РОЛЬ НЕЙРО-КАРДИАЛЬНОГО СОЕДИНЕНИЯ В СИМПАТИЧЕСКОЙ РЕГУЛЯЦИИ СЕРДЦА
PDF

Ключевые слова

адренорецептор
пресинаптический варикоз
кардиомиоцит
норадреналин
сердце
симпатическая нервная система
синапс

Как цитировать

Одношивкина, Ю. Г., & Петров, А. М. (2021). РОЛЬ НЕЙРО-КАРДИАЛЬНОГО СОЕДИНЕНИЯ В СИМПАТИЧЕСКОЙ РЕГУЛЯЦИИ СЕРДЦА. Российский физиологический журнал им. И. М. Сеченова, 107(4-5), 474–491. https://doi.org/10.31857/S0869813921040117

Аннотация

Один из важных механизмов сердечной регуляции реализуется через иннервацию кардиомиоцитов нейронами симпатической нервной системы. Симпатические аксоны ветвятся и формируют на своем протяжении расширения (варикозы), содержащие синаптические везикулы с основным нейромедиатором (норадреналином) и ко-нейромедиаторами. Варикозы тесно контактируют с кардиомиоцитами, в результате могут формироваться нейро-кардиальные соединения, имеющие синапс-подобную организацию – специализированные пре- и постсинаптические регионы, разделенные узкой щелью. Эти синаптические образования подвержены пластичности и освобождение нейромедиатора из пресинаптических варикозов плотно регулируется, в том числе, со стороны ауторецепторов. Нейро-кардиальная передача имеет быстрые хронотропный и инотропный эффекты, а также управляет трофическими процессами, определяющими размеры кардиомиоцитов и архитектуру сердечной стенки. Разные подтипы постсинаптических адренорецепторов вовлечены в эти кратковременные и долговременные эффекты нейро-кардиальных взаимодействий. Изменения в адренергической нейропередаче в сердце часто сопровождают многие распространенные патологии (сердечная недостаточность, аритмии, гипертония), внося вклад в их развитие. В представленном обзоре мы систематизировали и обобщили экспериментальные данные, свидетельствующие о существовании в сердце синаптической передачи, которая может иметь решающее значение в коммуникации между мозгом и сердцем.

https://doi.org/10.31857/S0869813921040117
PDF

Литература

Fedele L, Brand T (2020) The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction. J Cardiovasc Dev Dis 7:54. https://doi.org/10.3390/jcdd7040054

Bardsley EN, Paterson DJ (2020) Neurocardiac regulation: from cardiac mechanisms to novel therapeutic approaches. J Physiol 598:2957-2976. https://doi.org/10.1113/JP276962

Francis Stuart SD, Wang L, Woodard WR, Ng GA, Habecker BA, Ripplinger CM (2018) Age-related changes in cardiac electrophysiology and calcium handling in response to sympathetic nerve stimulation. J Physiol 596:3977-3991. https://doi.org/10.1113/JP276396

McLean MR, Goldberg PB, Roberts J (1983) An ultrastructural study of the effects of age on sympathetic innervation and atrial tissue in the rat. J Mol Cell Cardiol 15:75-92. https://doi.org/10.1016/0022-2828(83)90284-5

Lamotte G, Holmes C, Wu T, Goldstein DS (2019) Long-term trends in myocardial sympathetic innervation and function in synucleinopathies. Parkinsonism Relat Disord 67:27-33. https://doi.org/10.1016/j.parkreldis.2019.09.014

Safandeev VV, Kolacheva AA, Ugrumov MV (2019) Estimation of Metabolism of Catecholamines in Peripheral Organs As an Indicator of Their Desympathization under the Influence of Neurotoxins. Dokl Biochem Biophys 486:171-174. https://doi.org/10.1134/S1607672919030037

