ОСОБЕННОСТИ БЕЛКОВОГО МЕТАБОЛИЗМА В СКЕЛЕТНЫХ МЫШЦАХ КОСТИСТЫХ РЫБ
PDF

Ключевые слова

костистые рыбы
скелетные мышцы
анаболизм
катаболизм
пластичность
миогенез
белковая деградация

Как цитировать

Немова, Н. Н., Канцерова, Н. П., & Лысенко, Л. А. (2021). ОСОБЕННОСТИ БЕЛКОВОГО МЕТАБОЛИЗМА В СКЕЛЕТНЫХ МЫШЦАХ КОСТИСТЫХ РЫБ. Российский физиологический журнал им. И. М. Сеченова, 107(6-7), 730–754. https://doi.org/10.31857/S0869813921060091

Аннотация

В обзоре обобщены данные литературы и материалы собственных исследований об особенностях структуры, функций и белкового метаболизма скелетных мышц костистых рыб (кл. Teleostei). Несмотря на консервативность основных механизмов мышечного роста (миогенеза) и деградации у позвоночных животных, рыбам свойственны уникальные черты, связанные с их пойкилотермностью, недетерминированным ростом и особой функцией скелетных мышц как депо пластических и энергетических субстратов. Скелетные мышцы рыб обладают высокой пластичностью, под которой подразумевается их способность к выраженным анаболическим и катаболическим изменениям при действии факторов внешней среды, включая температуру, фотопериод, доступность пищи и другие. В оптимальных (анаболических) условиях мышечная ткань рыб растет по путям гипертрофии и гиперплазии с чрезвычайно высокой скоростью, а в периоды онтогенеза, связанные с высокими энергозатратами – миграции, голодания, созревания половых продуктов – временно преобладает катаболизм скелетно-мышечных белков. Однако деградация мышечной ткани может быть настолько глубокой, что превышает ее регенеративную способность; по такому сценарию могут реализовываться генетические программы и ответные реакции на действие внешних факторов избыточной силы и продолжительности. Крайним и показательным примером мобилизации белковых резервов мышц и расходования результирующих аминокислот в процессах энергопродукции и синтеза стадиеспецифичных белков половых продуктов являются тихоокеанские лососи, степень истощения которых во время нереста настолько велика, что приводит к гибели особей. В обзоре также рассматриваются миопатии рыб и потенциал рыбных объектов для моделирования заболеваний человека.

https://doi.org/10.31857/S0869813921060091
PDF

Литература

Mommsen TP (2001) Paradigms of growth in fish. Comp Biochem Physiol B 129:207-219.https://doi.org/10.1016/s1096-4959(01)00312-8

Johnston IA (2006) Environment and plasticity of myogenesis in teleost fish. J Exp Biol 209:2249–2264. https://doi.org/10.1242/jeb.02153

Johnston IA, Bower NI, Macqueen DJ (2011) Growth and the regulation of myotomal muscle mass in teleost fish. J Exp Biol 214:1617-1628. doi:10.1242/jeb.038620

Valente LMP, Moutou KA, Conceicao LEC, Engrola S, Fernandes JMO, Johnston IA (2013) What determines growth potential and juvenile quality of farmed fish species? Rev Aquacult 5(S1):S168–S193.https://doi.org/10.1111/raq.12020

Mommsen TP (2004) Salmon spawning migration and muscle protein metabolism: the August Krogh principle at work. Comp Biochem Physiol B 139(3):383-400. https://doi.org/10.1016/j.cbpc.2004.09.018

Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. New York: Oxford Univer Press.

Garcia de la serrana D, Estévez A, Andree K, Johnston IA (2012) Fast skeletal muscle transcriptome of the Gilthead sea bream (Sparus aurata) determined by next generation sequencing. BMC Genomics 13:181. https://doi.org/10.1186/1471-2164-13-181

Cleveland BM, Weber GM (2011) Effects of sex steroids on indices of protein turnover in rainbow trout (Oncorhynchus mykiss) white muscle. Gen Comp Endocrinol 174:132–142.

