ВЛИЯНИЕ ХРОНИЧЕСКОЙ СВИНЦОВОЙ ИНТОКСИКАЦИИ НА ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА И ИЗОФОРМНЫЙ СОСТАВ МИОЗИНА ЛЕВОГО ЖЕЛУДОЧКА СЕРДЦА КРЫС
PDF

Ключевые слова

актин-миозиновое взаимодействие
кардиотоксичность
свинец
искусственная подвижная система

Как цитировать

Герцен, О. П., Набиев, С. Р., & Никитина, Л. В. (2021). ВЛИЯНИЕ ХРОНИЧЕСКОЙ СВИНЦОВОЙ ИНТОКСИКАЦИИ НА ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА И ИЗОФОРМНЫЙ СОСТАВ МИОЗИНА ЛЕВОГО ЖЕЛУДОЧКА СЕРДЦА КРЫС. Российский физиологический журнал им. И. М. Сеченова, 107(6-7), 854–863. https://doi.org/10.31857/S0869813921060030

Аннотация

Модель хронической свинцовой интоксикации была создана на беспородных крысах с помощью внутрибрюшинных инъекций ацетата свинца 3 раза в неделю в течение 5 недель. С помощью искусственной подвижной системы было показано, что хроническая интоксикация свинцом вызывала изменения в актин-миозиновом взаимодействии in vitro, в частности, падение максимальной скорости скольжения нативных тонких филаментов по миозину, выделенному из миокарда левого желудочка сердца крыс. Не было найдено статистически значимых изменений кальциевой чувствительности и кооперативности кривой «pCa-скорость», характеристик фракции подвижных филаментов и изометрической силы. С использованием электрофоретического разделения белков был найден сдвиг в соотношении тяжелых цепей миозина в сторону увеличения содержания β–цепей с более низкой АТФ-азной активностью.

https://doi.org/10.31857/S0869813921060030
PDF

Литература

GBD Compare | IHME Viz Hub. https://vizhub.healthdata.org/gbd-compare/. Accessed 28 Dec 2020.

Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu N (Nil), Baldé AB, Bertollini R, Bose-O’Reilly S, Boufford JI, Breysse PN, Chiles T, Mahidol C, Coll-Seck AM, Cropper ML, Fobil J, Fuster V, Greenstone M, Haines A, Hanrahan D, Hunter D, Khare M, Krupnick A, Lanphear B, Lohani B, Martin K, Mathiasen K V., McTeer MA, Murray CJL, Ndahimananjara JD, Perera F, Potočnik J, Preker AS, Ramesh J, Rockström J, Salinas C, Samson LD, Sandilya K, Sly PD, Smith KR, Steiner A, Stewart RB, Suk WA, van Schayck OCP, Yadama GN, Yumkella K, Zhong M (2018) The Lancet Commission on pollution and health. Lancet 391:462–512. https://doi.org/10.1016/S0140-6736(17)32345-0

Kim YD, Eom SY, Yim DH, Kim IS, Won HK, Park CH, Kim GB, Yu SD, Choi BS, Park JD, Kim H (2016) Environmental Exposure to Arsenic, Lead, and Cadmium in People Living near Janghang Copper Smelter in Korea. J Korean Med Sci 31:489. https://doi.org/10.3346/jkms.2016.31.4.489

WHO (2019) Lead poisoning and health. https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health. Accessed 9 Jan 2020.

Afridi HI, Kazi TG, Kazi NG, Jamali MK, Arain MB, Sirajuddin, Baig JA, Kandhro GA, Wadhwa SK, Shah AQ (2010) Evaluation of cadmium, lead, nickel and zinc status in biological samples of smokers and nonsmokers hypertensive patients. J Hum Hypertens 24:34–43. https://doi.org/10.1038/jhh.2009.39

Vainio H, Heseltine E, Partensky CWJ (1993) Meeting of the IARC working group on beryllium, cadmium, mercury and exposures in the glass manufacturing industry. Scand J Work Environ Health 19:360–363.

