi:10.1016/s0960-8966(98)00111-4

Bondesen BA, Mills ST, Kegley KM, Pavlath GK (2004) The COX-2 pathway is essential during early stages of skeletal muscle regeneration. Am J Physiol Cell Physiol 287 (2):C475-C483. doi:10.1152/ajpcell.00088.2004

Robertson TA, Maley MA, Grounds MD, Papadimitriou JM (1993) The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Exp Cell Res 207 (2):321-331. doi:10.1006/excr.1993.1199

Carmeli E, Moas M, Reznick AZ, Coleman R (2004) Matrix metalloproteinases and skeletal muscle: a brief review. Muscle & Nerve 29 (2):191-197. doi:10.1002/mus.10529

Anderson JE (2000) A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11 (5):1859-1874. doi:10.1091/mbc.11.5.1859

Tatsumi R (2010) Mechano-biology of skeletal muscle hypertrophy and regeneration: possible mechanism of stretch-induced activation of resident myogenic stem cells. Anim Sci J 81 (1):11-20. doi:10.1111/j.1740-0929.2009.00712.x

Heszele MF, Price SR (2004) Insulin-like growth factor I: the yin and yang of muscle atrophy. Endocrinology 145 (11):4803-4805. doi:10.1210/en.2004-1037

Lee SJ (2004) Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 20 (61-86. doi:10.1146/annurev.cellbio.20.012103.135836

Miller KJ, Thaloor D, Matteson S, Pavlath GK (2000) Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol Cell Physiol 278 (1):C174-C181. doi:10.1152/ajpcell.2000.278.1.C174

Maley MA, Fan Y, Beilharz MW, Grounds MD (1994) Intrinsic differences in MyoD and myogenin expression between primary cultures of SJL/J and BALB/C skeletal muscle. Exp Cell Res 211 (1):99-107. doi:10.1006/excr.1994.1064

Pisconti A, Cornelison DD, Olguin HC, Antwine TL, Olwin BB (2010) Syndecan-3 and Notch cooperate in regulating adult myogenesis. J Cell Biol 190 (3):427-441. doi:10.1083/jcb.201003081

Downward J (2004) PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol 15 (2):177-182.doi:10.1016/j.semcdb.2004.01.002

Lawlor MA, Rotwein P (2000) Coordinate control of muscle cell survival by distinct insulin-like growth factor activated signaling pathways. J Cell Biol 151 (6):1131-1140. doi:10.1083/jcb.151.6.1131

McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162 (6):1135-1147. doi:10.1083/jcb.200207056

Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ (2002) Induction of cachexia in mice by systemically administered myostatin. Science 296 (5572):1486-1488. doi:10.1126/science.1069525

McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387 (6628):83-90. doi:10.1038/387083a0

Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275 (51): 40235-40243. doi:10.1074/jbc.M004356200

Wen Y, Bi P, Liu W, Asakura A, Keller C, Kuang S (2012) Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol Cell Biol 32 (12):2300-2311. doi:10.1128/MCB.06753-11

Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, Ide C, Nabeshima Y (2005) Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309 (5732):314-317.doi:10.1126/science.1110364

Козловская ИБ, Григорьева ЛC, Гевлич ГИ (1984) Сравнительный анализ влияния невесомости и её моделей на скоростно-силовые свойства и тонус скелетных мышц человека. Косм биол и авиакосм мед 18 (6): 22-26. [Kozlovskaya IB, Grigor′yeva LC, Gevlich GI (1984) Comparative analysis of the influence of weightlessness and its models on the speed-power properties and tone of human skeletal muscles. Kosm Biol i Aviakosm Med 18 (6): 22-26 (In Russ)].

Оганов BC, Скуратова СА, Мурашко ЛМ (1988) Влияние кратковременных космических полётов на физиологические свойства и состав миофибриллярных белков скелетных мышц крыс. Косм биол и авиакосм мед 4 (4): 50-54. [Oganov BC, Skuratova SA, Murashko LM (1988) Influence of short-term space flights on physiological properties and composition of myofibrillar proteins of skeletal muscles of rats. Kosm Biol i Aviakos Med 4 (4): 50-54 (In Russ)].

