Аннотация
Многие биологические исследования требуют анализа ультраструктурных изменений на уровне клеточных органелл и молекул. Разрешающая способность современных конфокальных микроскопов ограничена дифракционный пределом (200-300нм), в связи с чем изучать с помощью стандартной флуоресцентной микроскопии столь малые объекты невозможно. Методы микроскопии сверхвысокого разрешения требуют дорогостоящего оборудования и являются технически трудными в использовании, что в свою очередь ограничивает их повсеместное применение. Однако в последнее время появились методы, позволяющие увеличить разрешение микроскопии не за счет усовершенствования системы регистрации изображения, а посредством физического изотропного расширения биологического образца с помощью управляемого химического процесса. Благодаря этому методу, получившему название экспансионная или расширительная микроскопия (ExM), стало возможным получать трехмерные изображения образцов с разрешением достаточным для изучения отдельных органелл клетки с использованием обычного конфокального микроскопа. В статье рассмотрены методические особенности применения ExM при изучении образцов тканей головного мозга с приведением алгоритма, по которому можно осуществлять адаптацию стандартного протокола под цели и задачи конкретного исследования. Кроме того, рассматривается история возникновения данного метода, его основные принципы и примеры использования в различных областях биологии и медицины, а также отражены будущие направления для совершенствования данной технологии.
Литература
What Is a Polymer?| Live Science. https://www.livescience.com/60682-polymers.html. Accessed 17 Feb 2021
Tanaka T (1978) Collapse of Gels and the Critical Endpoint. Phys Rev Lett 40:820–823. https://doi.org/10.1103/PhysRevLett.40.820
Chen F, Tillberg PW, Boyden ES (2015) Expansion microscopy. Science (80) 347:543–548. https://doi.org/10.1126/science.1260088
Лежнев ЭИ, Попова ИИ, Кузьмин СВ, Слащев СМ (2001). Kонфокальная лазерная сканирующая микроскопия: принципы, устройство, применение (часть 2). Научное приборостроение 11 (3):26-42. [Lezhnev EI, Popova II, Kuzmin SV, Slashchev SM (2001). Confocal laser scanning microscopy: principles, device, application (part 2). Scientific Instrumentation 11 (3):26-42 (In Russ)].
Геннис Р (ред) (1997) Биомембраны. Молекулярная структура и функции. М Мир [Biomembranes. Molecular structure and function (ed R Gennis) (In Russ)]. ISBN 5-03-002419-0
Chen F, Wassie AT, Cote AJ, Sinha A, Alon S, Asano S, Daugharthy ER, Chang JB, Marblestone A, Church GM, Raj A, Boyden ES (2016) Nanoscale imaging of RNA with expansion microscopy. Nat Methods 13:679–684. https://doi.org/10.1038/nmeth.3899
Zhao Y, Bucur O, Irshad H, Chen F, Weins A, Stancu AL, Oh EY, Distasio M, Torous V, Glass B, Stillman IE, Schnitt SJ, Beck AH, Boyden ES (2017) Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nat Biotechnol 35:757–764. https://doi.org/10.1038/nbt.3892
Chozinski TJ, Halpern AR, Okawa H, Kim HJ, Tremel GJ, Wong ROL, Vaughan JC (2016) Expansion microscopy with conventional antibodies and fluorescent proteins. Nat Methods 13:485–488. https://doi.org/10.1038/nmeth.3833
Chang JB, Chen F, Yoon YG, Jung EE, Babcock H, Kang JS, Asano S, Suk HJ, Pak N, Tillberg PW, Wassie AT, Cai D, Boyden ES (2017) Iterative expansion microscopy. Nat Methods 14:593–599. https://doi.org/10.1038/nmeth.4261
Tillberg PW, Chen F, Piatkevich KD, Zhao Y, Yu CC, English BP, Gao L, Martorell A, Suk HJ, Yoshida F, Degennaro EM, Roossien DH, Gong G, Seneviratne U, Tannenbaum SR, Desimone R, Cai D, Boyden ES (2016) Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol 34:987–992. https://doi.org/10.1038/nbt.3625
Truckenbrodt S, Maidorn M, Crzan D, Wildhagen H, Kabatas S, Rizzoli SO (2018) X10 expansion microscopy enables 25‐nm resolution on conventional microscopes. EMBO Rep 19:(9):e45836. https://doi.org/10.15252/embr.201845836
Cipriano BH, Banik SJ, Sharma R, Rumore D, Hwang W, Briber RM, Raghavan SR (2014) Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules 47:4445–4452. https://doi.org/10.1021/ma500882n