Kuzmin VS, Potekhina VM, Odnoshivkina YG, Chelombitko MA, Fedorov AV, Averina OA, et al. (2020) Proarrhythmic atrial ectopy associated with heart sympathetic innervation dysfunctions is specific for murine B6CBAF1 hybrid strain. Life Sci 266:118887. https://doi.org/10.1016/j.lfs.2020.118887

Goldstein DS, Eldadah B, Sharabi Y, Axelrod FB (2008) Cardiac sympathetic hypo-innervation in familial dysautonomia. Clin Auton Res 18:115-119. https://doi.org/10.1007/s10286-008-0464-1

Kimura K, Ieda M, Fukuda K (2012) Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ Res 110:325-336. https://doi.org/10.1161/CIRCRESAHA.111.257253

Bennett MR, Cheung A, Brain KL (1998) Sympathetic neuromuscular transmission at a varicosity in a syncytium. Microsc Res Tech 42:433-450 https://doi.org/10.1002/(SICI)1097-0029(19980915)42:6<433::AID-JEMT6>3.0.CO;2-N

Goyal RK, Chaudhury A (2013) Structure activity relationship of synaptic and junctional neurotransmission. Auton Neurosci 176:11-31. https://doi.org/10.1016/j.autneu.2013.02.012

Freeman K, Tao W, Sun H, Soonpaa MH, Rubart M (2014) In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging. J Neurosci Methods 221:48-61. https://doi.org/10.1016/j.jneumeth.2013.09.005

Zaglia T, Mongillo M (2017) Cardiac sympathetic innervation, from a different point of (re)view. J Physiol 595:3919-3930. https://doi.org/10.1113/JP273120

Shcherbakova OG, Hurt CM, Xiang Y, Dell'Acqua ML, Zhang Q, Tsien RW, Kobika BK (2007) Organization of beta-adrenoceptor signaling compartments by sympathetic innervation of cardiac myocytes. J Cell Biol 176:521-533. https://doi.org/10.1083/jcb.200604167

Prando V, Da Broi F, Franzoso M, Plazzo AP, Pianca N, Francolini M, Basso C, Kay MW, Zaglia T, Mongillo M (2018) Dynamics of neuroeffector coupling at cardiac sympathetic synapses. J Physiol 596:2055-2075. https://doi.org/10.1113/JP275693

Brain KL, Cottee LJ, Bennett MR (1997) Varicosities of single sympathetic nerve terminals possess syntaxin zones and different synaptotagmin N-terminus labelling following stimulation. J Neurocytol 26:491-500. https://doi.org/10.1023/a:1018533524643

Sung U, Apparsundaram S, Galli A, Kahlig KM, Savchenko V, Schroeter S, Quick MW, Blakely RD (2003) A regulated interaction of syntaxin 1A with the antidepressant-sensitive norepinephrine transporter establishes catecholamine clearance capacity. J Neurosci 23:1697-709. https://doi.org/10.1523/JNEUROSCI.23-05-01697.2003

Li D, Paterson DJ (2019) Pre-synaptic sympathetic calcium channels, cyclic nucleotide-coupled phosphodiesterases and cardiac excitability. Semin Cell Dev Biol 94:20-27. https://doi.org/10.1016/j.semcdb.2019.01.010

Abramochkin DV, Nurullin LF, Borodinova AA, Tarasova NV, Sukhova GS, Nikolsky EE, Rosenshtraukh LV (2010) Non-quantal release of acetylcholine from parasympathetic nerve terminals in the right atrium of rats. Exp Physiol 95:265-273. https://doi.org/10.1113/expphysiol.2009.050302

Bennett MR, Farnell L, Gibson WG, Lin YQ, Blair DH (2001) Quantal and non-quantal current and potential fields around individual sympathetic varicosities on release of ATP. Biophys J 80:1311-1328. https://doi.org/10.1016/S0006-3495(01)76105-X

