ВЛИЯНИЕ ДИЕТЫ КАК ФАКТОРА ЭКСПОЗОМА НА РАБОТУ ГОЛОВНОГО МОЗГА
PDF

Ключевые слова

экспозом
кетогенная диета
ограничение калорий
западная диета
астроцит
нейрон-глиальные взаимодействия

Как цитировать

Федотова, А. А., Тяглик, А. Б., & Семьянов, А. В. (2021). ВЛИЯНИЕ ДИЕТЫ КАК ФАКТОРА ЭКСПОЗОМА НА РАБОТУ ГОЛОВНОГО МОЗГА. Российский физиологический журнал им. И. М. Сеченова, 107(4-5), 533–567. https://doi.org/10.31857/S0869813921040087

Аннотация

В обзоре рассмотрена концепция экспозома, который представляет собой совокупность взаимодействующих друг с другом факторов среды, оказывавших влияние на организм в течение всей жизни. Приведена классификация факторов экспозома, объединенных в три основные группы: внутренняя среда, образ жизни, внешняя среда. Особое внимание уделено анализу влияния диеты как фактора экспозома на работу головного мозга. Рассмотрены три основных режима питания, различающихся в зависимости от количества калорий и соотношения макронутриентов (жиров, белков и углеводов), входящих в их состав. Проанализированы основные молекулярные и клеточные механизмы кетогенной диеты, ограничения калорий и западной диеты в отношении функционирования головного мозга. Обсуждается ограниченность накопленных данных о влиянии диеты на нейрон-астроцитарные взаимодействия в мозге. Отдельная глава посвящена рассмотрению взаимосвязей между различными факторами экспозома в контексте влияния диеты, что часто упускают в исследованиях. Указывается на необходимость комплексного анализа работы головного мозга, позволяющего проследить функциональные взаимосвязи на разных уровнях организации (молекулярном, клеточном, органном). Это поможет систематизировать накопленные знания и положит начало разработке терапевтических подходов на основе индивидуального экспозома.

https://doi.org/10.31857/S0869813921040087
PDF

Литература

Браже АР, Доронин МС, Попов АВ, Денисов ПА, Семьянов АВ (2019) Исследование паттернов кальциевой динамики в сетях астроцитов головного мозга. Российский физиологический журнал им. И. М. Сеченова 105:1436–1451. [Brazhe AR, Doronin MS, Popov AV, Denisov PA, Semyanov AV (2019) Issledovanie patternov kal'cievoj dinamiki v setyah astrocitov golovnogo mozga. Russ J Physiol 105:1436–1451 (In Russ)]. https://doi.org/10.1134/s0869813919110037

Wild CP (2005) Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark and Prevention 14:1847–1850. https://doi.org/10.1158/1055-9965.EPI-05-0456

Wild CP (2012) The exposome: From concept to utility. International J Epidemiol 41:24–32. https://doi.org/10.1093/ije/dyr236

Guloksuz S, van Os J, Rutten BPF (2018) The Exposome Paradigm and the Complexities of Environmental Research in Psychiatry. JAMA Psychiatry 75:985–986. https://doi.org/10.1001/jamapsychiatry.2018.1211

Pries LK, Dal Ferro GA, van Os J, Delespaul P, Kenis G, Lin BD, Luykx JJ, Richards AL, Akdede B, Binbay T, Altlnyazar V, Yallnçetin B, Gümüş-Akay G, Cihan B, Soygür H, Ulaş H, Åžahin Cankurtaran E, Ulusoy Kaymak S, Mihaljevic MM, Andric Petrovic S, Mirjanic T, Bernardo M, Mezquida G, Amoretti S, Bobes J, Saiz PA, Garciá-Portilla MP, Sanjuan J, Aguilar EJ, Santos JL, Jiménez-López E, Arrojo M, Carracedo A, López G, González-Penãs J, Parellada M, Maric NP, AtbaşoÄalu C, Ucok A, Alptekin K, Can Saka M, Arango C, O’Donovan M, Tosato S, Rutten BPF, Guloksuz S (2020) Examining the independent and joint effects of genomic and exposomic liabilities for schizophrenia across the psychosis spectrum. Epidemiol and Psych Sci 29:1–10. https://doi.org/10.1017/S2045796020000943

Colomina MT, Sánchez-Santed F, Conejo NM, Collado P, Salvador A, Gallo M, Pinos H, Salas C, Navarro JF, Adán A, Azpiroz A, Arias JL (2018) The psychoexposome: A holistic perspective beyond health and disease. Psicothema 30:5–7. https://doi.org/10.7334/psicothema2017.244

Finch CE, Kulminski AM (2019) The Alzheimer’s Disease Exposome. Alzheimer’s and Dementia 15:1123–1132. https://doi.org/10.1016/j.jalz.2019.06.3914

Moon Y (2016) Microbiome-linked crosstalk in the gastrointestinal exposome towards host health and disease. Pediatric Gastroenterol, Hepatol and Nutrition 19:221–228. https://doi.org/10.5223/pghn.2016.19.4.221

Wang J, Jia H (2016) Metagenome-wide association studies: fine-mining the microbiome. Nat Rev Microbiol 14:508–522. https://doi.org/10.1038/nrmicro.2016.83

Sanchis-Gomar F, Lavie CJ, Mehra MR, Henry BM, Lippi G (2020) Obesity and Outcomes in COVID-19: When an Epidemic and Pandemic Collide. Mayo Clinic Proc 95:1445–1453. https://doi.org/10.1016/j.mayocp.2020.05.006

Semyanov A, Henneberger C, Agarwal A (2020) Making sense of astrocytic calcium signals — from acquisition to interpretation. Nature Rev Neurosci 21:551–564. https://doi.org/10.1038/s41583-020-0361-8

Domingues HS, Portugal CC, Socodato R, Relvas JB (2016) Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Front Cell Develop Biol 4:71. https://doi.org/10.3389/fcell.2016.00071

Nelson DL, Cox MM (2017) Lehninger Principles of Biochemistry 7th. WH Freeman and Company.