Venugopal V, Shahidi F (1996) Structure and composition of fish muscle. Food Rev Int 12(2):175-197. https://doi.org/10.1080/87559129609541074

Macqueen DJ, Johnston IA (2014) A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc R Soc B 281:20132881. https://doi.org/10.1098/rspb.2013.2881

Macqueen DJ, Johnston IA (2006) A novel salmonid myoD gene is distinctly regulated during development and probably arose by duplication after the genome tetraploidization. FEBS Lett 580(21):4996–5002. https://doi.org/10.1016/j.febslet.2006.08.016

Churova M, Shulgina N, Kuritsyn A, Krupnova M, Nemova N (2020) Muscle-specific gene expression and metabolic enzyme activities in Atlantic salmon Salmo salar L. fry reared under different photoperiod regimes. Comp Biochem Physiol B 239:110330. https://doi.org/10.1016/j.cbpb.2019.110330

Vélez EJ, Lutfi E, Azizi Sh, Perelló M, Salmerón C, Riera-Codina M, Ibarz A, Fernández-Borràs J, Blasco J, Capilla E, Navarro I, Gutiérrez J (2017) Understanding fish muscle growth regulation to optimize aquaculture production. Aquaculture 467:28-40. https://doi.org/10.1016/j.aquaculture.2016.07.004

Vélez EJ, Lutfi E, Azizi Sh, Montserrat N, Riera-Codina M, Capilla E, Navarro I, Gutiérrez J (2016) Contribution of in vitro myocytes studies to understanding fish muscle physiology. Comp Biochem Physiol B. 199:67-73. https://doi.org/10.1016/j.cbpb.2015.12.003

Azizi Sh, Nematollahi MA, Mojazi Amiri B, Vélez EJ, Salmerón C, Chan SJ, Navarro I, Capilla E, Gutiérrez J (2016) IGF-I and IGF-II effects on local IGF system and signaling pathways in gilthead sea bream (Sparus aurata) cultured myocytes. Gen Comp Endocrinol 232:7-16. https://doi.org/10.1016/j.ygen.2015.11.011

Caldwell LK, Pierce AL, Nagler JJ (2013) Metabolic endocrine factors involved in spawning recovery and rematuration of iteroparous female rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 194:124–132. https://doi.org/10.1016/j.ygcen.2013.09.005

Steinbacher P, Marschallinger J, Obermayer A, Neuhofer A, Sänger AM, Stoiber W (2011) Temperature-dependent modification of muscle precursor cell behaviour is an underlying reason for lasting effects on muscle cellularity and body growth of teleost fish. J Exp Biol 214:1791–1801. https://doi.org/10.1242/jeb.050096

Rowlerson A, Veggetti A (2001) Cellular mechanism of post-embyonic muscle growth in aquaculture species. In: Fish Physiology: Muscle development and growth, 18: 103-132.

Froehlich JM, Fowler ZG, Galt NJ, Smith Jr DL, Biga PR (2013) Sarcopenia and piscines: the case for indeterminate-growing fish as unique genetic model organisms in aging and longevity research. Front Genet 4:159. https://doi.org/10.3389/fgene.2013.00159

Koganti P, Yao J, Cleveland BM (2021) Molecular mechanisms regulating muscle plasticity in fish. Animals 11:61. https://doi.org/10.3390/ani11010061

Gabillard J-C, Biga PR, Rescan P-Y, Seiliez I (2013) Revisiting the paradigm of myostatin in vertebrates: Insights from fishes. Gen Comp Endocrinol 194:45-54. https://doi.org/10.1016/j.ygcen.2013.08.012

Johnston IA, Manthri S, Alderson R, Smart A, Campbell P, Nickell D, Robertson B, Paxton CG, Burt ML (2003) Freshwater environment affects growth rate and muscle fibre recruitment in seawater stages of Atlantic salmon (Salmo salar). J Exp Biol 206:1337–1351. https://doi.org/10.1242/jeb.00262

Johnston IA, Lee HT, Macqueen DJ, Paranthaman K, Kawashima C, Anwar A, Kinghorn JR, Dalmay T (2009) Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes. J Exp Biol 212:1781–1793. https://doi.org/10.1242/jeb.029918