Li M, Hu J, Chen Z, Meng J, Wang H, Ma X, Luo X (2006) Evidence for histamine as a neurotransmitter in the cardiac sympathetic nervous system. Am J Physiol Heart Circ Physiol 291:H45-H51. https://doi.org/10.1152/ajpheart.00939.2005

Pustovit KB, Potekhina VM, Ivanova AD, Petrov AM, Abramochkin DV, Kuzmin VS (2019) Extracellular ATP and beta-NAD alter electrical properties and cholinergic effects in the rat heart in age-specific manner. Purinergic Signal 15:107-117. https://doi.org/10.1007/s11302-019-09645-6

Smyth LM, Bobalova J, Mendoza MG, Lew C, Mutafova-Yambolieva VN (2004) Release of beta-nicotinamide adenine dinucleotide upon stimulation of postganglionic nerve terminals in blood vessels and urinary bladder. J Biol Chem 279:48893-48903. https://doi.org/10.1074/jbc.M407266200

Herring N, Lokale MN, Danson EJ, Heaton DA, Paterson DJ (2008) Neuropeptide Y reduces acetylcholine release and vagal bradycardia via a Y2 receptor-mediated, protein kinase C-dependent pathway. J Mol Cell Cardiol 44:477-485. https://doi.org/10.1016/j.yjmcc.2007.10.001

Herring N, Cranley J, Lokale MN, Li D, Shanks J, Alston EN, et al. (2012) The cardiac sympathetic co-transmitter galanin reduces acetylcholine release and vagal bradycardia: implications for neural control of cardiac excitability. J Mol Cell Cardiol 52:667-676. https://doi.org/10.1016/j.yjmcc.2011.11.016

Heredia Mdel P, Delgado C, Pereira L, Perrier R, Richard S, Vassort G, et al. (2005) Neuropeptide Y rapidly enhances [Ca2+]i transients and Ca2+ sparks in adult rat ventricular myocytes through Y1 receptor and PLC activation. J Mol Cell Cardiol 38:205-212. https://doi.org/10.1016/j.yjmcc.2004.11.001

Rump LC, Riess M, Schwertfeger E, Michel MC, Bohmann C, Schollmeyer P (1997) Prejunctional neuropeptide Y receptors in human kidney and atrium. J Cardiovasc Pharmacol 29:656-661. https://doi.org/10.1097/00005344-199705000-00014

Oki Y, Teraoka H, Kitazawa T (2017) Neuropeptide Y (NPY) inhibits spontaneous contraction of the mouse atrium by possible activation of the NPY1 receptor. Auton Autacoid Pharmacol 37:23-28. https://doi.org/10.1111/aap.12055

Piper HM, Millar BC, McDermott BJ (1989) The negative inotropic effect of neuropeptide Y on the ventricular cardiomyocyte. Naunyn Schmiedebergs Arch Pharmacol 340:333-337. https://doi.org/10.1007/BF00168519

Zverev AA, Anikina TA, Maslyukov PM, Zefirov TL (2014) Role of neuropeptide Y in myocardial contractility of rats during early postnatal ontogeny. Bull Exp Biol Med 157:421-423. https://doi.org/10.1007/s10517-014-2581-2

Widiapradja A, Chunduri P, Levick SP (2017) The role of neuropeptides in adverse myocardial remodeling and heart failure. Cell Mol Life Sci 74:2019-2038. https://doi.org/10.1007/s00018-017-2452-x

Protas L, Qu J, Robinson RB (2003) Neuropeptide y: neurotransmitter or trophic factor in the heart? News Physiol Sci 18:181-185. https://doi.org/10.1152/nips.01437.2003

Masliukov PM, Moiseev K, Emanuilov AI, Anikina TA, Zverev AA, Nozdrachev AD (2016) Development of neuropeptide Y-mediated heart innervation in rats. Neuropeptides 55:47-54. https://doi.org/10.1016/j.npep.2015.10.007

