МЕХАНИЗМЫ УВЕЛИЧЕНИЯ МЫШЕЧНОЙ МАССЫ И СИЛЫ ПРИ РЕГУЛЯРНЫХ СИЛОВЫХ ТРЕНИРОВКАХ
PDF

Ключевые слова

силовая тренировка
скелетная мышца
адаптация механизмов управления мышечным сокращением
скорость синтеза белка
mTORC1
мышечное волокно

Как цитировать

Лысенко, Е. А., Виноградова, О. Л., & Попов, Д. В. (2021). МЕХАНИЗМЫ УВЕЛИЧЕНИЯ МЫШЕЧНОЙ МАССЫ И СИЛЫ ПРИ РЕГУЛЯРНЫХ СИЛОВЫХ ТРЕНИРОВКАХ. Российский физиологический журнал им. И. М. Сеченова, 107(6-7), 755–772. https://doi.org/10.31857/S0869813921060078

Аннотация

Наиболее эффективным средством для поддержания или увеличения мышечной массы и силы являются регулярные силовые тренировки. Силовые упражнения используются во время реабилитации после травм и длительной гипокинезии, для профилактики развития старческой саркопении, профилактики развития метаболического синдрома и сахарного диабета 2 типа, профилактики развития сердечно-сосудистых заболеваний. Также силовые упражнения широко используются спортсменами различной специализации. Эффективность регулярных силовых тренировок существенно варьирует в зависимости от индивидуальных особенностей, питания и используемой тренировочной схемы. В последние годы достигнут существенный прогресс в понимании механизмов адаптации скелетной мышцы в ответ на регулярные силовые тренировки. В обзоре описаны наиболее важные механизмы увеличения мышечной массы и силы, соответствующие актуальным представлениям современной литературы по данному вопросу. Рассмотрена роль регуляции механизмов управления мышечным сокращением, а также сигнальных процессов, обуславливающих увеличение скорости синтеза белка в мышце, в развитии изменений в ответ на регулярные силовые тренировки. На этой основе проанализированы ключевые переменные, определяющие эффективность регулярных силовых тренировок, такие как величина нагрузки, объем выполняемой работы и скорость выполнения тренировочных движений. Знание механизмов, обуславливающих эффективность тренировочного процесса, позволит читателю сформировать представление о наиболее существенных аспектах силовых тренировок.

https://doi.org/10.31857/S0869813921060078
PDF

Литература

Tang E, Perco JG, Moore DR, Wilkinson SB, Phillips SM (2008) Resistance training alters the response of fed state mixed muscle protein synthesis in young men. Am J Physiol Regul Integr Comp Physiol 294(1):172–178. https://doi.org/10.1152/ajpregu.00636.2007

Burd NA, West DWD, Staples AW, Atherton PJ, Baker JM, Daniel R, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010) Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More Than High-Load Low Volume Resistance Exercise in Young Men. PLoS One 5(8):e12033. https://doi.org/10.1371/journal.pone.0012033

Phillips SM, Parise G, Roy B, Tipton R, Wolfe R, Tarnopolsky MA (2002) Resistance-training-induced adaptations inskeletal muscle protein turnover in the fed state. Can J Physiol Pharmacol 80(11):1045–1053. https://doi.org/10.1139/y02-134

Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Peter Magnusson S, Halkjær-Kristensen J, Simonsen EB (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: Changes in muscle architecture. J Physiol 534(2):613–623. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00613.x

Balshaw TG, Massey GJ, Maden-Wilkinson TM, Lanza MB, Folland JP (2019) Neural adaptations after 4 years vs 12 weeks of resistance training vs untrained. Scand J Med Sci Sport 29(3):348–359. https://doi.org/10.1111/sms.13331

Balshaw TG, Massey GJ, Maden-Wilkinson TM, Morales-Artacho AJ, McKeown A, Appleby CL, Folland JP (2017) Changes in agonist neural drive, hypertrophy and pre-training strength all contribute to the individual strength gains after resistance training. Eur J Appl Physiol 117(4):631–640. https://doi.org/10.1007/s00421-017-3560-x

Damas F, Libardi CA, Ugrinowitsch C (2017) The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis. Eur J Appl Physiol 118(3):485–500. https://doi.org/10.1007/s00421-017-3792-9