Hevrøy EM, Jordal A-EO, Hordvik I, Espe M, Hemre G-I, Olsvik PA (2006) Myosin heavy chain mRNA expression correlates higher with muscle protein accretion than growth in Atlantic salmon, Salmo salar. Aquaculture 252:453–461. https://doi.org/10.1016/j.aquaculture.2005.07.003

Imsland AK, Le François NR, Lammare SG, Ditlecadet D, Sigurðsson S, Foss A (2011) Myosin expression levels and enzyme activity in juvenile spotted wolfish (Anarhichas minor) muscle: a method for monitoring growth rates. Can J Fish Aquat Sci 63:1959–1967. https://doi.org/10.1139/f06-091

Peruzzi S, Puvanendran V, Riesen G, Seim RR, Hagen Ø, Martínez-Llorens S, Falk-Petersen I-B, Fernandes JMO, Jobling M (2018) Growth and development of skeletal anomalies in diploid and triploid Atlantic salmon (Salmo salar) fed phosphorus-rich diets with fish meal and hydrolyzed fish protein. PLoS One 13(3):e0194340. https://doi.org/10.1371/journal.pone.0194340

Du SJ, Gong ZY, Fletcher GL, Shears MA, King MJ, Idler DR, Hew CL (1992) Growth enhancement in transgenic Atlantic salmon by the use of an "all fish" chimeric growth hormone gene construct. Biotechnology (NY) 10(2):176-181. https://doi.org/10.1038/nbt0292-176.

Phelps MP, Jaffe IM, Bradley TM (2013) Muscle growth in teleost fish is regulated by factors utilizing the activin II B receptor. J Exp Biol 216:3742-3750. https://doi.org/10.1242/jeb.086660

Bassett D, Currie PD (2004) Identification of a zebrafish model of muscular dystrophy. Clin Exp Pharmacol Physiol 31(8):537-540. https://doi.org/10.1111/j.1440-1681.2004.04030.x

Spencer MJ, Tidball JG (1992) Calpain concentration is elevated although net calcium-dependent proteolysis is suppressed in dystrophin-deficient muscle. Exp Cell Res 203:107–114. https://doi.org/10.1016/0014-4827(92)90045-a

Goll DE, Neti G, Mares SW, Thompson VF (2008) Myofibrillar protein turnover: the proteasome and the calpains. J Anim Sci 86:E19–Е35. https://doi.org/10.2527/jas.2007-0395.

Nemova NN, Lysenko LA, Kantserova NP (2010) Proteases of the calpain family: structure and functions. Russ J Dev Biol 41(5):318-325. https://doi.org/10.1134/S1062360410050073

Salmerón C, García de la serrana D, Jiménez-Amilburu V, Fontanillas R, Navarro I, Johnston IA, Gutiérrez J, Capilla E (2013) Characterisation and expression of calpain family members in relation to nutritional status, diet composition and flesh texture in gilthead sea bream (Sparus aurata). PLoS ONE 8(9):e75349. https://doi.org/10.1371/journal.pone.0075349

Sandri M (2013) Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45(10):2121-2129. https://doi.org/10.1016/j.biocel.2013.04.023

Salem M, Kenney PB, Rexroad CE, Yao J (2006) Molecular characterization of muscle atrophy and proteolysis associated with spawning in rainbow trout. Comp Biochem Physiol D 1(2):227-237. https://doi.org/10.1016/j.cbd.2005.12.003

Seiliez I, Dias K, Cleveland BM (2014) Contribution of the autophagy-lysosomal and ubiquitin-proteasomal proteolytic systems to total proteolysis in rainbow trout (Oncorhynchus mykiss) myotubes. Am J Physiol Regul Integr Comp Physiol 307:R1330 –R1337. https://doi.org/10.1152/ajpregu.00370.2014

Chen Y, Klionsky DJ (2011) The regulation of autophagy – unanswered questions. J Cell Sci 124:161–170. https://doi.org/10.1242/jcs.064576

Nielsen LB, Nielsen HH (2001) Purification and characterization of cathepsin D from herring muscle (Clupea harengus). Comp Biochem Physiol B 128:351-363. https://doi.org/10.1016/s1096-4959(00)00332-8

