ОГРАНИЧЕНИЕ ДВИГАТЕЛЬНОЙ АКТИВНОСТИ И СИНТЕЗ БЕЛКА В ПОСТУРАЛЬНЫХ И ЛОКОМОТОРНЫХ МЫШЦАХ
PDF

Ключевые слова

камбаловидная мышца
длинный разгибатель пальцев
ограничение двигательной активности
синтез белка
eEF2
p70S6k

Как цитировать

Белова, С. П., Тыганов, С. А., Мочалова, Е. П., & Шенкман, Б. С. (2021). ОГРАНИЧЕНИЕ ДВИГАТЕЛЬНОЙ АКТИВНОСТИ И СИНТЕЗ БЕЛКА В ПОСТУРАЛЬНЫХ И ЛОКОМОТОРНЫХ МЫШЦАХ. Российский физиологический журнал им. И. М. Сеченова, 107(6-7), 842–853. https://doi.org/10.31857/S0869813921060029

Аннотация

В связи с урбанизацией, автоматизацией и механизацией труда, тяжелой эпидемиологической обстановкой и самоизоляцией у современного человека снижается уровень ежедневной физической активности. Цель исследования состояла в изучении влияния ограничения двигательной активности на процессы синтеза белка в постуральных и локомоторных мышцах. Проведен эксперимент с ограничением двигательной активности продолжительностью 21 день на крысах линии Вистар. Интенсивность синтеза белка и анаболические сигнальные пути исследовались на камбаловидной мышце (m. soleus), преимущественно состоящей из медленных волокон, и длинном разгибателе пальцев (m. EDL), преимущественно из быстрых волокон. Масса m. soleus и m. EDL была снижена, а достоверное снижение интенсивности синтеза белка наблюдалось только в m.EDL. Также наблюдалось снижение фосфорилирования S6 рибосомального белка только в быстрой мышце. При этом в m. soleus наблюдалось достоверное снижение фосфорилирования GSK3β в отличие от m. EDL. Кроме того, были изучены маркеры распада белка. В эксперименте наблюдалось снижение экспрессии MuRF-1 в m. soleus и Atrogin-1/MAFbx в m. EDL, а также рост экспрессии кальпаинов в m. soleus. Таким образом, атрофические процессы при ограничении активности в быстрой и медленной мышце определяются разными сигнальными механизмами.

https://doi.org/10.31857/S0869813921060029
PDF

Литература

Shenkman BS (2020) How Postural Muscle Senses Disuse? Early Signs and Signals. Int J Mol Sci 21 (14):10. https://doi.org/3390/ijms21145037

Krogh-Madsen R, Thyfault JP, Broholm C, Mortensen OH, Olsen RH, Mounier R, Plomgaard P, van Hall G, Booth FW, Pedersen BK (2010) A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity. J Appl Physiol 108 (5):1034-1040. https://doi.org/10.1152/japplphysiol.00977.2009

Oikawa SY, Holloway TM, Phillips SM (2019) The Impact of Step Reduction on Muscle Health in Aging: Protein and Exercise as Countermeasures. Front Nutrit 6 (75). https://doi.org/10.3389/fnut.2019.00075

Fisher SR, Goodwin JS, Protas EJ, Kuo YF, Graham JE, Ottenbacher KJ, Ostir GV (2011) Ambulatory activity of older adults hospitalized with acute medical illness. J Am Geriatr Soc 59 (1):91-95. https://doi.org/10.1111/j.1532-5415.2010.03202.x

Shad BJ, Thompson JL, Holwerda AM, Stocks B, Elhassan YS, Philp A, van Loon LJC, Wallis GA (2019) One Week of Step Reduction Lowers Myofibrillar Protein Synthesis Rates in Young Men. Med Sci Sports Exerc 51(10):2125-2134. https://doi.org/1249/MSS.0000000000002034

Reid KF, Pasha E, Doros G, Clark DJ, Patten C, Phillips EM, Frontera WR, Fielding RA (2014) Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur J Appl Physiol 114 (1):29-39. https://doi.org/10.1007/s00421-013-2728-2

Devries MC, Breen L, Von Allmen M, MacDonald MJ, Moore DR, Offord EA, Horcajada MN, Breuille D, Phillips SM (2015) Low-load resistance training during step-reduction attenuates declines in muscle mass and strength and enhances anabolic sensitivity in older men. Physiol Rep 3 (8):e12493. https://doi.org/10 14814/phy2.12493

Belozerova IN, Nemirovskaya TL, Shenkman BS, Kozlovskaya IB (2003) Characteristic of changes in the structure and metabolism of the vastus lateralis muscles in monkeys after space flight. Neurosci Behav Physiol 33 (7):735-740. https://doi.org/10.1023/a:1024429311622

