АУТОФАГИЯ КАК ЗВЕНО ПАТОГЕНЕЗА И МИШЕНЬ ДЛЯ ТЕРАПИИ ЗАБОЛЕВАНИЙ СКЕЛЕТНО-МЫШЕЧНОЙ СИСТЕМЫ
PDF

Ключевые слова

аутофагия
белковые агрегаты
миокард
скелетная мускулатура
терапевтическое влияние аутофагии

Как цитировать

Калугина, К. К., Сухарева, К. С., Чуркина, А. И., & Костарева, А. А. (2021). АУТОФАГИЯ КАК ЗВЕНО ПАТОГЕНЕЗА И МИШЕНЬ ДЛЯ ТЕРАПИИ ЗАБОЛЕВАНИЙ СКЕЛЕТНО-МЫШЕЧНОЙ СИСТЕМЫ. Российский физиологический журнал им. И. М. Сеченова, 107(6-7), 810–827. https://doi.org/10.31857/S0869813921060042

Аннотация

Аутофагия – консервативный процесс деградации внутриклеточных структур лизосомальными ферментами в специализированных компартментах – аутофаголизосомах играет роль во многих процессах, таких как дифференцировка, поддержание энергетического баланса и защита клеток при наличии деструктивных изменений. Аутофагия имеет особенное значение для функционирования скелетной и сердечной мускулатуры, а именно, для поддержания структурной и физиологической целостности саркомера при мышечном сокращении, а также при патологических изменениях в мышечном волокне. Активация процесса аутофагии происходит в ответ на разнообразные стрессовые стимулы, например, повреждение мышцы при интенсивной нагрузке, результатом чего является репарация ткани, в том числе за счет активации сателлитных клеток. В этом обзоре аутофагия рассматривается как защитный процесс, у которого выделяют несколько типов, различающихся по своим механизмам. В обзоре будут освещены молекулярные основы процесса аутофагии, ее роль в жизнедеятельности и функционировании клеток, а также терапевтический потенциал активаторов аутофагии в лечении тяжелых заболеваний человека, связанных с нарушениями скелетной и сердечной мускулатуры. Особое внимание будет уделено описанию фармакологических препаратов, способных усиливать активность аутофагии, а также механизмам их действия.

https://doi.org/10.31857/S0869813921060042
PDF

Литература

Condello M, Pellegrini E, Caraglia M, Meschini S. (2019) Targeting autophagy to overcome human diseases. Int J Mol.Sci 20(3) 725.https://doi.org/10.3390/ijms20030725

Kirkin V, Rogov VV. (2019) A Diversity of Selective Autophagy Receptors Determines the Specificity of the Autophagy Pathway. Mol Cell 76:268–285. https://doi.org/10.1016/j.molcel.2019.09.005

Wu NN, Tian H, Chen P, Wang D, Ren J, Zhang Y (2019) Physical Exercise and Selective Autophagy: Benefit and Risk on Cardiovascular Health. Cells 8(11):1436. https:// doi.org/10.3390/cells8111436

Valenzuela CA, Ponce C, Zuloaga R, González P, Avendaño-Herrera R, Valdés JA, Molina A (2020) Effects of crowding on the three main proteolytic mechanisms of skeletal muscle in rainbow trout (Oncorhynchus mykiss). BMC Vet Res 16:294. https://doi.org/10.1186/s12917-020-02518-w

Lira VA, Okutsu M, Zhang M, Greene NP, Laker RC, Breen DS, Hoehn KL, Yan Z (2013) Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J 27:4184–4193. https://doi.org/10.1096/fj.13-228486

Jokl EJ, Blanco G (2016) Disrupted autophagy undermines skeletal muscle adaptation and integrity. Mamm Genome 27(11):525–537. https://doi.org/10.1007/s00335-016-9659-2

Bell RAV, Al-Khalaf M, Megeney LA (2016) The beneficial role of proteolysis in skeletal muscle growth and stress adaptation. Skelet Muscle 6:16. https://doi.org/10.1186/s13395-016-0086-6