Seiliez I, Gabillard JC, Riflade M, Sadoul B, Dias K, Avérous J, Tesseraud S, Skiba S, Panserat S (2012) Amino acids downregulate the expression of several autophagy-related genes in rainbow trout myoblasts. Autophagy 8:364–375. https://doi.org/10.4161/auto.18863

Ardley HC, Robinson PA (2005) E3 ubiquitin ligases. The ubiquitin-proteasome system. Essays Biochem 41:15–30. https://doi.org/10.1042/EB0410015

Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18(1):39-51. https://doi.org/10.1096/fj.03-0610

Cleveland BM, Evenhuis JP (2010) Molecular characterization of atrogin-1/Fbox protein-32 (FBXO32) and F-box protein-25 (FBXO25) in rainbow trout (Oncorhynchus mykiss): expression across tissues in response to feed deprivation. Comp Biochem Physiol B 157:248–257. https://doi.org/10.1016/j.cbpb.2010.06.010

Lui JC, Baron J (2011) Mechanisms limiting body growth in mammals. Endocr Rev 32(3):422-40. https://doi.org/10.1210/er.2011-0001

Macqueen DJ, Robb D, Johnston IA (2007) Temperature influences the coordinated expression of myogenic regulatory factors during embryonic myogenesis in Atlantic salmon (Salmo salar L.). J Exp Biol 210:2781–2794. https:.doi.org/10.1242/jeb.006981

Johnston IA, Manthri S, Smart A, Campbell P, Nickell D, Alderson R (2003) Plasticity of muscle fibre number in seawater stages of Atlantic salmon in response to photoperiod manipulation. J Exp Biol 206:3425-3435. https://doi.org/10.1242/jeb.00577

Rolland M, Dalsgaard J, Holm J, Gómez-Requeni P, Skov PV (2015) Dietary methionine level affects growth performance and hepatic gene expression of GH–IGF system and protein turnover regulators in rainbow trout (Oncorhynchus mykiss) fed plant protein-based diets. Comp Biochem Physiol B 181:33–41. https://doi.org/10.1016/j.cbpb.2014.11.009

Buas MF, Kadesch T (2010) Regulation of skeletal myogenesis by Notch. Exp Cell Res 18:3028–3033. https://doi.org/10.1016/j.yexcr.2010.05.002

Kantserova N. Lysenko L, Nemova N (2018) Relationship of growth rate and muscle protein turnover in Atlantic salmon Salmo salar L. under natural and artificial photoperiods. FEBS Open Bio. 8(S1):407. https://doi.org/10.1002/2211-5463.12453.

Imsland AKD, Roth B, Døskeland I, Fjelldal PG, Stefansson SO, Handeland S, Mikalsen B (2019) Flesh quality of Atlantic salmon smolts reared at different temperatures and photoperiods. Aquacult Res 1–7. https://doi.org/10.1111/are.14058

Hermelink B, Wuertz S, Trubiroha A, Rennert B, Kloas W, Schulz C (2011) Influence of temperature on puberty and maturation of pikeperch, Sander lucioperca. Gen Comp Endocrinol 172:282–292. https://doi.org/10.1016/j.ygcen.2011.03.013

Morro B, Balseiro P, Albalat A, Pedrosa C, Mackenzie S, Nakamura C, Shimizu M, Nilsen TO, Sveier H, Ebbesson LO, Handeland SO (2019) Effects of different photoperiod regimes on the smoltification and seawater adaptation of seawater-farmed rainbow trout (Oncorhynchus mykiss): Insights from Na+, K+–ATPase activity and transcription of osmoregulation and growth regulation genes. Aquaculture 507:282–292. https://doi.org/10.1016/j.aquaculture.2019.04.039

McCormick SD, Björnsson B Th, Sheridan M, Eilertson C, Carey JB, O’Dea M (1995) Increased daylength stimulates plasma growth hormone and gill Na+, K+-ATPase in Atlantic salmon (Salmo salar). J Comp Physiol B 165:245–254.