Shenkman BS, Belozerova IN, Lee P, Nemirovskaya TL, Kozlovskaya IB (2003) Effects of weightlessness and movement restriction on the structure and metabolism of the soleus muscle in monkeys after space flight. Neurosci Behav Physiol 33 (7):717-722. https://doi.org/10.1023/a:1024473126643

Takemura A, Roy RR, Edgerton VR, Ishihara A (2016) Biochemical Adaptations in a Slow and a Fast Plantarflexor Muscle of Rats Housed in Small Cages. Aerospace Med Human Perform 87 (5):443-448. https://doi.org/10.3357/AMHP.4436.2016

Goodman CA, Mabrey DM, Frey JW, Miu MH, Schmidt EK, Pierre P, Hornberger TA (2011) Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. FASEB 25 (3):1028-1039. https://doi.org/10.1096/fj.10-168799

Tyganov SA, Mochalova EP, Belova SP, Sharlo KA, Rozhkov SV, Vilchinskaya NA, Paramonova, II, Mirzoev TM, Shenkman BS (2019) Effects of Plantar Mechanical Stimulation on Anabolic and Catabolic Signaling in Rat Postural Muscle Under Short-Term Simulated Gravitational Unloading. Front Phys 10:1252. https://doi.org/10.3389/fphys.2019.01252

Belova SP, Mochalova EP, Kostrominova TY, Shenkman BS, Nemirovskaya TL (2020) P38alpha-MAPK Signaling Inhibition Attenuates Soleus Atrophy during Early Stages of Muscle Unloading. IJMS 21 (8):2756. https://doi.org/10.3390/ijms21082756

Mirzoev T, Tyganov S, Vilchinskaya N, Lomonosova Y, Shenkman B (2016) Key Markers of mTORC1-Dependent and mTORC1-Independent Signaling Pathways Regulating Protein Synthesis in Rat Soleus Muscle During Early Stages of Hindlimb Unloading. Cell Physiol Biochem 39 (3):1011-1020. https://doi.org/10.1159/000447808

Wang XD, Kawano F, Matsuoka Y, Fukunaga K, Terada M, Sudoh M, Ishihara A, Ohira Y (2006) Mechanical load-dependent regulation of satellite cell and fiber size in rat soleus muscle. AJP 290 (4):C981-989. https://doi.org/10.1152/ajpcell.00298.2005

da Silva CA, Guirro RR, Polacow ML, Cancelliero KM, Durigan JL (2006) Rat hindlimb joint immobilization with acrylic resin orthoses. Braz J Med Biol Res 39 (7):979-985. https://doi.org/10.1590/s0100-879x2006000700016

Marmonti E, Busquets S, Toledo M, Ricci M, Beltra M, Gudino V, Oliva F, Lopez-Pedrosa JM, Manzano M, Rueda R, Lopez-Soriano FJ, Argiles JM (2017) A Rat Immobilization Model Based on Cage Volume Reduction: A Physiological Model for Bed Rest? Front Phys 8:184. https://doi.org/10.3389/fphys.2017.00184

Phillips SM, Glover EI, Rennie MJ (2009) Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Phys 107 (3):645-654. https://doi.org/10.1152/japplphysiol.00452.2009

Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Phys Endocrin Metab 307 (6):E469-E484. https://doi.org/10.1152/ajpendo.00204.2014

Loughna P, Goldspink G, Goldspink DF (1986) Effect of inactivity and passive stretch on protein turnover in phasic and postural rat muscles. J Appl Phys 61 (1):173-179. https://doi.org/10.1152/jappl.1986.61.1.173

Fluckey JD, Dupont-Versteegden EE, Montague DC, Knox M, Tesch P, Peterson CA, Gaddy-Kurten D (2002) A rat resistance exercise regimen attenuates losses of musculoskeletal mass during hindlimb suspension. Acta Phys Scand 176 (4):293-300. https://doi.org/10.1046/j.1365-201X.2002.01040.x

Fluckey JD, Dupont-Versteegden EE, Knox M, Gaddy D, Tesch PA, Peterson CA (2004) Insulin facilitation of muscle protein synthesis following resistance exercise in hindlimb-suspended rats is independent of a rapamycin-sensitive pathway. Am J Phys Endocrin Metab 287 (6):E1070-1075. https://doi.org/10.1152/ajpendo.00329.2004

You JS, Anderson GB, Dooley MS, Hornberger TA (2015) The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice. Disease Models Mechanisms 8 (9):1059-1069. https://doi.org/10.1242/dmm.019414

Tyganov SA, Mochalova EP, Belova SP, Sharlo KA, Rozhkov SV, Vilchinskaya NA, Paramonova II, Mirzoev TM, Shenkman BS (2019) Effects of Plantar Mechanical Stimulation on Anabolic and Catabolic Signaling in Rat Postural Muscle Under Short-Term Simulated Gravitational Unloading. Front Phys 10:1252. https://doi.org/10.3389/fphys.2019.01252