Arentson-Lantz EJ, English KL, Paddon-Jones D, Fry CS (2016) Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults. J Appl Physiol 120 (8):965-975 doi:10.1152/japplphysiol.00799.2015

Suetta C, Frandsen U, Mackey AL, Jensen L, Hvid LG, Bayer ML, Petersson SJ, Schroder HD, Andersen JL, Aagaard P, Schjerling P, Kjaer M (2013) Ageing is associated with diminished muscle re-growth and myogenic precursor cell expansion early after immobility-induced atrophy in human skeletal muscle. J Physiol 591 (15):3789-3804. doi:10.1113/jphysiol.2013.257121

Radugina EA, Almeida EAC, Blaber E, Poplinskaya VA, Markitantova YV, Grigoryan EN (2018) Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and impaired regeneration in murine femoral Quadriceps. Life Sci Space Res 16: 18-25. doi:10.1016/j.lssr.2017.08.005

Mozdziak PE, Truong Q, Macius A, Schultz E (1998) Hindlimb suspension reduces muscle regeneration. Eur J Appl Physiol Occup Physiol 78 (2):136-140. doi:10.1007/s004210050398

Mozdziak PE, Pulvermacher PM, Schultz E (2001) Muscle regeneration during hindlimb unloading results in a reduction in muscle size after reloading. J Appl Physiol 91 (1):183-190. doi:10.1152/jappl.2001.91.1.183

Reidy PT, McKenzie AI, Brunker P, Nelson DS, Barrows KM, Supiano M, LaStayo PC, Drummond MJ (2017) Neuromuscular Electrical Stimulation Combined with Protein Ingestion Preserves Thigh Muscle Mass But Not Muscle Function in Healthy Older Adults During 5 Days of Bed Rest. Rejuvenation Res 20 (6):449-461. doi:10.1089/rej.2017.1942

Guitart M, Lloreta J, Manas-Garcia L, Barreiro E (2018) Muscle regeneration potential and satellite cell activation profile during recovery following hindlimb immobilization in mice. J Cell Physiol 233 (5):4360-4372.doi:10.1002/jcp.26282

Dalla Libera L, Sabbadini R, Renken C, Ravara B, Sandri M, Betto R, Angelini A, Vescovo G (2001) Apoptosis in the skeletal muscle of rats with heart failure is associated with increased serum levels of TNF-alpha and sphingosine. J Mol Cell Cardiol 33 (10):1871-1878. doi:10.1006/jmcc.2001.1453

Stewart CE, Newcomb PV, Holly JM (2004) Multifaceted roles of TNF-alpha. Physiol 198 (2):237-247. doi:10.1002/jcp.10387

Smith HK, Maxwell L, Martyn JA, Bass JJ (2000) Nuclear DNA fragmentation and morphological alterations in adult rabbit skeletal muscle after short-term immobilization. Cell Tissue Res 302 (2):235-241. doi:10.1007/s004410000280

Bruusgaard JC, Gundersen K (2008) In vivo time-lapse microscopy reveals no loss of murine myonuclei during weeks of muscle atrophy. J Clin Invest 118 (4):1450-1457. doi:10.1172/JCI34022

Ferreira R, Neuparth MJ, Ascensao A, Magalhaes J, Vitorino R, Duarte JA, Amado F (2006) Skeletal muscle atrophy increases cell proliferation in mice gastrocnemius during the first week of hindlimb suspension. Eur J Appl Physiol 97 (3):340-346. doi:10.1007/s00421-006-0197-6

Englund DA, Figueiredo VC, Dungan CM, Murach KA, Peck BD, Petrosino JM, Brightwell CR, Dupont AM, Neal AC, Fry CS, Accornero F, McCarthy JJ, Peterson CA (2021) Satellite Cell Depletion Disrupts Transcriptional Coordination and Muscle Adaptation to Exercise. Function 2 (1): zqaa033. doi: 10.1093/function/zqaa033