Bell D, Allen AR, Kelso EJ, Balasubramaniam A, McDermott BJ (2002) Induction of hypertrophic responsiveness of cardiomyocytes to neuropeptide Y in response to pressure overload. J Pharmacol Exp Ther 303:581-591. https://doi.org/10.1124/jpet.102.038448

Pellieux C, Sauthier T, Domenighetti A, Marsh DJ, Palmiter RD, Brunner HR, et al. (2000) Neuropeptide Y (NPY) potentiates phenylephrine-induced mitogen-activated protein kinase activation in primary cardiomyocytes via NPY Y5 receptors. Proc Natl Acad Sci U S A 97:1595-1600. https://doi.org/10.1073/pnas.030533197

Feng N, Huke S, Zhu G, Tocchetti CG, Shi S, Aiba T, Kaludercic N, Hoover DB, Beck SE, Mankowski JL, Tomaselli GF, Bers DM, Kass DA, Paolocci N (2015) Constitutive BDNF/TrkB signaling is required for normal cardiac contraction and relaxation. Proc Natl Acad Sci U S A 112:1880-1885. https://doi.org/10.1073/pnas.1417949112

Burnstock G (2017) Purinergic Signaling in the Cardiovascular System. Circ Res 120:207-228. https://doi.org/10.1161/CIRCRESAHA.116.309726

Mei Q, Liang BT (2001) P2 purinergic receptor activation enhances cardiac contractility in isolated rat and mouse hearts. Am J Physiol Heart Circ Physiol 281:H334-H341. https://doi.org/10.1152/ajpheart.2001.281.1.H334

Anikina TA, Zverev AA, Sitdikov FG, Anisimova IN (2013) Interaction of adrenergic and purinergic receptors in the regulation of rat myocardial contractility in postnatal ontogeny. Russ J Dev Biol 44:296–301. https://doi.org/10.1134/S1062360413060027

Pianca N, Di Bona A, Lazzeri E, Costantini I, Franzoso M, Prando V, et al. (2019) Cardiac sympathetic innervation network shapes the myocardium by locally controlling cardiomyocyte size through the cellular proteolytic machinery. J Physiol 597(14):3639-3656. https://doi.org/10.1113/JP276200

Vyskocil F, Magazanik LG (1977) Dual end-plate potentials at the single neuromuscular junction of the adult frog. Pflugers Arch 368:271-273. https://doi.org/10.1007/BF00585207

Thaemert JC (1966) Ultrastructure of cardiac muscle and nerve contiguities. J Cell Biol 29:156-162. https://doi.org/10.1083/jcb.29.1.156

Kaludercic N, Takimoto E, Nagayama T, Feng N, Lai EW, Bedja D, Chen K, Gabrielson KL, Blakely RD, Shin JC, Pacak K, Kass DA, Lisa FD, Paolocci N (2010) Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res 106:193-202. https://doi.org/10.1161/CIRCRESAHA.109.198366

Bhogal NK, Hasan A, Gorelik J (2018) The Development of Compartmentation of cAMP Signaling in Cardiomyocytes: The Role of T-Tubules and Caveolae Microdomains. J Cardiovasc Dev Dis 5: 25. https://doi.org/10.3390/jcdd5020025

Wang J, Gareri C, Rockman HA (2018) G-Protein-Coupled Receptors in Heart Disease. Circ Res 123:716-735. https://doi.org/10.1161/CIRCRESAHA.118.311403

Wengrowski AM, Wang X, Tapa S, Posnack NG, Mendelowitz D, Kay MW (2015) Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function. Cardiovasc Res 105:143-150. https://doi.org/10.1093/cvr/cvu258

Tsentsevitsky AN, Zakyrjanova GF, Petrov AM (2020) Cadmium desynchronizes neurotransmitter release in the neuromuscular junction: Key role of ROS. Free Radic Biol Med 155:19-28. https://doi.org/10.1016/j.freeradbiomed.2020.05.017