Jiao J, Demontis F (2017) Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin. Pharmacol 34:1–6. https://doi.org/10.1016/j.coph.2017.03.009

Mammucari C, Rizzuto R (2010) Signaling pathways in mitochondrial dysfunction and aging. Mech Ageing Dev 131:536–543. https://doi.org/10.1016/j.mad.2010.07.003

Lee D, Bareja A, Bartlett D, White J (2019) Autophagy as a Therapeutic Target to Enhance Aged Muscle Regeneration. Cells 8:183. https://doi.org/10.3390/cells8020183

Dorsch LM, Schuldt M, Knežević D, Wiersma M, Kuster DWD, van der Velden J, Brundel BJJM (2019) Untying the knot: protein quality control in inherited cardiomyopathies. Pflugers Arch Eur J. Physiol 471:795–806. https://doi.org/10.1007/s00424-018-2194-0

Vincent AE, Grady JP, Rocha MC, Alston CL, Rygiel KA, Barresi R, Taylor RW, Turnbull DM (2016) Mitochondrial dysfunction in myofibrillar myopathy. Neuromuscul Disord 26:691–701. https://doi.org/10.1016/j.nmd.2016.08.004

Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy Is Required to Maintain Muscle Mass. Cell Metab 10:507–515. https://doi.org/10.1016/j.cmet.2009.10.008

Levine B, Packer M, Codogno P (2015) Development of autophagy inducers in clinical medicine. J Clin Invest 125:14–24. https://doi.org/10,1172 / JCI73938.

Glick D, Barth S, Macleod KF (2010) Autophagy: Cellular and molecular mechanisms. J Pathol 221:3–12. https://doi.org/10.1002/path.2697

Parousis A, Carter HN, Tran C, Erlich AT, Mesbah Moosavi ZS, Pauly M, Hood DA (2018) Contractile activity attenuates autophagy suppression and reverses mitochondrial defects in skeletal muscle cells. Autophagy 14:1886–1897.https://doi.org/10.1080/15548627.2018.1491488

Levine B, Kroemer G (2019) Biological Functions of Autophagy Genes: A Disease Perspective. Cell 176:11–42. https://doi.org/10.1016/j.cell.2018.09.048

Rodney GG, Pal R, Abo-Zahrah R (2016) Redox regulation of autophagy in skeletal muscle. Free Radic Biol Med 98:103–112. https://doi.org/10.1016/j.freeradbiomed.2016.05.010

Parzych KR, Klionsky DJ (2014) An overview of autophagy: Morphology, mechanism, and regulation. Antioxidants Redox Signal 20:460–473. https://doi.org/10.1089/ars.2013.5371

Kim YA, Kim YS, Song W (2012) Autophagic response to a single bout of moderate exercise in murine skeletal muscle. J Physiol Biochem 68:229–235. https://doi.org/10.1007/s13105-011-0135-x

Kaludercic N, Maiuri MC, Kaushik S, Fernández ÁF, De Bruijn J, Castoldi F, Chen Y, Ito J, Mukai R, Murakawa T, Nah J, Pietrocola F, Saito T, Sebti S, Semenzato M, Tsansizi L, Sciarretta S, Madrigal-Matute J (2020) Comprehensive autophagy evaluation in cardiac disease models. Cardiovasc Res 116:483–504. https://doi.org/10.1093/cvr/cvz233

Kirkin V (2020) History of the Selective Autophagy Research: How Did It Begin and Where Does It Stand Today? J Mol Biol 432:3–27. https://doi.org/10.1016/j.jmb.2019.05.010

Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB (2013) Autophagy: Regulation and role in development. Autophagy 9:951–972. https://doi.org/10.4161/auto.24273

Reggiori F, Klionsky DJ (2013) Autophagic processes in yeast: Mechanism, machinery and regulation. Genetics 194:341–361. https://doi.org/10.1534/genetics.112.149013

Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41. https://doi.org/10.1038/cr.2013.168

Zhang J (2015) Teaching the basics of autophagy and mitophagy to redox biologists-Mechanisms and experimental approaches. Redox Biol 4:242–259 https://doi.org/10.1016/j.redox.2015.01.003