Magistretti PJ, Allaman I (2013) Brain energy metabolism. In: Neuroscience in the 21st Century: From Basic to Clinical. 1591–1620.

Camberos-Luna L, Massieu L (2020) Therapeutic strategies for ketosis induction and their potential efficacy for the treatment of acute brain injury and neurodegenerative diseases. Neurochem Internat 133:104614. https://doi.org/10.1016/j.neuint.2019.104614

Hall KD, Chen KY, Guo J, Lam Y, Leibel RL, Mayer L, Reitman ML, Rosenbaum M, Smith SR, Walsh BT, Ravussin E (2016) Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am J Clin Nutrit 104:324–333. https://doi.org/10.3945/ajcn.116.133561.Dietary

Wilson JR, Levine SZ, Rivkin H (1926) the respiratory metabolism in infancy and in childhood: II. Ketosis and the respiratory exchange in children. Am J Diseas Childr 31:335–356. https://doi.org/10.1001/archpedi.1926.04130030022003

Woodyatt RT (1910) The action of glycol aldehyd and glycerin aldehyd in diabetes mellitus and the nature of antiketogenesis. J Am Med Assoc 55:2109–2112. https://doi.org/10.1001/jama.1910.04330250005003

Schutz Y (2011) Protein turnover, ureagenesis and gluconeogenesis. Bern Int J Vitam Nutr Res 81:101–107. https://doi.org/10.1024/0300-9831/a000064

Speakman JR, Mitchell SE (2011) Caloric restriction. Mol Aspects Med 32:159–221. https://doi.org/10.1016/j.mam.2011.07.001

Maalouf M, Rho JM, Mattson MP (2009) The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev 59:293–315. https://doi.org/10.1016/j.brainresrev.2008.09.002

Masoro EJ (2010) History of Caloric Restriction, Aging and Longevity. In: Everitt AV, Rattan SIS, le Couteur DG, de Cabo R (eds). Springer Netherlands, Dordrecht, 3–14.

Shively CA, Appt SE, Vitolins MZ, Uberseder B, Michalson KT, Silverstein-Metzler MG, Register TC (2019) Mediterranean versus Western Diet Effects on Caloric Intake, Obesity, Metabolism, and Hepatosteatosis in Nonhuman Primates. Obesity 27:777–784. https://doi.org/10.1002/oby.22436

Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O’Keefe JH, Brand-Miller J (2005) Origins and evolution of the Western diet: Health implications for the 21st century. Am J Clin Nutr 81:341–354. https://doi.org/10.1093/ajcn.81.2.341

Schönfeld P, Reiser G (2013) Why does brain metabolism not favor burning of fatty acids to provide energy-Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab 33:1493–1499. https://doi.org/10.1038/jcbfm.2013.128

Pifferi F, Cunnane SC, Guesnet P (2020) Evidence of the role of omega-3 polyunsaturated fatty acids in brain glucose metabolism. Nutrients 12:1–11. https://doi.org/10.3390/nu12051382

Rose J, Brian C, Pappa A, Panayiotidis MI, Franco R (2020) Mitochondrial Metabolism in Astrocytes Regulates Brain Bioenergetics, Neurotransmission and Redox Balance. Fronti Neurosci 14:1–20. https://doi.org/10.3389/fnins.2020.536682

Cunnane SC, Courchesne-Loyer A, Vandenberghe C, St-Pierre V, Fortier M, Hennebelle M, Croteau E, Bocti C, Fulop T, Castellano CA (2016) Can ketones help rescue brain fuel supply in later life? Implications for cognitive health during aging and the treatment of alzheimer’s disease. Front Mol Neurosci 9:53. https://doi.org/10.3389/fnmol.2016.00053

Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: Distribution, regulation and function. J Neurochem 94:1–14. https://doi.org/10.1111/j.1471-4159.2005.03168.x

Achanta LB, Rae CD (2017) β-Hydroxybutyrate in the Brain: One Molecule, Multiple Mechanisms. Neurochem Res 42:35–49. https://doi.org/10.1007/s11064-016-2099-2

Pierre K, Magistretti PJ, Pellerin L (2002) MCT2 is a major neuronal monocarboxylate transporter in the adult mouse brain. J Cereb Blood Flow Metab 22:586–595. https://doi.org/10.1097/00004647-200205000-00010

Chiry O, Pellerin L, Monnet-Tschudi F, Fishbein WN, Merezhinskaya N, Magistretti PJ, Clarke S (2006) Expression of the monocarboxylate transporter MCT1 in the adult human brain cortex. Brain Res 1070:65–70. https://doi.org/10.1016/j.brainres.2005.11.064

Magistretti PJ, Allaman I (2018) Lactate in the brain: From metabolic end-product to signalling molecule. Nat Rev Neurosci 19:235–249. https://doi.org/10.1038/nrn.2018.19

Chi CP, Roberts EL (2003) Energy Substrates for Neurons during Neural Activity: A Critical Review of the Astrocyte-Neuron Lactate Shuttle Hypothesis. J Cereb Blood Flow Metab 23:1263–1281. https://doi.org/10.1097/01.wcb.0000081369.51727.6f