Wingerd KL, Goodman NL, Tresser JW, Smail MM, Leu ST, Rohan SJ, Pring JL, Jacksan DY, Clegg DO (2002) Alpha 4 integrins and vascular cell adhesion molecule-1 play a role in sympathetic innervation of the heart. J Neurosci 22:10772-10780. https://doi.org/10.1523/JNEUROSCI.22-24-10772.2002

Wu H, Lu Y, Barik A, Joseph A, Taketo MM, Xiong WC (2012) beta-Catenin gain of function in muscles impairs neuromuscular junction formation. Development 139:2392-2404. https://doi.org/10.1242/dev.080705

Cifuentes-Diaz C, Nicolet M, Goudou D, Rieger F, Mege RM (1994) N-cadherin expression in developing, adult and denervated chicken neuromuscular system: accumulations at both the neuromuscular junction and the node of Ranvier. Development 120:1-11.

Krivoi II, Petrov AM (2019) Cholesterol and the Safety Factor for Neuromuscular Transmission. Int J Mol Sci 20: 1046. https://doi.org/10.3390/ijms20051046

Chen PJ, Martinez-Pena YVI, Aittaleb M, Akaaboune M (2016) AChRs Are Essential for the Targeting of Rapsyn to the Postsynaptic Membrane of NMJs in Living Mice. J Neurosci 36:5680-5685. https://doi.org/10.1523/JNEUROSCI.4580-15.2016

Oury J, Liu Y, Topf A, Todorovic S, Hoedt E, Preethish-Kumar V, et al. (2019) MACF1 links Rapsyn to microtubule- and actin-binding proteins to maintain neuromuscular synapses. J Cell Biol 218:1686-1705. https://doi.org/10.1083/jcb.201810023

Marchand S, Devillers-Thiery A, Pons S, Changeux JP, Cartaud J (2002) Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts. J Neurosci 22:8891-8901. https://doi.org/10.1523/JNEUROSCI.22-20-08891.2002

Petrov AM, Zefirov AL (2013) Cholesterol and lipid rafts in the biological membranes. Role in the release, reception and ion channel functions. Usp Fiziol Nauk 44:17-38.

Odnoshivkina UG, Sytchev VI, Nurullin LF, Giniatullin AR, Zefirov AL, Petrov AM (2015) β2-adrenoceptor agonist-evoked reactive oxygen species generation in mouse atria: implication in delayed inotropic effect. Eur J Pharmacol 765:140-153. https://doi.org/10.1016/j.ejphar.2015.08.020

Sytchev VI, Odnoshivkina YG, Ursan RV, Petrov AM (2017) Oxysterol, 5α-cholestan-3-one, modulates a contractile response to β2-adrenoceptor stimulation in the mouse atria: Involvement of NO signaling. Life Sci 188:131-140. https://doi.org/10.1016/j.lfs.2017.09.006

Odnoshivkina YG, Sytchev VI, Petrov AM (2017) Cholesterol regulates contractility and inotropic response to β2-adrenoceptor agonist in the mouse atria: Involvement of G i -protein–Akt–NO-pathway. J Mol Cell Cardiol 107:27-40. https://doi.org/10.1016/j.yjmcc.2016.05.001

Ursan R, Odnoshivkina UG, Petrov AM. (2019) Membrane cholesterol oxidation downregulates atrial beta-adrenergic responses in ROS-dependent manner. Cell Signal 67:109503. https://doi.org/10.1016/j.cellsig.2019.109503

Hansen MA, Bennett MR, Barden JA (1999) Distribution of purinergic P2X receptors in the rat heart. J Auton Nerv Syst 78:1-9. https://doi.org/10.1016/s0165-1838(99)00046-6

Petrov AM, Kravtsova VV, Matchkov VV, Vasiliev AN, Zefirov AL, Chibalin AV, et al. (2017) Membrane lipid rafts are disturbed in the response of rat skeletal muscle to short-term disuse. Am J Physiol Cell Physiol 312:C627-C637. https://doi.org/10.1152/ajpcell.00365.2016