Dooley HC, Razi M, Polson HEJ, Girardin SE, Wilson MI, Tooze SA (2014) WIPI2 Links LC3 Conjugation with PI3P, Autophagosome Formation, and Pathogen Clearance by Recruiting Atg12-5-16L1. Mol Cell 55(2):238–252. https:// doi.org/10.1016/j.molcel.2014.05.021

Walczak M, Martens S (2013) Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy 9:424–425. https://doi.org/10.4161/auto.22931

Wei Y, Liu M, Li X, Liu J, Li H (2018) Origin of the Autophagosome Membrane in Mammals. Biomed Res Int 2018. https://doi.org/10.1155/2018/1012789

Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol 445:77–88. https://doi.org/10.1007/978-1-59745-157-4_4

Kimura S, Noda T, Yoshimori T (2008) Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct 33:109–122. https://doi.org/10.1247/csf.08005

Monastyrska I, Rieter E, Klionsky DJ, Reggiori F (2009) Multiple roles of the cytoskeleton in autophagy. Biol. Rev. 84:431–448. https://doi.org/10.1111/j.1469-185X.2009.00082.x

Tang D, Kang R, Zeh HJ, Lotze MT (2011) High-mobility group box 1, oxidative stress, and disease. Antioxidants Redox Signal 14:1315–1335. https://doi.org/10.1089/ars.2010.3356

Lee J-Y, Koga H, Kawaguchi Y, Tang W, Wong E, Gao Y-S, Pandey UB, Kaushik S, Tresse E, Lu J, Taylor JP, Cuervo AM, Yao T-P (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29:969–980. https://doi.org/10.1038/emboj.2009.405

Mostowy S (2014) Multiple Roles of the Cytoskeleton in Bacterial Autophagy. PLoS Pathog 10:e1004409. https://doi.org/10.1371/journal.ppat.1004409

Shaid S, Brandts CH, Serve H, Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20:21–30. https://doi.org/10.1038/cdd.2012.72

Mercer EJ, Lin YF, Cohen-Gould L, Evans T (2018) Hspb7 is a cardioprotective chaperone facilitating sarcomeric proteostasis. Dev Biol 435:41–55.https://doi.org/10.1016/j.ydbio.2018.01.005

Matkovich SJ, Van Booven DJ, Hindes A, Kang MY, Druley TE, Vallania FLM, Mitra RD, Reilly MP, Cappola TP, Dorn GW (2010) Cardiac signaling genes exhibit unexpected sequence diversity in sporadic cardiomyopathy, revealing HSPB7 polymorphisms associated with disease. J Clin Invest 120:280–289.https://doi.org/10.1172/JCI39085

Lahvic JL, Ji Y, Marin P, Zuflacht JP, Springel MW, Wosen JE, Davis L, Hutson LD, Amack JD, Marvin MJ (2013) Small heat shock proteins are necessary for heart migration and laterality determination in zebrafish. Dev Biol 384:166–180. https://doi.org/10.1016/j.ydbio.2013.10.009

Hong KW, Lim JE, Kim JW, Tabara Y, Ueshima H, Miki T, Matsuda F, Cho YS., Kim Y, Oh B (2014) Identification of three novel genetic variations associated with electrocardiographic traits (QRS duration and PR interval) in East Asian. Human Mol Genetics 23(24):6659-6667. https://doi.org/10.1093/hmg/ddu374

Ranek MJ, Stachowski MJ, Kirk JA, Willis MS (2018) The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc B Biol Sci 373(1738):20160530. https://doi.org/10.1093/hmg/ddu374

Ulbricht A, Höhfeld J (2013) Tension-induced autophagy: May the chaperone be with you. Autophagy 9:920–922. https://doi.org/10.4161/auto.24213

Schuld J, Orfanos Z, Chevessier F, Eggers B, Heil L, Uszkoreit J, Unger A, Kirfel G, Van Der Ven PFM, Marcus K, Linke WA, Clemen CS, Schröder R, Fürst DO (2020) Homozygous expression of the myofibrillar myopathy-associated p.W2710X filamin C variant reveals major pathomechanisms of sarcomeric lesion formation. Acta Neuropathol Commun 8. https://doi.org/10.1186/s40478-020-01001-9

