РОЛЬ ГИСТОНДЕАЦЕТИЛАЗ I И IIa (HDAC1, HDAC4/5) И СИГНАЛЬНОГО ПУТИ MAPK38 В РЕГУЛЯЦИИ АТРОФИЧЕСКИХ ПРОЦЕССОВ ПРИ ФУНКЦИОНАЛЬНОЙ РАЗГРУЗКЕ СКЕЛЕТНЫХ МЫШЦ
PDF

Ключевые слова

скелетные мышцы
функциональная разгрузка мышц
Е3-лигазы
HDAC I
HDAC4/5
p38MAPK

Как цитировать

Немировская, Т. Л. (2021). РОЛЬ ГИСТОНДЕАЦЕТИЛАЗ I И IIa (HDAC1, HDAC4/5) И СИГНАЛЬНОГО ПУТИ MAPK38 В РЕГУЛЯЦИИ АТРОФИЧЕСКИХ ПРОЦЕССОВ ПРИ ФУНКЦИОНАЛЬНОЙ РАЗГРУЗКЕ СКЕЛЕТНЫХ МЫШЦ. Российский физиологический журнал им. И. М. Сеченова, 107(6-7), 773–784. https://doi.org/10.31857/S086981392106008X

Аннотация

Различные формы функциональной разгрузки мышц можно обнаружить у больных при длительном постельном режиме, при инсультах и спинальных поражениях, во время иммобилизации мышц в травматологии, в условиях невесомости и т.п. В основном при разгрузке страдают постуральные мышцы (например, камбаловидная мышца –m. soleus). В основе перестройки скелетных мышц при функциональной разгрузке лежит их атрофия из-за увеличения протеолиза и падения интенсивности белкового синтеза [1, 2]. Обзор посвящён исследованию роли гистондеацетилаз I и IIa (HDAC1,HDAC 4/5), а также сигнального пути MAPK38 в активации транскрипционных факторов FOXO и миогенина, которые участвуют в экспрессии генов Е3 убиквитинлигаз atrogin-1, MuRF-1 при функциональной разгрузке скелетных мышц.

https://doi.org/10.31857/S086981392106008X
PDF

Литература

Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 307 (6):E469-484. doi:10.1152/ajpendo.00204.2014

Baehr LM, West DWD, Marshall AG, Marcotte GR, Baar K, Bodine SC (2017) Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats. J Appl Physiol 122 (5):1336-1350. doi:10.1152/japplphysiol.00703.2016

Baldwin KM, Haddad F (2002) Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. Am J Phys Med Rehabil 81 (11 Suppl):S40-S51. doi:10.1097/01.PHM.0000029723.36419.0D

Fitts RH, Riley DR, Widrick JJ (2000) Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol 89 (2):823-839. doi:10.1152/jappl.2000.89.2.823

Fluck M, Hoppeler H (2003) Molecular basis of skeletal muscle plasticity--from gene to form and function. Rev Physiol Biochem Pharmacol 146 159-216. doi:10.1007/s10254-002-0004-7

Glass DJ (2003) Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 5 (2):87-90. doi:10.1038/ncb0203-87

Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287 (4):C834-C843. doi:10.1152/ajpcell.00579.2003

Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185 (6):1083-1095. doi:10.1083/jcb.200901052

Baldwin KM, Herrick RE, Ilyina-Kakueva E, Oganov VS (1990) Effects of zero gravity on myofibril content and isomyosin distribution in rodent skeletal muscle. FASEB J 4 (1):79-83. doi:10.1096/fasebj.4.1.2136840

Solomon V, Goldberg AL (1996) Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J Biol Chem 271 (43):26690-26697. doi:10.1074/jbc.271.43.26690

Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ (2007) The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6 (5):376-385. doi:10.1016/j.cmet.2007.09.009

Attaix D, Baracos VE (2010) MAFbx/Atrogin-1 expression is a poor index of muscle proteolysis. Curr Opin Clin Nutr Metab Care 13 (3):223-224. doi:10.1097/MCO.0b013e328338b9a6

Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294 (5547):1704-1708. doi:10.1126/science.1065874