Damas F, Phillips SM, Libardi CA, Vechin FC, Lixandrão ME, Jannig R, Costa LAR, Bacurau AV, Snijders T, Parise G, Tricoli V, Roschel H, Ugrinowitsch C (2016) Muscle protein synthesis, hypertrophy, and muscle damage in humans. J Physiol 594(18):5209–5222. https://doi.org/10.1113/JP272472

Blazevich AJ, Gill ND, Deans N, Zhou S (2007) Lack of human muscle architectural adaptation after short-term strength training. Muscle and Nerve 35(1):78–86. https://doi.org/10.1002/mus.20666

Seynnes OR, De Boer M, Narici MV (2007) Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol 102(1):368–373. https://doi.org/10.1152/japplphysiol.00789.2006

Weier AT, Pearce AJ, Kidgell DJ (2012) Strength training reduces intracortical inhibition. Acta Physiol 206(2):109–119. https://doi.org/10.1016/j.juro.2017.04.076

Hakkinen K, Alen M, Komi PV (1985) Changes in isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiol Scand 125(4):573–585. https://doi.org/10.1111/j.1748-1716.1985.tb07760.x

Seguin R, Nelson ME (2003) The benefits of strength training for older adults. Am J Prev Med 25(3):141–149. https://doi.org/10.1016/s0749-3797(03)00177-6

Lynch GS (2004) Tackling Australia’s future health problems: Developing strategies to combat sarcopenia - Age-related muscle wasting and weakness. Intern Med J 34(5):294–296. https://doi.org/10.1111/j.1444-0903.2004.00568.x

Srikanthan P, Karlamangla AS (2011) Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the Third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab 96(9):2898–2903. https://doi.org/10.1210/jc.2011-0435

Srikanthan P, Karlamangla AS (2014) Muscle Mass Index as a Predictor of Longevity in Older-Adults. Perit Dial Int 127(6):547–553. https://doi.org/10.1016/j.amjmed.2014.02.007

Figueroa A, Okamoto T, Jaime SJ, Fahs CA (2019) Impact of high- and low-intensity resistance training on arterial stiffness and blood pressure in adults across the lifespan: a review. Eur J Physiol 471(3):467-478. https://doi.org/10.1007/s00424-018-2235-8

Myers AM, Beam NW, Fakhoury JD (2017) Resistance training for children and adolescents. Transl Pediatr 6(3):137-143. https://doi.org/10.21037/tp.2017.04.01

Legerlotz K (2018) The Effects of Resistance Training on Health of Children and Adolescents With Disabilities. Am J Lifestyle Med 14(4):382-396. https://doi.org/10.1177/1559827618759640

Penfield W, Rasmussen T (1950) The cerebral cortex of man; a clinical study of localization of function. JAMA 144(16):1412. https://doi.org/10.1111/j.1460-9568.2005.04098.x

Ebbesen CL, Brecht M (2017) Motor cortex - To act or not to act? Nat Rev Neurosci 18(11):694–705. https://doi.org/10.1038/nrn.2017.119

Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531. https://doi.org/10.1152/physrev.00031.2010

Henneman E, Somjen G, Carpenter D (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580. https://doi.org/10.1152/jn.1965.28.3.560

Aagaard P (2003) Training-induced changes in neural function. Exerc Sport Sci Rev 31(2):61–67. https://doi.org/10.1097/00003677-200304000-00002

Vigotsky AD, Halperin I, Lehman GJ, Trajano GS, Vieira TM (2018) Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Front Physiol 8:985. https://doi.org/10.3389/fphys.2017.00985

Kidgell DJ, Bonanno DR, Frazer AK, Howatson G, Pearc AJ (2017) Corticospinal responses following strength training: a systematic review and meta- analysis. Eur J Neurosci 46(11):2648–2661. https://doi.org/10.1111/ejn.13710

Siddique U, Rahman S, Frazer AK, Pearce AJ, Howatson G, Kidgell DJ (2020) Determining the Sites of Neural Adaptations to Resistance Training: A Systematic Review and Meta-analysis. Sport Med 50(6):1107–1128. https://doi.org/10.1007/s40279-020-01258-z

Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, Felici F, Farina D (2019) The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J Physiol 597(7):1873–1887. https://doi.org/10.1113/JP277250

Sterczala AJ, Miller JD, Dimmick HL, Wray ME, Trevino MA, Herda TJ (2020) Eight weeks of resistance training increases strength, muscle cross-sectional area and motor unit size, but does not alter firing rates in the vastus lateralis. Eur J Appl Physiol 120(1):281–294. https://doi.org/10.1007/s00421-019-04273-9

Scripture EW, Smith TL, Brown EM (1984) On the education of muscular control and power. Stud Yale Psychol Lab 2:114–119.