Larrabee MG (1996) Partitioning of CO2 production between glucose and lactate in excised sympathetic ganglia, with implications for brain. J Neurochem 67:1726–1734. https://doi.org/10.1046/j.1471-4159.1996.67041726.x

Dienel GA, Rothman DL (2020) Reevaluation of Astrocyte-Neuron Energy Metabolism with Astrocyte Volume Fraction Correction: Impact on Cellular Glucose Oxidation Rates, Glutamate–Glutamine Cycle Energetics, Glycogen Levels and Utilization Rates vs. Exercising Muscle, and Na+/K+ Pumping. Neurochem Res 45:2607–2630. https://doi.org/10.1007/s11064-020-03125-9

Yellen G (2018) Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Biol 217:2235–2246. https://doi.org/10.1083/jcb.201803152

Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629. https://doi.org/10.1073/pnas.91.22.10625

Bingul D, Kalra K, Murata EM, Belser A, Dash MB (2020) Persistent changes in extracellular lactate dynamics following synaptic potentiation. Neurobiol Learn Mem 175:107314. https://doi.org/https://doi.org/10.1016/j.nlm.2020.107314

Dienel GA (2019) Brain glucose metabolism: Integration of energetics with function. Physiol Rev 99:949–1045. https://doi.org/10.1152/physrev.00062.2017

Dienel GA (2017) Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte–neuron lactate shuttle in brain. J Neurosci Res 95:2103–2125. https://doi.org/10.1002/jnr.24015

Magistretti PJ, Allaman I (2015) A Cellular Perspective on Brain Energy Metabolism and Functional Imaging. Neuron 86:883–901. https://doi.org/10.1016/j.neuron.2015.03.035

Saez I, Duran J, Sinadinos C, Beltran A, Yanes O, Tevy MF, Martínez-Pons C, Milán M, Guinovart JJ (2014) Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. J Cereb Blood Flow Metab 34:945–955. https://doi.org/10.1038/jcbfm.2014.33

Gentry MS, Guinovart JJ, Minassian BA, Roach PJ, Serratosa JM (2018) Lafora disease offers a unique window into neuronal glycogen metabolism. J Biol Chem 293:7117–7125. https://doi.org/10.1074/jbc.R117.803064

Vilchez D, Ros S, Cifuentes D, Pujadas L, Vallès J, García-Fojeda B, Criado-García O, Fernández-Sánchez E, Medrão-Fernández I, Domínguez J, García-Rocha M, Soriano E, Rodríguez De Córdoba S, Guinovart JJ (2007) Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 10:1407–1413. https://doi.org/10.1038/nn1998

DiNuzzo M, Schousboe A (2019) Brain Glycogen Metabolism. Springer

Duran J, Gruart A, García-Rocha M, Delgado-García JM, Guinovart JJ (2014) Glycogen accumulation underlies neurodegeneration and autophagy impairment in lafora disease. Hum Mol Genet 23:3147–3156. https://doi.org/10.1093/hmg/ddu024

Лебедева АВ, Дембицкая ЮВ, Пимашкин АС, Журавлева ЗД, Шишкова ЕА, Семьянов АВ (2015) Роль энергетических субстратов в кальциевой активности астроцитов гиппокампа крыс раннего постнатального период. Соврем технол мед [Lebedeva AV, Dembitskaya YV, Pimashkin AS, Zhuravleva ZD, Shishkova EA. (2015) The Role of Energy Substrates in Astrocyte Calcium Activity of Rat Hippocampus in Early Postnatal Ontogenesis. Sovrem Tekhnologii Med 7:14–19 (In Russ)] http://doi.org/10.17691/stm2015.7.3.02

Steiner P (2019) Brain Fuel Utilization in the Developing Brain. Ann Nutr Metab 75(suppl 1):8–18. https://doi.org/10.1159/000508054

Turner DA, Adamson DC (2011) Neuronal-astrocyte metabolic interactions: Understanding the transition into abnormal astrocytoma metabolism. J Neuropathol Exp Neurol 70:167–176. https://doi.org/10.1097/NEN.0b013e31820e1152

Zilberter Y, Zilberter T (2020) Glucose-Sparing Action of Ketones Boosts Functions Exclusive to Glucose in the Brain. eneuro 7:ENEURO.0303-20.2020. https://doi.org/10.1523/ENEURO.0303-20.2020

Castellano C-A, Nugent S, Paquet N, Tremblay S, Bocti C, Lacombe G, Imbeault H, Turcotte É, Fulop T, Cunnane SC (2015) Lower Brain 18F-Fluorodeoxyglucose Uptake But Normal 11C-Acetoacetate Metabolism in Mild Alzheimer’s Disease Dementia. J Alzheimer’s Dis 43:1343–1353. https://doi.org/10.3233/JAD-141074

Croteau E, Castellano CA, Fortier M, Bocti C, Fulop T, Paquet N, Cunnane SC (2018) A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp Gerontol 107:18–26. https://doi.org/https://doi.org/10.1016/j.exger.2017.07.004

Croteau E, Castellano C-A, Richard MA, Fortier M, Nugent S, Lepage M, Duchesne S, Whittingstall K, Turcotte ÉE, Bocti C, Fülöp T, Cunnane SC (2018) Ketogenic Medium Chain Triglycerides Increase Brain Energy Metabolism in Alzheimer’s Disease. J Alzheimer’s Dis 64:551–561. https://doi.org/10.3233/JAD-180202

Sharp FR (1976) Relative cerebral glucose uptake of neuronal perikarya and neuropil determined with 2-deoxyglucose in resting and swimming rat. Brain Res 110:127–139. https://doi.org/10.1016/0006-8993(76)90213-4

Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci 22:208–215. https://doi.org/10.1016/S0166-2236(98)01349-6

Tabernero A, Medina JM, Giaume C (2006) Glucose metabolism and proliferation in glia: Role of astrocytic gap junctions. J Neurochem 99:1049–1061. https://doi.org/10.1111/j.1471-4159.2006.04088.x

Devivo DC, Leckie MP, Ferrendelli JS, McDougal DB (1978) Chronic ketosis and cerebral metabolism. Ann Neurol 3:331–337. https://doi.org/10.1002/ana.410030410

Ma W, Berg J, Yellen G (2007) Ketogenic diet metabolites reduce firing in central neurons by opening KATP channels. J Neurosci 27:3618–3625. https://doi.org/10.1523/JNEUROSCI.0132-07.2007

Chan O, Lawson M, Zhu W, Beverly JL, Sherwin RS (2007) ATP-sensitive K+ channels regulate the release of GABA in the ventromedial hypothalamus during hypoglycemia. Diabetes 56:1120–1126. https://doi.org/10.2337/db06-1102

Tanner GR, Lutas A, Martínez-François JR, Yellen G (2011) Single KATP channel opening in response to action potential firing in mouse dentate granule neurons. J Neurosci 31:8689–8696. https://doi.org/10.1523/JNEUROSCI.5951-10.2011

Mercer RW, Dunham PB (1981) Membrane-bound ATP fuels the Na/K pump: Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes. J Gen Physiol 78:547–568. https://doi.org/10.1085/jgp.78.5.547

Haller M, Mironov SL, Karschin A, Richter DW (2001) Dynamic activation of K ATP channels in rhythmically active neurons. J Physiol 537:69–81. https://doi.org/10.1111/j.1469-7793.2001.0069k.x

Lipton JO, Sahin M (2014) The Neurology of mTOR. Neuron 84:275–291. https://doi.org/10.1016/j.neuron.2014.09.034

Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM (2010) mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468:1100–1104. https://doi.org/10.1038/nature09584

Ma D, Wang AC, Parikh I, Green SJ, Hoffman JD, Chlipala G, Murphy MP, Sokola BS, Bauer B, Hartz AMS, Lin A-L (2018) Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep 8:6670. https://doi.org/10.1038/s41598-018-25190-5

Laplante M, Sabatini DM (2012) MTOR signaling in growth control and disease. Cell 149:274–293. https://doi.org/10.1016/j.cell.2012.03.017

Martuscello RT, Vedam-Mai V, McCarthy DJ, Schmoll ME, Jundi MA, Louviere CD, Griffith BG, Skinner CL, Suslov O, Deleyrolle LP, Reynolds BA (2016) A Supplemented High-Fat Low-Carbohydrate Diet for the Treatment of Glioblastoma. Clin Cancer Res 22: 2482–2495. https://doi.org/10.1158/1078-0432.CCR-15-0916

Rojas-Morales P, Pedraza-Chaverri J, Tapia E (2020) Ketone bodies, stress response, and redox homeostasis. Redox Biol 29:101395. https://doi.org/10.1016/j.redox.2019.101395

Haces ML, Hernández-Fonseca K, Medina-Campos ON, Montiel T, Pedraza-Chaverri J, Massieu L (2008) Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Exp Neurol 211:85–96. https://doi.org/10.1016/j.expneurol.2007.12.029

Lu Y, Yang YY, Zhou MW, Liu N, Xing HY, Liu XX, Li F (2018) Ketogenic diet attenuates oxidative stress and inflammation after spinal cord injury by activating Nrf2 and suppressing the NF-κB signaling pathways. Neurosci Lett 683:13–18. https://doi.org/10.1016/j.neulet.2018.06.016

Maalouf M, Sullivan PG, Davis L, Kim DY, Rho JM (2007) Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience. https://doi.org/10.1016/j.neuroscience.2006.11.065

Cheng CM, Hicks K, Wang J, Eagles DA, Bondy CA (2004) Caloric restriction augments brain glutamic acid decarboxylase-65 and -67 expression. J Neurosci Res 77:270–276. https://doi.org/10.1002/jnr.20144

Juge N, Gray JA, Omote H, Miyaji T, Inoue T, Hara C, Uneyama H, Edwards RH, Nicoll RA, Moriyama Y (2010) Metabolic Control of Vesicular Glutamate Transport and Release. Neuron 68:99–112. https://doi.org/10.1016/j.neuron.2010.09.002

Ruskin DN, Kawamura M, Masino SA (2020) Adenosine and Ketogenic Treatments. J Caffeine Adenosine Res 10:104–109. https://doi.org/10.1089/caff.2020.0011

Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005) Adenosine and Brain Function. Int Rev Neurobiol 63:191–270. https://doi.org/10.1016/S0074-7742(05)63007-3

Kawamura M, Ruskin DN, Masino SA (2010) Metabolic autocrine regulation of neurons involves cooperation among pannexin hemichannels, adenosine receptors, and KATP channels. J Neurosci 30:3886–3895. https://doi.org/10.1523/JNEUROSCI.0055-10.2010

Gzielo K, Soltys Z, Rajfur Z, Setkowicz ZK (2019) The Impact of the Ketogenic Diet on Glial Cells Morphology. A Quantitative Morphological Analysis. Neuroscience 412:239–251. https://doi.org/10.1016/j.neuroscience.2019.06.009

Zhao Z, Lange DJ, Voustianiouk A, MacGrogan D, Ho L, Suh J, Humala N, Thiyagarajan M, Wang J, Pasinetti GM (2006) A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neuroscience 7:29. https://doi.org/10.1186/1471-2202-7-29