Kendall NW, McMillan JR, Sloat MR, Buehrens TW, Quinn TP, Pess GR, Kuzishchin KV, McClure MM, Zabel RW (2015) Anadromy and residency in steelhead and rainbow trout (Oncorhynchus mykiss): a review of the processes and patterns. Can J Fish Aquat Sci 72(3):319–342. https://doi.org/10.1139/cjfas-2014-0192

Kantserova NP, Lysenko LA, Veselov AE, Nemova NN (2017) Protein degradation systems in the skeletal muscles of parr and smolt Atlantic salmon Salmo salar L. and brown trout Salmo trutta L. Fish Physiol Biochem 43(4):1187-1194. https://doi.org/10.1007/s10695-017-0364-1

Lysenko LA, Kantserova NP, Kaivarainen HI, Krupnova MJ, Nemova NN (2017) Skeletal muscle protease activities in the early growth and development of wild Atlantic salmon (Salmo salar L.). Comp Biochem Physiol B 211С:22-28. https://doi.org/10.1016/j.cbpb.2017.05.001

Tokarz J, Möller G, Hrabě de Angelis M, Adamski J (2015) Steroids in teleost fishes: A functional point of view. Steroids 103:123–144. https://doi.org/10.1016/j.steroids.2015.06.011

Cleveland BM, Weber GM (2016) Effects of steroid treatment on growth, nutrient partitioning, and expression of genes related to growth and nutrient metabolism in adult triploid rainbow trout (Oncorhynchus mykiss). Domest Anim Endocrinol 56:1-12. https://doi.org/10.1016/j.domaniend.2016.01.001

Youngson AF, McLay HA, Wright RS, Johnstone R (1988) Steroid hormone levels and patterns of growth in the early part of the reproductive cycle of adult Atlantic salmon (Salmo salar L.). Aquaculture 69:145–152. https://doi.org/10.1016/0044-8486(88)90193-7

Lubzens E, Young G, Bobe J, Cerda J (2010) Oogenesis in teleosts: how eggs are formed. Gen Comp Endocrinol 165:367–389. https://doi.org/10.1016/j.ygcen.2009.05.022

Manor M, Weber GM, Salem M, Yao J, Aussanasuwannakul A, Kenney B (2012) Effect of sexual maturation and triploidy on chemical composition and fatty acid content of energy stores in female rainbow trout, Oncorhynchus mykiss. Aquaculture 364–365:312-321. https://doi.org/10.1016/j.aquaculture.2012.08.012

Olin T, Nazar DS, von der Decken A (1991) Response of epaxial muscle and liver to 17-β estradiol in fed and starved Atlantic salmon (Salmo salar). Aquaculture 99:179-191. https://doi.org/10.1016/0044-8486(91)90297-K

Toyohara H, Ito K, Ando M, Kinoshita M, Shimizu Y, Sakaguchi M (1991) Effect of maturation on activities of various proteases and protease inhibitors in the muscle of ayu (Plecoglossus altivelis). Comp Biochem Physiol B 99(2):419–424. https://doi.org/10.1016/0305-0491(91)90064-k.

Silva LA, Silveira PCL, Ronsani MM, Souza PS, Scheffer D., Vieira LC, Benetti M, De Souza CT, Pinho RA (2011) Taurine supplementation decreases oxidative stress in skeletal muscle after eccentric exercise. Cell Biochem Funct 29:43–49.https://doi.org/10.1002/cbf.1716

Yamashita M, Konagaya S (1992) Differentiation and localization of catheptic proteinases responsible for extensive autolysis of mature chum salmon muscle (Oncorhynchus keta). Comp Biochem Physiol B 103(4):999-1003. doi:10.1016/0305-0491(92)90229-K

Alami-Durante H, Médale F, Cluzeaud M, Kaushik SJ (2010) Skeletal muscle growth dynamics and expression of related genes in white and red muscles of rainbow trout fed diets with graded levels of a mixture of plant protein sources as substitutes for fishmeal. Aquaculture 303:50–58. https://doi.org/10.1016/j.aquaculture.2010.03.012

Nakashima K, Komatsu T, Yamazaki M, Abe H (2005) Effects of fasting and refeeding on expression of proteolytic-related genes in skeletal muscle of chicks. J Nutr Sci Vitaminol (Tokyo) 51(4):248–253. https://doi.org/10.3177/jnsv.51.248