Kachaeva EV, Shenkman BS (2012) Various jobs of proteolytic enzymes in skeletal muscle during unloading: facts and speculations. J Biomed Biotechnol 2012:493618. doi:10.1155/2012/493618)

Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117 (3):399-412. doi:10.1016/s0092-8674(04)00400-3

Shenkman BS, Belova SP, Lomonosova YN, Kostrominova TY, Nemirovskaya TL (2015) Calpain-dependent regulation of the skeletal muscle atrophy following unloading. Arch Biochem Biophys 584:36-41. doi:10.1016/j.abb.2015.07.011

Belova SP, Shenkman BS, Kostrominova TY, Nemirovskaya TL (2017) Paradoxical effect of IKKbeta inhibition on the expression of E3 ubiquitin ligases and unloading-induced skeletal muscle atrophy. Physiol Rep 5 (16):e13291. doi:10.14814/phy2.13291

McGee SL, Hargreaves M (2010) Histone modifications and skeletal muscle metabolic gene expression. Clin Exp Pharmacol Physiol 37 (3):392-396. doi:10.1111/j.1440-1681.2009.05311.x

Gaur V, Connor T, Sanigorski A, Martin SD, Bruce CR, Henstridge DC, Bond ST, McEwen KA, Kerr-Bayles L, Ashton TD, Fleming C, Wu M, Pike Winer LS, Chen D, Hudson GM, Schwabe JWR, Baar K, Febbraio MA, Gregorevic P, Pfeffer FM, Walder KR, Hargreaves M, McGee SL (2016) Disruption of the Class IIa HDAC Corepressor Complex Increases Energy Expenditure and Lipid Oxidation. Cell Rep 16 (11):2802-2810. doi:10.1016/j.celrep.2016.08.005

Астратенкова ИВ, Рогозкин ВА (2016) Сигнальные пути, участвующие в регуляции метаболизма белков скелетных мышц. Рос физиол журн им ИМ Сеченова 102 (7):753-772. [Astratenkova IV, Rogozkin VA (2016) Signaling Pathways Involved in the Regulation of Protein Metabolism in Skeletal Muscle. Russ J Physiol 102 (7):753-772. (In Russ).]

Астратенкова ИВ, Рогозкин ВА (2017) Роль ацетилирования/деацетилирования гистонов и транскрипционных факторов в регуляции метаболизма в скелетных мышцах. Рос физиол журн им ИМ Сеченова 103(6): 593-605. [Astratenkova IV, Rogozkin VA (2017) The role of acetylation /deacetylation of histones and transcription factors in the regulation of skeletal muscle metabolism. Russ J Physiol 103 (6):593-605. (In Russ)].

Liu Y, Shen T, Randall WR, Schneider MF (2005) Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle. J Muscle Res Cell Motil 26 (1):13-21. doi:10.1007/s10974-005-9002-0

Shenkman BS, Nemirovskaya TL (2008) Calcium-dependent signaling mechanisms and soleus fiber remodeling under gravitational unloading. J Muscle Res Cell Motil 29 (6-8):221-230. doi:10.1007/s10974-008-9164-7

Brocca L, Toniolo L, Reggiani C, Bottinelli R, Sandri M, Pellegrino MA (2017) FoxO-dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension. J Physiol 595 (4):1143-1158. doi:10.1113/JP273097

Beharry AW, Sandesara PB, Roberts BM, Ferreira LF, Senf SM, Judge AR (2014) HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. J Cell Sci 127 (Pt 7):1441-1453. doi:10.1242/jcs.136390

Peris-Moreno D, Taillandier D, Polge C (2020) MuRF1/TRIM63, Master Regulator of Muscle Mass. Int J Mol Sci 21 (18):6663. doi:10.3390/ijms21186663

Bertaggia E, Coletto L, Sandri M (2012) Posttranslational modifications control FoxO3 activity during denervation. Am J Physiol Cell Physiol 302 (3):C587-C596. doi:10.1152/ajpcell.00142.2011

Mochalova EP, Belova SP, Mirzoev TM, Shenkman BS, Nemirovskaya TL (2019) Atrogin-1/MAFbx mRNA expression is regulated by histone deacetylase 1 in rat soleus muscle under hindlimb unloading. Sci Rep 9 (1):10263. doi:10.1038/s41598-019-46753-0