Tai KK, Truong DD (2007) Ketogenic diet prevents seizure and reduces myoclonic jerks in rats with cardiac arrest-induced cerebral hypoxia. Neurosci Lett 425:34–38. https://doi.org/10.1016/j.neulet.2007.08.007

Tai KK, Nguyen N, Pham L, Truong DD (2008) Ketogenic diet prevents cardiac arrest-induced cerebral ischemic neurodegeneration. J Neural Transm 115:1011–1017. https://doi.org/10.1007/s00702-008-0050-7

Yang Q, Guo M, Wang X, Zhao Y, Zhao Q, Ding H, Dong Q, Cui M (2017) Ischemic preconditioning with a ketogenic diet improves brain ischemic tolerance through increased extracellular adenosine levels and hypoxia-inducible factors. Brain Res 1667:11–18. https://doi.org/10.1016/j.brainres.2017.04.010

Hertz L, Chen Y, Waagepetersen HS (2015) Effects of ketone bodies in Alzheimer’s disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function. J Neurochem 134:7–20. https://doi.org/10.1111/jnc.13107

Keene DL (2006) A systematic review of the use of the ketogenic diet in childhood epilepsy. Pediatr Neurol 35:1–5. https://doi.org/10.1016/j.pediatrneurol.2006.01.005.

Hallböök T, Ji S, Maudsley S, Martin B (2012) The effects of the ketogenic diet on behavior and cognition. Epilepsy Res 100:304–309. https://doi.org/10.1016/j.eplepsyres.2011.04.017

Samoilova M, Weisspapir M, Abdelmalik P, Velumian AA, Carlen PL (2010) Chronic in vitro ketosis is neuroprotective but not anti-convulsant. J Neurochem 113:826–835. https://doi.org/10.1111/j.1471-4159.2010.06645.x

Phillis JW, Wu PH (1981) The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol 16:187–239. https://doi.org/10.1016/0301-0082(81)90014-9

Masino SA, Li T, Theofilas P, Sandau US, Ruskin DN, Fredholm BB, Geiger JD, Aronica E, Boison D (2011) A ketogenic diet suppresses seizures in mice through adenosine A 1 receptors. J Clin Invest 121:2679–2683. https://doi.org/10.1172/JCI57813

Plata A, Lebedeva A, Denisov P, Nosova O, Postnikova TY, Pimashkin A, Brazhe A, Zaitsev A v., Rusakov DA, Semyanov A (2018) Astrocytic Atrophy Following Status Epilepticus Parallels Reduced Ca2+ Activity and Impaired Synaptic Plasticity in the Rat Hippocampus. Front Mol Neurosci 11:215. https://doi.org/10.3389/fnmol.2018.00215

Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, Whitney A, Cross JH (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 7:500–506. https://doi.org/10.1016/S1474-4422(08)70092-9

Patel A, Pyzik PL, Turner Z, Rubenstein JE, Kossoff EH (2010) Long-term outcomes of children treated with the ketogenic diet in the past. Epilepsia 51:1277–1282. https://doi.org/10.1111/j.1528-1167.2009.02488.x

Jensen NJ, Wodschow HZ, Nilsson M, Rungby J (2020) Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. Int J Mol Sci 21:8767. https://doi.org/10.3390/ijms21228767

VanItallie TB, Nonas C, di Rocco A, Boyar K, Hyams K, Heymsfield SB (2005) Treatment of Parkinson disease with diet-induced hyperketonemia: A feasibility study. Neurology 64:728–730. https://doi.org/10.1212/01.WNL.0000152046.11390.45

Tieu K, Perier C, Caspersen C, Teismann P, Wu DC, Yan S du, Naini A, Vila M, Jackson-Lewis V, Ramasamy R, Przedborski S (2003) D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 112:892–901. https://doi.org/10.1172/JCI200318797

Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL (2000) D-β-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci U S A 97:5440–5444. https://doi.org/10.1073/pnas.97.10.5440

Evangeliou A, Vlachonikolis I, Mihailidou H, Spilioti M, Skarpalezou A, Makaronas N, Prokopiou A, Christodoulou P, Liapi-Adamidou G, Helidonis E, Sbyrakis S, Smeitink J (2003) Application of a ketogenic diet in children with autistic behavior: Pilot study. J Child Neurol 18:113–118. https://doi.org/10.1177/08830738030180020501

Zhao Q, Stafstrom CE, Fu DD, Hu Y, Holmes GL (2004) Detrimental Effects of the Ketogenic Diet on Cognitive Function in Rats. Pediatr Res 55:498–506. https://doi.org/10.1203/01.PDR.0000112032.47575.D1

Rubio C, Luna R, Rosiles A, Rubio-Osornio M (2020) Caloric Restriction and Ketogenic Diet Therapy for Epilepsy: A Molecular Approach Involving Wnt Pathway and KATP Channels. Front Neurol 11:584298. https://doi.org/10.3389/fneur.2020.584298

Phillips-Farfán B v., Rubio Osornio M del C, Custodio Ramírez V, Paz Tres C, Carvajal Aguilera KG (2015) Caloric restriction protects against electrical kindling of the amygdala by inhibiting the mTOR signaling pathway. Front Cell Neurosci 9:90. https://doi.org/10.3389/fncel.2015.00090

Ma L, Wang R, Dong W, Zhao Z (2018) Caloric restriction can improve learning and memory in C57/BL mice probably via regulation of the AMPK signaling pathway. Exp Gerontol 102:28–35. https://doi.org/10.1016/j.exger.2017.11.013