Salem M, Silverstein J, Rexroad CE III, Yao J (2007) Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss). BMC Genomics 8:328. https://doi.org/10.1186/1471-2164-8-328

Salem M, Kenney PB, Rexroad CE, Yao J (2006) Microarray gene expression analysis in atrophying rainbow trout muscle: a unique nonmammalian muscle degradation model. Physiol Genomics 28:33–45. https://doi.org/10.1152/physiolgenomics.00114.2006

Dzeja P, Terzic A (2009) Adenylate kinase and AMP signalling networks: metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci 10:1729–1772. https://doi.org/10.3390/ijms10041729

Preziosa E, Liu S, Terova G, Gao X, Liu H, Kucuktas H, Terhune J, Liu Z (2013) Effect of nutrient restriction and re-feeding on calpain family genes in skeletal muscle of channel catfish (Ictalurus punctatus). PLoS ONE 8(3):e59404. https://doi.org/10.1371/journal.pone.0059404

Paneru B, Ali A, Al-Tobasei R, Kenney B, Salem M (2018) Crosstalk among lncRNAs, microRNAs and mRNAs in the muscle ‘degradome’ of rainbow trout. Scient Rep 8:8416. https://doi.org/10.1038/s41598-018-26753-2

Tripathi G, Verma P (2003) Starvation-induced impairment of metabolism in a freshwater catfish. Z Naturforsch C J Biosci 58(5-6):446–451. https://doi.org/10.1515/znc-2003-5-626

Seear PJ, Carmichael SN, Talbot R, Taggart JB, Bron JE, Sweeney GE (2010) Differential gene expression during smoltification of Atlantic salmon (Salmo salar L.): a first large-scale microarray study. Mar Biotechnol 12:126–140. https://doi.org/10.1007/s10126-009-9218-x

Somero GN, Yancey PH (2011) Osmolytes and cell-volume regulation: physiological and evolutionary principles. In: Comprehensive Physiology. Suppl. 31. Handbook of Physiology, Cell Physiology. John Wiley & Sons, Inc 441–484. doi.org/10.1002/cphy.cp140110

Lajus DL, Lysenko LA, Kantserova NP, Tushina ED, Ivanova TS, Nemova NN (2020) Spatial heterogeneity and temporal dynamics of protein-degrading activity and life-history traits in the threespine stickleback Gasterosteus aculeatus. Int Aquat Res 12:161-170. https://doi.org/10.22034/IAR.2020.1894323.1019

Golovin PV, Bakhvalova AE, Ivanov MV, Ivanova TS, Smirnova KA, Lajus DL (2019) Sex-biased mortality of marine threespine stickleback Gasterosteus aculeatus L. during their spawning period in the White Sea. Evol Ecol Res 20:279-295.

Saito M, Sato K, Kunisaki N, Kimura S (2000) Characterization of a rainbow trout matrix metalloproteinase capable of degrading type I collagen. Eur J Biochem 267:6943– 6950. https://doi.org/10.1046/j.1432-1033.2000.01807.x

Crespi BJ, Teo R (2002) Comparative phylogenetic analysis of the evolution of semelparity and life history in salmonid fishes. Evolution 56(5):1008–1020. https://doi.org/10.1111/j.0014-3820.2002.tb01412.x

Bassett D, Currie PD (2004) Identification of a zebrafish model of muscular dystrophy. Clin Exp Pharmacol Physiol 31(8):537-540. https://doi.org/10.1111/j.1440-1681.2004.04030.x

Coffey EC, Pasquarella ME, Goody MF, Henry CA (2018) Ethanol exposure causes muscle degeneration in zebrafish. J Dev Biol 6(7). doi:10.3390/jdb6010007

Kongtorp RT, Kjerstad A, Taksdal T, Guttvik A, Falk K (2004) Heart and skeletal muscle inflammation in Atlantic salmon, Salmo salar L: a new infectious disease. J Fish Dis 27(6):351–358. https://doi.org/10.1111/j.1365-2761.2004.00549.x

Kuz'min EV, Kuz'mina OYu (2001) Activities of lactate and malate dehydrogenase of the sterlet and Russian sturgeon under conditions of massive spread of muscle pathology. J Evol Biochem Physiol 37(1):35-42.