Cahoon CK, Yu Z, Wang Y, Guo F, Unruh JR, Slaughter BD, Hawley RS (2017) Superresolution expansion microscopy reveals the three-dimensional organization of the Drosophila synaptonemal complex. Proc Natl Acad Sci U S A 114:E6857–E6866. https://doi.org/10.1073/pnas.1705623114
Halpern AR, Alas GCM, Chozinski TJ, Paredez AR, Vaughan JC (2017) Hybrid Structured Illumination Expansion Microscopy Reveals Microbial Cytoskeleton Organization. ACS Nano 11:12677–12686. https://doi.org/10.1021/acsnano.7b07200
Gao M, Maraspini R, Beutel O, Zehtabian A, Eickholt B, Honigmann A, Ewers H (2018) Expansion Stimulated Emission Depletion Microscopy (ExSTED). ACS Nano 12:4178–4185. https://doi.org/10.1021/acsnano.8b00776
Gambarotto D, Zwettler FU, Le Guennec M, Schmidt-Cernohorska M, Fortun D, Borgers S, Heine J, Schloetel JG, Reuss M, Unser M, Boyden ES, Sauer M, Hamel V, Guichard P (2019) Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat Methods 16:71–74. https://doi.org/10.1038/s41592-018-0238-1
Asano SM, Gao R, Wassie AT, Tillberg PW, Chen F, Boyden ES (2018) Expansion Microscopy: Protocols for Imaging Proteins and RNA in Cells and Tissues. Curr Protoc Cell Biol 80(1):e56. https://doi.org/10.1002/cpcb.56
Crittenden JR, Tillberg PW, Riad MH, Shima Y, Gerfen CR, Curry J, Housman DE, Nelson SB, Boyden ES, Graybiel AM (2016) Striosome-dendron bouquets highlight a unique striatonigral circuit targeting dopamine-containing neurons. Proc Natl Acad Sci U S A 113:11318–11323. https://doi.org/10.1073/pnas.1613337113
Mosca TJ, Luginbuhl DJ, Wang IE, Luo L (2017) Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons. Elife 6:27347. https://doi.org/10.7554/eLife.27347
Freifeld L, Odstrcil I, Förster D, Ramirez A, Gagnon JA, Randlett O, Costa EK, Asano S, Celiker OT, Gao R, Martin-Alarcon DA, Reginato P, Dick C, Chen L, Schoppik D, Engert F, Baier H, Boyden ES (2017) Expansion microscopy of zebrafish for neuroscience and developmental biology studies. Proc Natl Acad Sci U S A 114:E10799–E10808. https://doi.org/10.1073/pnas.1706281114
Deshpande T, Li T, Herde MK, Becker A, Vatter H, Schwarz MK, Henneberger C, Steinhäuser C, Bedner P (2017) Subcellular reorganization and altered phosphorylation of the astrocytic gap junction protein connexin43 in human and experimental temporal lobe epilepsy. Glia 65:1809–1820 https://doi.org/10.1002/glia.23196
Wang IE, Lapan SW, Scimone ML, Clandinin TR, Reddien PW (2016) Hedgehog signaling regulates gene expression in planarian glia. Elife 5:e16996. https://doi.org/10.7554/eLife.16996
Truckenbrodt S, Sommer C, Rizzoli SO, Danzl JG (2019) A practical guide to optimization in X10 expansion microscopy. Nat Protoc 14:832–863. https://doi.org/10.1038/s41596-018-0117-3
Gao R, Yu CC (Jay), Gao L, Piatkevich KD, Neve RL, Upadhyayula S, Boyden ES (2019) A highly homogeneous expansion microscopy polymer composed of tetrahedron-like monomers. bioRxiv 814111
Shi X, Li Q, Dai Z, Tran AA, Feng S, Ramirez AD, Lin Z, Wang X, Chow TT, Seiple IB, Huang B (2019) Label-retention expansion microscopy. bioRxiv 687954
Sun D, Fan X, Shi Y, Zhang H, Huang Z, Cheng B, Tang Q, Li W, Zhu Y, Bai J, Liu W, Li Y, Wang X, Lei X, Chen X (2021) Click-ExM enables expansion microscopy for all biomolecules. Nat Methods 18:107–113. https://doi.org/10.1038/s41592-020-01005-2
Wang Y, Yu Z, Cahoon CK, Parmely T, Thomas N, Unruh JR, Slaughter BD, Hawley RS (2018) Combined expansion microscopy with structured illumination microscopy for analyzing protein complexes. Nat Protoc 13:1869–1895. https://doi.org/10.1038/s41596-018-0023-8
Gambarotto D, Zwettler FU, Cernohorska M, Fortun D, Borgers S, Heine J, Schloetel JG, Reuss M, Unser M, Boyden ES, Sauer M, Hamel V, Guichard P (2018) Imaging beyond the super-resolution limits using ultrastructure expansion microscopy (UltraExM). bioRxiv 308270
Tong Z, Beuzer P, Ye Q, Axelrod J, Hong Z, Cang H (2016) Ex-STORM: Expansion Single Molecule Super-resolution Microscopy. https://doi.org/10.1101/049403