Verdonschot JAJ, Vanhoutte EK, Claes GRF, Helderman-van den Enden ATJM, Hoeijmakers JGJ, Hellebrekers DMEI, de Haan A, Christiaans I, Lekanne Deprez RH, Boen HM, van Craenenbroeck EM, Loeys BL, Hoedemaekers YM, Marcelis C, Kempers M, Brusse E, van Waning JI, Baas AF, Dooijes D, Asselbergs FW, Barge-Schaapveld DQCM, Koopman P, van den Wijngaard A, Heymans SRB, Krapels IPC, Brunner HG (2020) A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum Mutat 41:1091–1111. https://doi.org/10.1002/humu.24004

Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Fürst DO, Saftig P, Saint R, Fleischmann BK, Hoch M, Höhfeld J (2010) Chaperone-Assisted Selective Autophagy Is Essential for Muscle Maintenance. Curr Biol 20:143–148. https://doi.org/10.1016/j.cub.2009.11.022

Ulbricht A, Gehlert S, Leciejewski B, Schiffer T, Bloch W, Höhfeld J (2015) Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle. Autophagy 11:538–546. https://doi.org/10.1080/15548627.2015.1017186

Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614. https://doi.org/10.1083/jcb.200507002

Bartlett BJ, Isakson P, Lewerenz J, Sanchez H, Kotzebue RW, Cumming R, Harris GL, Nezis IP, Schubert D, Simonsen A, Finley KD (2011) p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy 7:572–583. https://doi.org/10.4161/auto.7.6.14943

Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248. https://doi.org/10.1016/j.cell.2004.11.046

Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, Hashemi M, Glover KKM, Sher AA, Coombs KM, Ghavami S (2019) The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence 10:376–413. https://doi.org/10.1080/21505594.2019.1605803

Yordy B, Iwasaki A (2011) Autophagy in the control and pathogenesis of viral infection. Curr. Opin. Virol. 1:196–203. https://doi.org/10.1016/j.coviro.2011.05.016

Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335. https://doi.org/10.1038/nature09782

Deretic V, Levine B (2009) Autophagy, Immunity, and Microbial Adaptations. Cell Host Microbe 5:527–549.https:// doi.org/10.1016/j.chom.2009.05.016

Wong HH, Sanyal S (2020) Manipulation of autophagy by (+) RNA viruses. Semin. Cell Dev Biol 101:3–11. https://doi.org/10.1016/j.semcdb.2019.07.013

Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T (2004) Autophagy defends cells against invading group A Streptococcus. Science 306:1037–1040. https://doi.org/10.1126/science.1103966

Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C (2005) Escape of intracellular Shigella from autophagy. Science 307:727–731.https://doi.org/10.1126/science.1106036

Gransee HM, Mantilla CB, Sieck GC (2012) Respiratory muscle plasticity. Compr Physiol 2:1441–1462. https://doi.org/10.1002/cphy.c110050

Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314. https://doi.org/10.1038/nature14893

Moylan JS, Reid MB (2007) Oxidative stress, chronic disease, and muscle wasting. Muscle and Nerve 35:411–429. https://doi.org/10.1002/mus.20743

Di Meo S, Napolitano G, Venditti P (2019) Mediators of physical activity protection against ros-linked skeletal muscle damage. Int J Mol Sci 20(12):3024. https://doi.org/10.3390/ijms20123024

Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM, Ryall KA, Fisher CC, Zhang M, Saucerman JJ, Goodyear LJ, Kundu M, Yan Z (2017) Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun 8:1–13. https://doi.org/10.1038/s41467-017-00520-9

He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B (2012) Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481:511–515.https://doi.org/10.1038/nature10758

Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy Is Required to Maintain Muscle Mass. Cell Metab 10:507–515. https://doi.org/10.1016/j.cmet.2009.10.008