Нетреба АИ, Бравый ЯР, Макаров ВА, Устюжанин ДВ, Виноградова ОЛ (2011) Оценка эффективности тренировки, направленной на увеличение максимальной произвольной силы без развития гипертрофии мышц. Физиология человека 37(6):1–9. [Netreba AI, Bravyi IR, Makarov VA, Ustiuzhanin DV, Vinogradova OL (2011) Evaluation of training efficacy for improving maximal voluntary contraction without noticeable hypertrophy. Hum Physiol 37(6):89-97. (In Russ)].

Ruddy KL, Carson RG (2013) Neural pathways mediating cross education of motor function. Front Hum Neurosci 7:1–22. https://doi.org/10.3389/fnhum.2013.00397

Phillips SM, Tipton KD, Ferrando AA, Wolfe RR (1999) Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol 276(1):118–124. https://doi.org/10.1152/ajpendo.1999.276.1.E118

Goodman CA (2014) The Role of mTORC1 in Regulating Protein Synthesis and Skeletal Muscle Mass in Response to Various Mechanical Stimuli. Rev Physiol Biochem Pharmacol 166:43–95. https://doi.org/10.1007/112_2013_17

Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E, Rasmussen BB (2009) Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587(7):1535–1546. https://doi.org/10.1113/jphysiol.2008.163816

Terzis G, Georgiadis G, Stratakos G, Vogiatzis I, Kavouras S, Manta P, Mascher H, Blomstrand E (2008) Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol 102(2):145–152. https://doi.org/10.1007/s00421-007-0564-y

Mitchell WK, Wilkinson DJ, Phillips BE, Lund JN, Smith K, Atherton PJ (2016) Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition. Adv Nutr 7(4):828S-838S.https://doi.org/10.3945/an.115.011650

Burd NA, Tang JE, Moore DR, Phillips SM (2009) Exercise training and protein metabolism : influences of contraction, protein intake, and sex-based differences. J Appl Physiol 106(5):1692–1701. https://doi.org/10.1152/japplphysiol.91351.2008

Proud CG (2007) Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 403(2):217–234. https://doi.org/10.1042/BJ20070024

Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, Wackerhage H, Smith K, Atherton P, Selby A, Rennie MJ (2008) Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab 295(3):595–604. https://doi.org/10.1152/ajpendo.90411.2008

O'Neil TK, Duffy LR, Frey JW, Hornberger TA (2009) The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587(14):3691-3701. https://doi.org/10.1113/jphysiol.2009.173609

Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol 126(1):30–43. https://doi.org/10.1152/japplphysiol.00685.2018

Goodman CA (2019) Role of mTORC1 in mechanically induced increases in translation and skeletal muscle mass. J Appl Physiol 127(2):581–590. https://doi.org/10.1152/japplphysiol.01011.2018

Lysenko EA, Popov DV, Vepkhvadze TF, Sharova AP, Vinogradova OL (2019) Signaling responses to high and moderate moderate load strength exercise in trained muscle. Physiol Rep 7(9):1–9. https://doi.org/10.14814/phy2.14100

Terzis G, Spengos K, Mascher H, Georgiadis G, Manta P, Blomstrand E (2010) The degree of p70 S6k and S6 phosphorylation in human skeletal muscle in response to resistance exercise depends on the training volume. Eur J Appl Physiol 110(4):835–843. https://doi.org/10.1007/s00421-010-1527-2

Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, Williams J, Smith K, Seynnes O, Hiscock N, Rennie MJ (2009) Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol 587(1):211–217. https://doi.org/10.1113/jphysiol.2008.164483

Westad C, Westgaard RH, De Luca CJ (2003) Motor unit recruitment and derecruitment induced by brief increase in contraction amplitude of the human trapezius muscle. J Physiol 552(2):645–656. https://doi.org/10.1113/jphysiol.2003.044990

Dankel SJ, Jessee MB, Mattocks KT, Mouser JG, Counts BR, Buckner SL, Loenneke JP (2016) Training to Fatigue: The Answer for Standardization When Assessing Muscle Hypertrophy? Sport Med 47(6):1021–1027. https://doi.org/10.1007/s40279-016-0633-7

Morton RW, Sonne MW, Zuniga AF, Mohammad IYZ, Jones A, McGlory C, Keir PJ, Potvin JR, Phillips SM (2019) Muscle fibre activation is unaffected by load and repetition duration when resistance exercise is performed to task failure. J Physiol 597(17):4601–4613. https://doi.org/10.1113/JP278056

Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol 103(3):903–910. https://doi.org/10.1152/japplphysiol.00195.2007

Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N (2000) Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 88(6):2097–2106. https://doi.org/10.1152/jappl.2000.88.6.2097

Попов ДВ, Цвиркун ДВ, Нетреба АИ, Тарасова ОС, Простова АБ, Ларина ИМ, Боровик АС, Виноградова ОЛ (2006) Увеличение мышечной массы и силы при низкоинтенсивной силовой тренировке без расслабления связано с гормональной адаптацией. Физиология человека 32(5):121-127. [Popov DV, Tsvirkun DV, Netreba AI, Tarasova OS, Prostova AB, Larina IM, Borovik AS, Vinogradova OL (2006) Hormonal adaptation determines the increase in muscle mass and strength during low-intensity strength training without relaxation. Hum Physiol 32(5):121–127. (In Russ)].

Popov DV, Lysenko EA, Bachinin AV, Miller TF, Kurochkina NS, Kravchenko IV, Furalyov VA, Vinogradova OL (2014) Influence of resistance exercise intensity and metabolic stress on anabolic signaling and expression of myogenic genes in skeletal muscle. Muscle Nerve 51(3):434–442. https://doi.org/10.1002/mus.24314

Gavanda S, Isenmann E, Schlöder Y, Roth R, Freiwald J, Schiffer T, Geisler S, Behringer M (2020) Low-intensity blood flow restriction calf muscle training leads to similar functional and structural adaptations than conventional low- load strength training : A randomized controlled trial. PLoS One 15(6):e0235377. https://doi.org/10.1371/journal.pone.0235377

Kraemer WJ, Ratamess NA (2005) Hormonal Responses and Adaptations to Resistance Exercise and Training. Sport Med 35(4):339–361. https://doi.org/10.2165/00007256-200535040-00004

Fink J, Schoenfeld BJ, Nakazato K (2018) The role of hormones in muscle hypertrophy. Phys Sport Med 46(1):129–134. https://doi.org/10.1080/00913847.2018.1406778

Hakkinen K, Pakarinen A, Alen M, Kauhanen H, Komi PV (1988) Neuromuscular and hormonal adaptations in athletes to strength training in two years. J Appl Physiol 65(6):2406–2412. https://doi.org/10.1152/jappl.1988.65.6.2406

HÄkkinen K, Pakarinen A, Alén M, Komi PV (1985) Serum hormones during prolonged training of neuromuscular performance. Eur J Appl Physiol Occup Physiol 53(4):287–293. https://doi.org/10.1007/BF00422840

Morton RW, Sato K, Gallaugher MPB, Oikawa SY, McNicholas PD, Fujita S, Phillips SM (2018) Muscle androgen receptor content but not systemic hormones is associated with resistance training induced skeletal muscle hypertrophy in healthy, young men. Front Physiol 9:1373. https://doi.org/10.3389/fphys.2018.01373

Phillips SM, Baker SK, Churchward-Venne TA, Parise G, Bellamy L, Mitchell CJ (2013) Muscular and Systemic Correlates of Resistance Training-Induced Muscle Hypertrophy. PLoS One 8(10):e78636. https://doi.org/10.1371/journal.pone.0078636

Wyce A, Bai Y, Nagpal S, Thompson CC (2010) Research resource: The androgen receptor modulates expression of genes with critical roles in muscle development and function. Mol Endocrinol 24(8):1665–1674. https://doi.org/10.1210/me.2010-0138

Chaillou T, Kirby TJ, Mccarthy JJ (2014) Ribosome Biogenesis: Emerging Evidence for a Central Role in the Regulation of Skeletal Muscle Mass. J Cell Physiol 229(11):1584–1594. https://doi.org/10.1002/jcp.24604

Brook MS, Wilkinson DJ, Mitchell WK, Lund JL, Phillips BE, Szewczyk NJ, Kainulainen H, Lensu S, Koch LG, Britton SL, Greenhaff PL, Smith K, Atherton PJ (2017) A novel D2O tracer method to quantify RNA turnover as a biomarker of de novo ribosomal biogenesis, in vitro, in animal models, and in human skeletal muscle. Am J Physiol - Endocrinol Metab 313(6):E681–E689. https://doi.org/10.1152/ajpendo.00157.2017