Мухачева СВ (2017) Многолетняя динамика концентрации тяжелых металлов в корме и организме рыжей полевки (Myodes Glareolus) в период снижения выбросов медеплавильного завода. Экология 6:461–471. [Mukhacheva SV (2017) Long-term dynamics of the concentration of heavy metals in the forage and body of the bank vole (Myodes Glareolus) during the period of decreasing emissions from the copper smelter. Ecology 6:461–471. (In Russ)]. https://doi.org/10.7868/s0367059717060087

Mirzaei R (2018) Assessment of Accumulation and Human Health Risk of Trace Elements in the Vicinity of Industrial Estates, Central Iran. Arch Hyg Sci 7:118–125. https://doi.org/10.29252/archhygsci.7.2.118

Nawrot TS, Thijs L, Den Hond EM, Roels HA, Staessen JA (2002) An epidemiological re-appraisal of the association between blood pressure and blood lead: A meta-analysis. J Hum Hypertens 16:123–131. https://doi.org/10.1038/sj.jhh.1001300

Kopp SJ, Bárány M, Erlanger M, Perry EF, Perry HM (1980) The influence of chronic low-level cadmium and/or lead feeding on myocardial contractility related to phosphorylation of cardiac myofibrillar proteins. Toxicol Appl Pharmacol 54:48–56. https://doi.org/10.1016/0041-008X(80)90007-1

Prentice RC, Kopp SJ (1985) Cardiotoxicity of lead at various perfusate calcium concentrations: Functional and metabolic responses of the perfused rat heart. Toxicol Appl Pharmacol 81:491–501. https://doi.org/10.1016/0041-008X(85)90420-X

Alissa EM, Ferns GA (2011) Heavy metal poisoning and cardiovascular disease. J Toxicol 2011. https://doi.org/10.1155/2011/870125

Solenkova NV, Newman JD, Berger JS, Thurston G, Hochman JS, Lamas GA (2014) Metal pollutants and cardiovascular disease: Mechanisms and consequences of exposure. Am Heart J 168:812–822. https://doi.org/10.1016/j.ahj.2014.07.007

Lamas GA, Navas-Acien A, Mark DB, Lee KL (2016) Heavy metals, cardiovascular disease, and the unexpected benefits of chelation therapy. J Am Coll Cardiol 67:2411–2418. https://doi.org/10.1016/j.jacc.2016.02.066

Ruiz-Hernandez A, Navas-Acien A, Pastor-Barriuso R, Crainiceanu CM, Redon J, Guallar E, Tellez-Plaza M (2017) Declining exposures to lead and cadmium contribute to explaining the reduction of cardiovascular mortality in the US population, 1988-2004. Int J Epidemiol 46:1903–1912. https://doi.org/10.1093/ije/dyx176

Chowdhury R, Ramond A, O’Keeffe LM, Shahzad S, Kunutsor SK, Muka T, Gregson J, Willeit P, Warnakula S, Khan H, Chowdhury S, Gobin R, Franco OH, Di Angelantonio E (2018) Environmental toxic metal contaminants and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 362:14–16. https://doi.org/10.1136/bmj.k3310

Sevim Ç, Doğan E, Comakli S (2020) Cardiovascular disease and toxic metals. Curr Opin Toxicol 19:88–92. https://doi.org/10.1016/j.cotox.2020.01.004

Hoh JF, McGrath PA (1978) Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol 10:1053–1060.

Alpert NR, Brosseau C, Federico A, Krenz M, Robbins J, Warshaw DM (2002) Molecular mechanics of mouse cardiac myosin isoforms. Am J Physiol - Heart Circ Physiol 283:1446–1454. https://doi.org/10.1152/ajpheart.00274.2002

Shchepkin DV, Kopylova GV, Nikitina LV (2011) Study of reciprocal effects of cardiac myosin and tropomyosin isoforms on actin-myosin interaction with in vitro motility assay. Biochem Biophys Res Commun 415:104–108. https://doi.org/10.1016/j.bbrc.2011.10.022

Galler S, Puchert E, Gohlsch B, Schmid D, Pette D (2002) Kinetic properties of cardiac myosin heavy chain isoforms in rat. Pflugers Arch Eur J Physiol 445:218–223. https://doi.org/10.1007/s00424-002-0934-6

Danzi S, Klein S, Klein I (2008) Differential regulation of the myosin heavy chain genes α and β in rat atria and ventricles: Role of antisense RNA. Thyroid 18:761–768. https://doi.org/10.1089/thy.2008.0043

Nikitina LV, Kopylova GV, Shchepkin DV, Katsnelson LB (2008) Study of the interaction between rabbit cardiac contractile and regulatory proteins. An in vitro motility assay. Biochem 73:178–184. https://doi.org/10.1007/s10541-008-2009-6

Malmqvist UP, Aronshtam A (2004) Cardiac myosin isoforms from different species have unique enzymatic and mechanical properties. Biochemistry 43:15058–15065.