Munoz KA, Satarug S, Tischler ME (1993) Time course of the response of myofibrillar and sarcoplasmic protein metabolism to unweighting of the soleus muscle. Metab Clin Exp 42 (8):1006-1012. https://doi.org/10.1016/0026-0495(93)90014-f

Wineski LE, von Deutsch DA, Abukhalaf IK, Pitts SA, Potter DE, Paulsen DF (2002) Muscle-specific effects of hindlimb suspension and clenbuterol in mature male rats. Cells, Tissues, Organs 171 (2-3):188-198. https://doi.org/10.1159/000063712

Ferrando AA, Lane HW, Stuart CA, Davis-Street J, Wolfe RR (1996) Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am J Phys 270 (4 Pt 1):E627-E633. https://doi.org/10.1152/ajpendo.1996.270.4.E627

Kobayashi Y, Watanabe N, Kitakaze T, Sugimoto K, Izawa T, Kai K, Harada N, Yamaji R (2020) Oleamide rescues tibialis anterior muscle atrophy of mice housed in small cages. Br J Nutr 1-35. https://doi.org/10.1017/S0007114520004304

Brocca L, Cannavino J, Coletto L, Biolo G, Sandri M, Bottinelli R, Pellegrino MA (2012) The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms. J Phys 590 (20):5211-5230. https://doi.org/10.1113/jphysiol.2012.240267

Sharlo K, Paramonova I, Turtikova O, Tyganov S, Shenkman B (2019) Plantar mechanical stimulation prevents calcineurin-NFATc1 inactivation and slow-to-fast fiber type shift in rat soleus muscle under hindlimb unloading. J Appl Phys 126 (6):1769-1781. https://doi.org/10.1152/japplphysiol.00029.2019

Yokoyama S, Ohno Y, Egawa T, Yasuhara K, Nakai A, Sugiura T, Ohira Y, Yoshioka T, Okita M, Origuchi T, Goto K (2016) Heat shock transcription factor 1-associated expression of slow myosin heavy chain in mouse soleus muscle in response to unloading with or without reloading. Acta Phys 217 (4):325-337. https://doi.org/10.1111/apha.12692

Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29 (2):95-102. https://doi.org/10.1016/j.tibs.2003.12.004

Drenning JA, Lira VA, Simmons CG, Soltow QA, Sellman JE, Criswell DS (2008) Nitric oxide facilitates NFAT-dependent transcription in mouse myotubes. Am J Phys 294 (4):C1088-C1095. https://doi.org/10.1152/ajpcell.00523.2007

Shenkman BS, Belova SP, Lomonosova YN, Kostrominova TY, Nemirovskaya TL (2015) Calpain-dependent regulation of the skeletal muscle atrophy following unloading. Arch Biochem Biophys 584:36-41. https://doi.org/10.1016/j.abb.2015.07.011

Hornberger TA, Hunter RB, Kandarian SC, Esser KA (2001) Regulation of translation factors during hindlimb unloading and denervation of skeletal muscle in rats. Am J Phys 281 (1):C179-C187. https://doi.org/10.1152/ajpcell.2001.281.1.C179

Miranda L, Horman S, De Potter I, Hue L, Jensen J, Rider MH (2008) Effects of contraction and insulin on protein synthesis, AMP-activated protein kinase and phosphorylation state of translation factors in rat skeletal muscle. Pflugers Arch Eur J Phys 455 (6):1129-1140. https://doi.org/10.1007/s00424-007-0368-2

Lomonosova YN, Belova SP, Mirzoev TM, Kozlovskaya IB, Shenkman BS (2017) Eukaryotic elongation factor 2 kinase activation in M. soleus under 14-day hindlimb unloading of rats. Dokl Biochem Biophys 474 (1):165-167. https://doi.org/10.1134/S1607672917030048

Carlberg U, Nilsson A, Nygard O (1990) Functional properties of phosphorylated elongation factor 2. Eur J Biochem 191 (3):639-645. https://doi.org/10.1111/j.1432-1033.1990.tb19169.x

Roux PP, Topisirovic I (2018) Signaling Pathways Involved in the Regulation of mRNA Translation. Mol Cell Biol 38 (12):e 00070-18. https://doi.org/10.1128/MCB.00070-18

de Boer MD, Selby A, Atherton P, Smith K, Seynnes OR, Maganaris CN, Maffulli N, Movin T, Narici MV, Rennie MJ (2007) The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J Phys 585 (Pt 1):241-251. https://doi.org/10.1113/jphysiol.2007.142828

Huang J, Zhu X (2016) The molecular mechanisms of calpains action on skeletal muscle atrophy. Phys Res 65 (4):547-560. https://doi.org/10 33549/physiolres.933087

Aweida D, Rudesky I, Volodin A, Shimko E, Cohen S (2018) GSK3-beta promotes calpain-1-mediated desmin filament depolymerization and myofibril loss in atrophy. J Cell Biol 10:3698-3714. https://doi.org/10.1083/jcb.201802018