Mobley CB, Haun CT, Roberson PA, Mumford PW, Kephart WC, Romero MA, Osburn SC, Vann CG, Young KC, Beck DT, Martin JS, Lockwood CM, Roberts MD (2018) Biomarkers associated with low, moderate, and high vastus lateralis muscle hypertrophy following 12 weeks of resistance training. PLoS One 13(4):1–20. https://doi.org/10.1371/journal.pone.0195203

Reidy PT, Fry CS, Igbinigie S, Deer RR, Jennings K, Cope MB, Mukherjea R, Volpi E, Rasmussen BB Protein Supplementation Does Not Affect Myogenic Adaptations to Resistance Training. Med Sci Sports Exerc 49(6):1197–1208. https://doi.org/10.1249/MSS.0000000000001224

Hikida RS, Staron RS, Hagerman FC, Walsh S, Kaiser E, Shell S, Hervey S (2000) Effects of High-Intensity Resistance Training on and Nucleo-Cytoplasmic Relationships. Sport Med 55(7):347–354. https://doi.org/10.1093/gerona/55.7.b347

Psilander N, Eftestøl E, Cumming KT, Juvkam I, Ekblom MM, Sunding K, Wernbom M, Holmberg HC, Ekblom B, Bruusgaard JC, Raastad T, Gundersen K (2019) Effects of training, detraining, and retraining on strength, hypertrophy, and myonuclear number in human skeletal muscle. Carbohydr Polym 6(1):5–10. https://doi.org/10.1152/japplphysiol.00917.2018

Baechle T, Earle R (2008) Essentials of Strength Training and Conditioning. Human Kinetics.

Fisher J, Steele J, Smith D (2017) High- and Low-Load Resistance Training: Interpretation and Practical Application of Current Research Findings. Sport Med 47(3):393–400. https://doi.org/10.1007/s40279-016-0602-1

Morton RW, Oikawa SY, Wavell CG, Mazara N, McGlory C, Quadrilatero J, Baechler BL, Baker SK, Phillips SM (2016) Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol 121(1):129–138. https://doi.org/10.1152/japplphysiol.00154.2016

Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW (2017) Strength and hypertrophy adaptations between low- versus high-load resistance treining: A systematic review and meta-analysis. J Strength Cond Res 48(2):361–378. https://doi.org/10.1519/JSC.0000000000002200

Krieger JW (2010) Single vs. multiple sets of resistance exercise for muscle hypertrophy: a meta-analysis. J Strength Cond Res 24(4):1150–1159. https://doi.org/10.1519/JSC.0b013e3181d4d436

Ralston GW, Kilgore L, Wyatt FB, Baker JS (2017) The Effect of Weekly Set Volume on Strength Gain: A Meta-Analysis. Sport Med 47(12):2585–2601. https://doi.org/10.1007/s40279-017-0762-7

Schoenfeld BJ, Ogborn D, Krieger JW (2016) Effects of Resistance Training Frequency on Measures of Muscle Hypertrophy : A Systematic Review and Meta-Analysis. Sport Med 46(11):1689–1697. https://doi.org/10.1007/s40279-016-0543-8

Del Vecchio A, Negro F, Holobar A, Casolo A, Folland JP, Felici F, Farina D (2019) You are as fast as your motor neurons: speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force development in humans. J Physiol 597(9):2445–2456. https://doi.org/10.1113/JP277396

Blazevich AJ, Wilson CJ, Alcaraz PE, Rubio-Arias JA (2020) Effects of Resistance Training Movement Pattern and Velocity on Isometric Muscular Rate of Force Development: A Systematic Review with Meta-analysis and Meta-regression. Sport Med 50(5):943–963. https://doi.org/10.1007/s40279-019-01239-x

Burd NA, Andrews RJ, West DW, Little JP, Cochran AJ, Hector AJ, Cashaback JG, Gibala MJ, Potvin JR, Baker SK, Phillips SM (2012) Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol 590(2):351–362. https://doi.org/10.1113/jphysiol.2011.221200

Hackett DA, Davies TB, Orr R, Kuang K, Halaki M (2018) Effect of movement velocity during resistance training on muscle-specific hypertrophy: A systematic review. Eur J Sport Sci 18(4):473–482. https://doi.org/10.1080/17461391.2018.1434563

Schoenfeld B, Ogborn D, Krieger J (2015) Effect of Repetition Duration During Resistance Training on Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sport Med 45:577–585. https://doi.org/10.1007/s40279-015-0304-0