Hadem IKH, Sharma R (2017) Differential Regulation of Hippocampal IGF-1-Associated Signaling Proteins by Dietary Restriction in Aging Mouse. Cell Mol Neurobiol 37:985–993. https://doi.org/10.1007/s10571-016-0431-7

Ciobanu O, Elena Sandu R, Tudor Balseanu A, Zavaleanu A, Gresita A, Petcu EB, Uzoni A, Popa-Wagner A (2017) Caloric restriction stabilizes body weight and accelerates behavioral recovery in aged rats after focal ischemia. Aging Cell 16:1394–1403. https://doi.org/10.1111/acel.12678

Julien C, Tremblay C, Émond V, Lebbadi M, Salem N, Bennett DA, Calon F (2009) Sirtuin 1 reduction parallels the accumulation of tau in alzheimer disease. J Neuropathol Exp Neurol 68:48–58. https://doi.org/10.1097/NEN.0b013e3181922348

Morris KC, Lin HW, Thompson JW, Perez-Pinzon MA (2011) Pathways for ischemic cytoprotection: Role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J Cereb Blood Flow Metab 31:1003–1019. https://doi.org/10.1038/jcbfm.2010.229

Bagherniya M, Butler AE, Barreto GE, Sahebkar A (2018) The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Res Rev 47:183–197. https://doi.org/10.1016/j.arr.2018.08.004

Schmeisser K, Parker JA (2019) Pleiotropic effects of mTOR and autophagy during development and aging. Front Cell Dev Biol 7:192. https://doi.org/10.3389/fcell.2019.00192

Dong W, Wang R, Ma LN, Xu BL, Zhang JS, Zhao ZW, Wang YL, Zhang X (2015) Autophagy involving age-related cognitive behavior and hippocampus injury is modulated by different caloric intake in mice. Int J Clin Exp Med 8:11843–11853

Liu Y, Wang R, Zhao Z, Dong W, Zhang X, Chen X, Ma L (2017) Short-term caloric restriction exerts neuroprotective effects following mild traumatic brain injury by promoting autophagy and inhibiting astrocyte activation. Behav Brain Res 331:135–142. https://doi.org/10.1016/j.bbr.2017.04.024

Popov A, Denisov P, Bychkov M, Brazhe A, Lyukmanova E, Shenkarev Z, Lazareva N, Verkhratsky A, Semyanov A (2020) Caloric restriction triggers morphofunctional remodeling of astrocytes and enhances synaptic plasticity in the mouse hippocampus. Cell Death Dis 11:208. https://doi.org/10.1038/s41419-020-2406-3

Rühlmann C, Wölk T, Blümel T, Stahn L, Vollmar B, Kuhla A (2016) Long-term caloric restriction in ApoE-deficient mice results in neuroprotection via Fgf21-induced AMPK/mTOR pathway. Aging 8:2777–2789. https://doi.org/10.18632/aging.101086

Matyi S, Jackson J, Garrett K, Deepa SS, Unnikrishnan A (2018) The effect of different levels of dietary restriction on glucose homeostasis and metabolic memory. GeroScience 40:139–149. https://doi.org/10.1007/s11357-018-0011-5

Speakman JR, Mitchell SE, Mazidi M (2016) Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone. Exp Gerontol 86:28–38. https://doi.org/https://doi.org/10.1016/j.exger.2016.03.011

Greene AE, Todorova MT, McGowan R, Seyfried TN (2001) Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose. Epilepsia 42:1371–1378. https://doi.org/10.1046/j.1528-1157.2001.17601.x

McCay CM, Crowell MF, Maynard LA (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size. Nutrition 10:63–79. https://doi.org/10.1093/jn/10.1.63

Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204. https://doi.org/10.1126/science.1173635

Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, Ingram DK, Weindruch R, de Cabo R, Anderson RM (2017) Caloric restriction improves health and survival of rhesus monkeys. Nat Commun 8:14063. https://doi.org/10.1038/ncomms14063

Kuhla A, Lange S, Holzmann C, Maass F, Petersen J, Vollmar B, Wree A (2013) Lifelong Caloric Restriction Increases Working Memory in Mice. PLoS ONE 8:e68778. https://doi.org/10.1371/journal.pone.0068778

Villeda SA, Horowitz AM (2017) Therapeutic potential of systemic brain rejuvenation strategies for neurodegenerative disease. F1000Research 6:1291. https://doi.org/10.12688/f1000research.11437.1

Aguilera KGC, Farfán BVP (2016) Caloric Restriction and Dietary Treatments of Epilepsy: Mechanistic Insights for Drug Discovery. 163–180.

Beilharz JE, Maniam J, Morris MJ (2014) Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats. Brain Behav Immun 37:134–141. https://doi.org/10.1016/j.bbi.2013.11.016

Molteni R, Barnard RJ, Ying Z, Roberts CK, Gómez-Pinilla F (2002) A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112:803–814. https://doi.org/10.1016/S0306-4522(02)00123-9

Beilharz JE, Maniam J, Morris MJ (2015) Diet-induced cognitive deficits: The role of fat and sugar, potential mechanisms and nutritional interventions. Nutrients 7:6719–6738. https://doi.org/10.3390/nu7085307

Kanoski SE, Zhang Y, Zheng W, Davidson TL (2010) The effects of a high-energy diet on hippocampal function and blood-brain barrier integrity in the rat. J Alzheimer’s Dis 21:207–217. https://doi.org/10.3233/JAD-2010-091414

Davidson TL, Monnot A, Neal AU, Martin AA, Horton JJ, Zheng W (2012) The effects of a high-energy diet on hippocampal-dependent discrimination performance and blood-brain barrier integrity differ for diet-induced obese and diet-resistant rats. Physiol Behav 107:26–33. https://doi.org/10.1016/j.physbeh.2012.05.015