Maejima Y, Isobe M, Sadoshima J (2016) Regulation of autophagy by Beclin 1 in the heart. J Mol Cell Cardiol 95:19–25. https://doi.org/10.1016 / j.yjmcc.2015.10.032

Tannous P, Zhu H, Johnstone JL, Shelton JM, Rajasekaran NS, Benjamin IJ, Nguyen L, Gerard RD, Levine B, Rothermel BA, Hill JA (2008) Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc Natl Acad Sci U S A 105:9745–9750. https://doi.org/10.1073/pnas.0706802105

Jiao J, Demontis F (2017) Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin Pharmacol 34:1–6. https:// doi.org/10.1016/j.coph.2017.03.009.

Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813–825 . https://doi.org/10.1016/j.cell.2010.10.007

Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J (2016) Aging and Autophagy in the Heart. Circ Res 118:1563–1576. https://doi.org/10.1161/CIRCRESAHA.116.307474

Kakimoto Y, Okada C, Kawabe N, Sasaki A, Tsukamoto H, Nagao R, Osawa M (2019) Myocardial lipofuscin accumulation in ageing and sudden cardiac death. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-40250-0

De Meyer GRY, Martinet W (2009) Autophagy in the cardiovascular system. Biochim Biophys Acta - Mol Cell Res.1793:1485–1495. https://doi:10.1016/j.bbamcr.2008.12.011.

McMillan EM, Quadrilatero J (2014) Autophagy is required and protects against apoptosis during myoblast differentiation. Biochem J 462:267–277. ttps://doi.org/10.1042/BJ20140312

Ryall JG (2017) Simultaneous measurement of mitochondrial and glycolytic activity in quiescent muscle stem cells. In: Methods in Molecular Biology. Humana Press Inc 1556:245-253. https://doi.org/10.1007/978-1-4939-6771-1_13

Perrotta C, Cattaneo MG, Molteni R, De Palma C (2020) Autophagy in the Regulation of Tissue Differentiation and Homeostasis. Front Cell Dev Biol 8:1563. https:// doi.org/10.3389/fcell.2020.602901

Paolini A, Omairi S, Mitchell R, Vaughan D, Matsakas A, Vaiyapuri S, Ricketts T, Rubinsztein DC, Patel K (2018) Attenuation of autophagy impacts on muscle fibre development, starvation induced stress and fibre regeneration following acute injury. Sci Rep 8. https://doi.org/10.1038/s41598-018-27429-7

Lee DE, Bareja A, Bartlett DB, White JP (2019) Autophagy as a Therapeutic Target to Enhance Aged Muscle Regeneration. Cells 8(2):183. https://doi.org/10.3390/cells8020183

Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, Li H, Rathi S, Dong Y, Tian R, Kem D, Zou MH (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60:1770–1778. https://doi.org/10.2337/db10-0351

Bibee KP, Cheng YJ, Ching JK, Marsh JN, Li AJ, Keeling RM, Connolly AM, Golumbek PT, Myerson JW, Hu G, Chen J, Shannon WD, Lanza GM, Weihl CC, Wickline SA (2014) Rapamycin nanoparticles target defective autophagy in muscular dystrophy to enhance both strength and cardiac function. FASEB J 28:2047–2061. https://doi.org/10.1096/fj.13-237388

Cabet E, Batonnet-Pichon S, Delort F, Gausserès B, Vicart P, Lilienbaum A (2015) Antioxidant Treatment and Induction of Autophagy Cooperate to Reduce Desmin Aggregation in a Cellular Model of Desminopathy. PLoS One 10:e0137009. https://doi.org/10.1371/journal.pone.0137009

De Palma C, Morisi F, Cheli S, Pambianco S, Cappello V, Vezzoli M, Rovere-Querini P, Moggio M, Ripolone M, Francolini M, Sandri M, Clementi E (2012) Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis 3. https://doi.org/10.1038/cddis.2012.159

Pallafacchina G, Calabria E, Serrano AL, Kalhovde JM, Schiaffino S (2002) A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci U S A 99:9213–9218. https://doi.org/10.1073/pnas.142166599