Senf SM, Sandesara PB, Reed SA, Judge AR (2011) p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. Am J Physiol Cell Physiol 300 (6):C1490-C1501. doi:10.1152/ajpcell.00255.2010

Moresi V, Williams AH, Meadows E, Flynn JM, Potthoff MJ, McAnally J, Shelton JM, Backs J, Klein WH, Richardson JA, Bassel-Duby R, Olson EN (2010) Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 143 (1):35-45. doi:10.1016/j.cell.2010.09.004

Tang H, Inoki K, Lee M, Wright E, Khuong A, Khuong A, Sugiarto S, Garner M, Paik J, DePinho RA, Goldman D, Guan KL, Shrager JB (2014) mTORC1 promotes denervation-induced muscle atrophy through a mechanism involving the activation of FoxO and E3 ubiquitin ligases. Sci Signal 7 (314):ra18. doi:10.1126/scisignal.2004809

Dupre-Aucouturier S, Castells J, Freyssenet D, Desplanches D (2015) Trichostatin A, a histone deacetylase inhibitor, modulates unloaded-induced skeletal muscle atrophy. J Appl Physiol 119 (4):342-351. doi:10.1152/japplphysiol.01031.2014

Mochalova EP, Belova SP, Kostrominova TY, Shenkman BS, Nemirovskaya TL (2020) Differences in the Role of HDACs 4 and 5 in the Modulation of Processes Regulating MAFbx and MuRF1 Expression during Muscle Unloading. Int J Mol Sci 21 (13):4815. doi:10.3390/ijms21134815

Du Bois P, Pablo Tortola C, Lodka D, Kny M, Schmidt F, Song K, Schmidt S, Bassel-Duby R, Olson EN, Fielitz J (2015) Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated MuRF1 Expression. Circ Res 117 (5):424-436. doi:10.1161/CIRCRESAHA.114.305393

Wang J, Xia Y (2012) Assessing developmental roles of MKK4 and MKK7 in vitro. Commun Integr Biol 5 (4):319-324. doi:10.4161/cib.20216

Hilder TL, Baer LA, Fuller PM, Fuller CA, Grindeland RE, Wade CE, Graves LM (2005) Insulin-independent pathways mediating glucose uptake in hindlimb-suspended skeletal muscle. J Appl Physiol 99 (6):2181-2188. doi:10.1152/japplphysiol.00743.2005

Dupont E, Cieniewski-Bernard C, Bastide B, Stevens L (2011) Electrostimulation during hindlimb unloading modulates PI3K-AKT downstream targets without preventing soleus atrophy and restores slow phenotype through ERK. Am J Physiol Regul Integr Comp Physiol 300 (2):R408-R417. doi:10.1152/ajpregu.00793.2009

Sharlo KA, Mochalova EP, Belova SP, Lvova ID, Nemirovskaya TL, Shenkman BS (2020) The role of MAP-kinase p38 in the m. soleus slow myosin mRNA transcription regulation during short-term functional unloading. Arch Biochem Biophys 695:108622. doi:10.1016/j.abb.2020.108622

Belova SP, Mochalova EP, Kostrominova TY, Shenkman BS, Nemirovskaya TL (2020) P38alpha-MAPK Signaling Inhibition Attenuates Soleus Atrophy during Early Stages of Muscle Unloading. Int J Mol Sci 21 (8):2756. doi:10.3390/ijms21082756

Kawamoto E, Koshinaka K, Yoshimura T, Masuda H, Kawanaka K (2016) Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation. Physiol Rep 4 (15):e12876. doi:10.14814/phy2.12876

Yuasa K, Okubo K, Yoda M, Otsu K, Ishii Y, Nakamura M, Itoh Y, Horiuchi K (2018) Targeted ablation of p38alpha MAPK suppresses denervation-induced muscle atrophy. Sci Rep 8 (1):9037. doi:10.1038/s41598-018-26632-w

Clavel S, Siffroi-Fernandez S, Coldefy AS, Boulukos K, Pisani DF, Derijard B (2010) Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells. Mol Cell Biol 30 (2):470-480. doi:10.1128/MCB.00666-09