Hoyer K, Krenz M, Robbins J (2007) Shifts in the myosin heavy chain isozymes in the mouse heart result in increased energy effeciency. J Mol Cell Cardiol 42:214–221. https://doi.org/10.1016/j.physbeh.2017.03.040

Nikitina LV, Kopylova GV, Shchepkin DV, Nabiev SR, Bershitsky SY (2015) Investigations of Molecular Mechanisms of Actin-Myosin Interactions in Cardiac Muscle. Biochem 80:1748–1763. https://doi.org/10.1134/S0006297915130106

Protsenko YL, Katsnelson BA, Klinova SV, Lookin ON, Balakin AA, Nikitina LV, Gerzen OP, Nabiev SR, Minigalieva IA, Privalova LI, Gurvich VB, Sutunkova MP, Katsnelson LB (2019) Further analysis of rat myocardium contractility changes associated with a subchronic lead intoxication. Food Chem Toxicol 125:233–241. https://doi.org/10.1016/j.fct.2018.12.054

Protsenko YL, Katsnelson BA, Klinova SV, Lookin ON, Balakin AA, Nikitina LV, Gerzen OP, Minigalieva IA, Privalova LI, Gurvich VB, Sutunkova MP, Katsnelson LB (2018) Effects of subchronic lead intoxication of rats on the myocardium contractility. Food Chem Toxicol 120:378–389. https://doi.org/10.1016/j.fct.2018.07.034

Margossian SS, Lowey S (1982) Preparation of Myosin and Its Subfragments from Rabbit Skeletal Muscle. Methods Enzymol 85:55–71. https://doi.org/10.1016/0076-6879(82)85009-X

Pardee JD, Spudich JA (1982) Purification of muscle actin. In: Methods in cell biology Methods Cell Biol 24:271–289.

Potter JD (1982) Preparation of troponin and its subnits. Methods Enzymol 85:241–263.

Matyushenko AM, Artemova NV, Shchepkin DV, Kopylova GV, Bershitsky SY, Tsaturyan AK, Sluchanko NN, Levitsky DI (2014) Structural and functional effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin molecule. FEBS J 281:2004–2016. https://doi.org/10.1111/febs.12756

Gordon AM, LaMadrid MA, Chen Y, Luo Z, Chase PB (1997) Calcium regulation of skeletal muscle thin filament motility in vitro. Biophys J 72:1295–1307. https://doi.org/10.1016/S0006-3495(97)78776-9

Spiess M, Steinmetz MO, Mandinova A, Wolpensinger B, Aebi U, Atar D (1999) Isolation, electron microscopic imaging, and 3-D visualization of native cardiac thin myofilaments. J Struct Biol 126:98–104. https://doi.org/10.1006/jsbi.1999.4111

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

Mashanov GI, Molloy JE (2007) Automatic detection of single fluorophores in live cells. Biophys J 92:2199–2211. https://doi.org/10.1529/biophysj.106.081117

Haeberle JR, Hemric ME, Chacko S, Pollack J, Reggiani C (1995) Are actin filaments moving under unloaded conditions in the in vitro motility assay? Biophys J 68:306–310.

Reiser PJ, Kline WO (1998) Electrophoretic separation and quantitation of cardiac myosin heavy chain isoforms in eight mammalian species. Am J Physiol Circ Physiol 274:H1048–H1053. https://doi.org/10.1016/S0165-5876(00)00363-3

Silva MA, de Oliveira TF, Almenara CCP, Broseghini-Filho GB, Vassallo DV, Padilha AS, Silveira EA (2015) Exposure to a Low Lead Concentration Impairs Contractile Machinery in Rat Cardiac Muscle. Biol Trace Elem Res 167:280–287. https://doi.org/10.1007/s12011-015-0300-0

Fioresi M, Simões MR, Furieri LB, Broseghini-Filho GB, Vescovi MVA, Stefanon I, Vassallo DV (2014) Chronic lead exposure increases blood pressure and myocardial contractility in rats. PLoS One 9. https://doi.org/10.1371/journal.pone.0096900

Reiser PJ, Portman MA, Ning XH, Moravec CS (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol - Heart Circ Physiol 280:1814–1820. https://doi.org/10.1152/ajpheart.2001.280.4.h1814

Bogaard HJ, Abe K, Noordegmaf AV, Voelkel NF (2009) The right ventricle under pressure. Chest 135:794–804. https://doi.org/10.1378/chest.08-0492

Gupta MP (2007) Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. J Mol Cell Cardiol 43:388–403. https://doi.org/10.1038/jid.2014.371

Klinova SV, Minigalieva IA, Privalova LI, Valamina IE, Makeyev OH, Shuman EA, Korotkov AA, Panov VG, Sutunkova MP, Ryabova JV, Bushueva TV, Shtin TN, Gurvich VB, Katsnelson BA (2020) Further verification of some postulates of the combined toxicity theory: New animal experimental data on separate and joint adverse effects of lead and cadmium. Food Chem Toxicol 136:110971. https://doi.org/10.1016/j.fct.2019.110971