Davidson TL, Hargrave SL, Swithers SE, Sample CH, Fu X, Kinzig KP, Zheng W (2013) Inter-relationships among diet, obesity and hippocampal-dependent cognitive function. Neuroscience 253:110–122. https://doi.org/10.1016/j.neuroscience.2013.08.044

Banks WA, Burney BO, Robinson SM (2008) Effects of triglycerides, obesity, and starvation on ghrelin transport across the blood-brain barrier. Peptides 29:2061–2065. https://doi.org/10.1016/j.peptides.2008.07.001

Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, Morley JE (2004) Triglycerides Induce Leptin Resistance at the Blood-Brain Barrier. Diabetes 53:1253–1260. https://doi.org/10.2337/diabetes.53.5.1253

Hsu TM, Kanoski SE (2014) Blood-brain barrier disruption: Mechanistic links between western diet consumption and dementia. Front Aging Neurosci 6:88. https://doi.org/10.3389/fnagi.2014.00088

Mulder M, Blokland A, van den Berg DJ, Schulten H, Bakker AHF, Terwel D, Honig W, de Kloet ER, Havekes LM, Steinbusch HWM, de Lange ECM (2001) Apolipoprotein E protects against neuropathology induced by a high-fat diet and maintains the integrity of the blood-brain barrier during aging. Lab Investig 81:953–960. https://doi.org/10.1038/labinvest.3780307

Abbott NJ (2000) Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 20:131–147. https://doi.org/10.1023/A:1007074420772

Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53. https://doi.org/10.1038/nrn1824

Ek M, Engblom D, Saha S, Blomqvist A, Jakobsson P-J, Ericsson-Dahlstrand A (2001) Pathway across the blood–brain barrier. Nature 410:430–431. https://doi.org/10.1038/35068632

Jena PK, Sheng L, di Lucente J, Jin LW, Maezawa I, Wan YJY (2018) Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity. FASEB J 32:2866–2877. https://doi.org/10.1096/fj.201700984RR

Granholm AC, Bimonte-Nelson HA, Moore AB, Nelson ME, Freeman LR, Sambamurti K (2008) Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat. J Alzheimer’s Dis 14:133–145. https://doi.org/10.3233/JAD-2008-14202

Biessels GJ, Reagan LP (2015) Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci 16:660–671. https://doi.org/10.1038/nrn4019

Kothari V, Luo Y, Tornabene T, O’Neill AM, Greene MW, Geetha T, Babu JR (2017) High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochim Biophys Acta - Mol Basis Dis 1863:499–508. https://doi.org/10.1016/j.bbadis.2016.10.006

Tsai SF, Wu HT, Chen PC, Chen YW, Yu M, Wang TF, Wu SY, Tzeng SF, Kuo YM (2018) High-fat diet suppresses the astrocytic process arborization and downregulates the glial glutamate transporters in the hippocampus of mice. Brain Res 1700:66–77. https://doi.org/10.1016/j.brainres.2018.07.017

Zhao WQ, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134. https://doi.org/10.1016/S0303-7207(01)00455-5

Greenwood CE, Winocur G (2005) High-fat diets, insulin resistance and declining cognitive function. Neurobiol Aging 26 Suppl:42–45. https://doi.org/10.1016/j.neurobiolaging.2005.08.017

Lizarbe B, Soares AF, Larsson S, Duarte JMN (2019) Neurochemical modifications in the hippocampus, cortex and hypothalamus of mice exposed to long-term high-fat diet. Front Neurosci 12:985. https://doi.org/10.3389/fnins.2018.00985

Huang PL (2009) A comprehensive definition for metabolic syndrome. Dis Model Mech 2:231–237. https://doi.org/10.1242/dmm.001180

Mittra S, Bansal VS, Bhatnagar PK (2008) From a glucocentric to a lipocentric approach towards metabolic syndrome. Drug Discov Today 13:211–218. https://doi.org/https://doi.org/10.1016/j.drudis.2008.01.006

Avena NM, Gold MS (2011) Food and addiction - sugars, fats and hedonic overeating. Addiction 106:1214–1215. https://doi.org/10.1111/j.1360-0443.2011.03373.x

Ebbeling CB, Swain JF, Feldman HA, Wong WW, Hachey DL, Garcia-Lago E, Ludwig DS (2012) Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA 307:2627–2634. https://doi.org/10.1001/jama.2012.6607

Graham LC, Harder JM, Soto I, de Vries WN, John SWM, Howell GR (2016) Chronic consumption of a western diet induces robust glial activation in aging mice and in a mouse model of Alzheimer’s disease. Sci Rep 6:21568. https://doi.org/10.1038/srep21568

Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, Steinhäuser C, Volterra A, Carmignoto G, Agarwal A, Allen NJ, Araque A, Barbeito L, Barzilai A, Bergles DE, Bonvento G, Butt AM, Chen W-T, Cohen-Salmon M, Cunningham C, Deneen B, de Strooper B, Díaz-Castro B, Farina C, Freeman M, Gallo V, Goldman JE, Goldman SA, Götz M, Gutiérrez A, Haydon PG, Heiland DH, Hol EM, Holt MG, Iino M, Kastanenka K v, Kettenmann H, Khakh BS, Koizumi S, Lee CJ, Liddelow SA, MacVicar BA, Magistretti P, Messing A, Mishra A, Molofsky A v, Murai KK, Norris CM, Okada S, Oliet SHR, Oliveira JF, Panatier A, Parpura V, Pekna M, Pekny M, Pellerin L, Perea G, Pérez-Nievas BG, Pfrieger FW, Poskanzer KE, Quintana FJ, Ransohoff RM, Riquelme-Perez M, Robel S, Rose CR, Rothstein JD, Rouach N, Rowitch DH, Semyanov A, Sirko S, Sontheimer H, Swanson RA, Vitorica J, Wanner I-B, Wood LB, Wu J, Zheng B, Zimmer ER, Zorec R, Sofroniew M v, Verkhratsky A (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. https://doi.org/10.1038/s41593-020-00783-4