Barlow AD, Nicholson ML, Herbert TP (2013) Evidence for rapamycin toxicity in pancreatic β-Cells and a review of the underlying molecular mechanisms. Diabetes 62:2674–2682.https://doi.org/10.2337/db13-0106

Pauly M, Daussin F, Burelle Y, Li T, Godin R, Fauconnier J, Koechlin-Ramonatxo C, Hugon G, Lacampagne A, Coisy-Quivy M, Liang F, Hussain S, Matecki S, Petrof BJ (2012) AMPK activation stimulates autophagy and ameliorates muscular dystrophy in the mdx mouse diaphragm. Am J Pathol 181:583–592. https://doi.org/10.1016/j.ajpath.2012.04.004

Kuno A, Hosoda R, Sebori R, Hayashi T, Sakuragi H, Tanabe M, Horio Y (2018) Resveratrol Ameliorates Mitophagy Disturbance and Improves Cardiac Pathophysiology of Dystrophin-deficient mdx Mice. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-33930-w

Yao Q, Ke Z qiang, Guo S, Yang X song, Zhang F xue, Liu X fen, Chen X, Chen H guang, Ke H ya, Liu C (2018) Curcumin protects against diabetic cardiomyopathy by promoting autophagy and alleviating apoptosis. J Mol Cell Cardiol 124:26–34. https://doi.org/10.1016/j.yjmcc.2018.10.004

Cescon M, Gattazzo F, Chen P, Bonaldo P (2015) Collagen VI at a glance. J Cell Sci 128:3525–353. https://doi.org/10.1242/jcs.169748

Allamand V, Briñas L, Richard P, Stojkovic T, Quijano-Roy S, Bonne G (2011) ColVI myopathies: where do we stand, where do we go? Skelet Muscle 1:30. https://doi.org/10.1186/2044-5040-1-30

Chrisam M, Pirozzi M, Castagnaro S, Blaauw B, Polishchuck R, Cecconi F, Grumati P, Bonaldo P (2015) Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice. Autophagy 11:2142–2152. https://doi.org/10.1080/15548627.2015.1108508

Fan J, Yang X, Li J, Shu Z, Dai J, Liu X, Li B, Jia S, Kou X, Yang Y, Chen N (2017) Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway. Oncotarget 8(11):17475–17490. https://doi.org/10.18632/oncotarget.15728

Shen S, Liao Q, Liu J, Pan R, Lee SMY, Lin L (2019) Myricanol rescues dexamethasone-induced muscle dysfunction via a sirtuin 1-dependent mechanism. J Cachexia Sarcopenia Muscle 10(2):429–444. https://doi.org/10.1002/jcsm.12393

Blokhuis AM, Groen EJN, Koppers M, Van Den Berg LH, Pasterkamp RJ (2013) Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 125:777–794. https://doi.org/10.1007/s00401-013-1125-6

Gal J, Ström A-L, Kilty R, Zhang F, Zhu H (2007) p62 Accumulates and Enhances Aggregate Formation in Model Systems of Familial Amyotrophic Lateral Sclerosis. J Biol Chem 282:11068–11077. https://doi.org/10.1074/jbc.M608787200

Sasaki S (2011) Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 70:349–359. https://doi.org/10.1097/NEN.0b013e3182160690

Li Y, Guo Y, Wang X, Yu X, Duan W, Hong K, Wang J, Han H, Li C (2015) Trehalose decreases mutant SOD1 expression and alleviates motor deficiency in early but not end-stage amyotrophic lateral sclerosis in a SOD1-G93A mouse model. Neuroscience 298:12–25. https://doi.org/10.1016/j.neuroscience.2015.03.061

Cicardi ME, Cristofani R, Crippa V, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Galbiati M, Piccolella M, Messi E, Carra S, Pennuto M, Rusmini P, Poletti A (2019) Autophagic and proteasomal mediated removal of mutant androgen receptor in muscle models of spinal and bulbar muscular atrophy. Front Endocrinol (Lausanne) 10:569. https://doi.org/10.3389/fendo.2019.00569