Thériault P, ElAli A, Rivest S (2016) High fat diet exacerbates Alzheimer’s disease-related pathology in APPswe/PS1 mice. Oncotarget 7:67808–67827. https://doi.org/10.18632/ONCOTARGET.12179

Kim HN, Langley MR, Simon WL, Yoon H, Kleppe L, Lanza IR, LeBrasseur NK, Matveyenko A, Scarisbrick IA (2020) A Western diet impairs CNS energy homeostasis and recovery after spinal cord injury: Link to astrocyte metabolism. Neurobiol Dis 141:104934. https://doi.org/10.1016/j.nbd.2020.104934

Cordner ZA, Tamashiro KLK (2015) Effects of high-fat diet exposure on learning & memory. Physiol Behav 152:363–371. https://doi.org/10.1016/j.physbeh.2015.06.008

Cinquina V, Calvigioni D, Farlik M, Halbritter F, Fife-Gernedl V, Shirran SL, Fuszard MA, Botting CH, Poullet P, Piscitelli F, Máté Z, Szabó G, Yanagawa Y, Kasper S, di Marzo V, Mackie K, McBain CJ, Bock C, Keimpema E, Harkany T (2020) Life-long epigenetic programming of cortical architecture by maternal ‘Western’ diet during pregnancy. Mol Psychiatry 25:22–36. https://doi.org/10.1038/s41380-019-0580-4

Buffington SA, di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M (2016) Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring. Cell 165:1762–1775. https://doi.org/10.1016/j.cell.2016.06.001

Winocur G, Greenwood CE (2005) Studies of the effects of high fat diets on cognitive function in a rat model. Neurobiol Aging 26 Suppl:46–49. https://doi.org/10.1016/j.neurobiolaging.2005.09.003

López-Taboada I, González-Pardo H, Conejo NM (2020) Western Diet: Implications for Brain Function and Behavior. Front Psychol 11:564413. https://doi.org/10.3389/fpsyg.2020.564413

Hirschberg S, Gisevius B, Duscha A, Haghikia A (2019) Implications of diet and the gut microbiome in neuroinflammatory and neurodegenerative diseases. Int J Mol Sci 20:3109. https://doi.org/10.3390/ijms20123109

Marrone MC, Coccurello R (2020) Dietary fatty acids and microbiota-brain communication in neuropsychiatric diseases. Biomolecules 10:12. https://doi.org/10.3390/biom10010012

Li RJ, Liu Y, Liu HQ, Li J (2020) Ketogenic diets and protective mechanisms in epilepsy, metabolic disorders, cancer, neuronal loss, and muscle and nerve degeneration J Food Biochem 44:1–14. https://doi.org/10.1111/jfbc.13140

Guo Q, Liu S, Wang S, Wu M, Li Z, Wang Y (2019) Beta-hydroxybutyric acid attenuates neuronal damage in epileptic mice. Acta Histochem 121:455–459. https://doi.org/10.1016/j.acthis.2019.03.009

Boison D, Steinhäuser C (2018) Epilepsy and astrocyte energy metabolism. Glia 66:1235-1243. https://doi.org/10.1002/glia.23247

Yudkoff M, Daikhin Y, Horyn O, Nissim I, Nissim I (2008) Ketosis and brain handling of glutamate, glutamine, and GABA. Epilepsia 49:73–75. https://doi.org/10.1111/j.1528-1167.2008.01841.x

Koppel SJ, Swerdlow RH (2018) Neuroketotherapeutics: A modern review of a century-old therapy. Neurochem Int 117:114–125. https://doi.org/10.1016/j.neuint.2017.05.019

Barzegar M, Afghan M, Tarmahi V, Behtari M, Rahimi Khamaneh S, Raeisi S (2019) Ketogenic diet: overview, types, and possible anti-seizure mechanisms. Nutr Neurosci 1–10. https://doi.org/10.1080/1028415X.2019.1627769

McNally MA, Hartman AL (2012) Ketone bodies in epilepsy. J Neurochem 121:28–35. https://doi.org/10.1111/j.1471-4159.2012.07670.x

Masino SA, Rho JM (2012) Mechanisms of ketogenic diet action. Jasper’s Basic Mechanisms of the Epilepsies [Internet] 4th edition.

Minlebaev M, Khazipov R (2011) Antiepileptic effects of endogenous beta-hydroxybutyrate in suckling infant rats. Epilepsy Res 95:100–109. https://doi.org/10.1016/j.eplepsyres.2011.03.003

Yuen A, Sander L (2014) Rationale for using intermittent calorie restriction as a dietary treatment for drug resistant epilepsy. Epilepsy Behav 33:110–114. https://doi.org/10.1016/j.yebeh.2014.02.026

Martin-McGill KJ, Jackson CF, Bresnahan R, Levy RG, Cooper PN (2018) Ketogenic diets for drug-resistant epilepsy. Cochrane database Syst Rev:CD001903–CD001903. https://doi.org/10.1002/14651858.CD001903.pub4

Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P (2003) Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer 89:1375–1382. https://doi.org/10.1038/sj.bjc.6601269