Kravtsova VV, Petrov AM, Vasil'ev AN, Zefirov AL, Krivoi II (2015) Role of cholesterol in the maintenance of endplate electrogenesis in rat diaphragm. Bull Exp Biol Med 158(3):298-300. https://doi.org/10.1007/s10517-015-2745-8

.Yang HQ, Wang LP, Gong YY, Fan XX, Zhu SY, Wang XT (2019) beta2-Adrenergic Stimulation Compartmentalizes beta1 Signaling Into Nanoscale Local Domains by Targeting the C-Terminus of beta1-Adrenoceptors. Circ Res 124:1350-1359. https://doi.org/10.1161/CIRCRESAHA.118.314322

Odnoshivkina UG, Sytchev VI, Starostin O, Petrov AM (2019) Brain cholesterol metabolite 24-hydroxycholesterol modulates inotropic responses to beta-adrenoceptor stimulation: The role of NO and phosphodiesterase. Life Sci 220:117-126. https://doi.org/10.1016/j.lfs.2019.01.054

Abadie C, Foucart S, Page P, Nadeau R (1996) Modulation of noradrenaline release from isolated human atrial appendages. J Auton Nerv Syst 61:269-276. https://doi.org/10.1016/s0165-1838(96)00093-8

Rump LC, Riera-Knorrenschild G, Schwertfeger E, Bohmann C, Spillner G, Schollmeyer P (1995) Dopaminergic and alpha-adrenergic control of neurotransmission in human right atrium. J Cardiovasc Pharmacol 26:462-470. https://doi.org/10.1097/00005344-199509000-00017

Isaka M, Kudo A, Imamura M, Kawakami H, Yasuda K (2007) Endothelin receptors, localized in sympathetic nerve terminals of the heart, modulate norepinephrine release and reperfusion arrhythmias. Basic Res Cardiol 102:154-162. https://doi.org/10.1007/s00395-006-0623-2

Sperlagh B, Erdelyi F, Szabo G, Vizi ES (2000) Local regulation of [(3)H]-noradrenaline release from the isolated guinea-pig right atrium by P(2X)-receptors located on axon terminals. Br J Pharmacol 131:1775-1783. https://doi.org/10.1038/sj.bjp.0703757

Machida T, Heerdt PM, Reid AC, Schafer U, Silver RB, Broekman MJ (2005) Ectonucleoside triphosphate diphosphohydrolase 1/CD39, localized in neurons of human and porcine heart, modulates ATP-induced norepinephrine exocytosis. J Pharmacol Exp Ther 313:570-577. https://doi.org/10.1124/jpet.104.081240

von Kugelgen I, Stoffel D, Starke K (1995) P2-purinoceptor-mediated inhibition of noradrenaline release in rat atria. Br J Pharmacol 115:247-254. https://doi.org/10.1111/j.1476-5381.1995.tb15870.x

Larsen HE, Lefkimmiatis K, Paterson DJ (2016) Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease. Sci Rep 6:38898. https://doi.org/10.1038/srep38898

Larsen HE, Bardsley EN, Lefkimmiatis K, Paterson DJ (2016) Dysregulation of Neuronal Ca2+ Channel Linked to Heightened Sympathetic Phenotype in Prohypertensive States. J Neurosci 36:8562-8573. https://doi.org/10.1523/JNEUROSCI.1059-16.2016

Shanks J, Mane S, Ryan R, Paterson DJ (2013) Ganglion-specific impairment of the norepinephrine transporter in the hypertensive rat. Hypertension 61:187-193. https://doi.org/10.1161/HYPERTENSIONAHA.112.202184

Jancovski N, Bassi JK, Carter DA, Choong YT, Connelly A, Nguyen TP (2013) Stimulation of angiotensin type 1A receptors on catecholaminergic cells contributes to angiotensin-dependent hypertension. Hypertension 62:866-871. https://doi.org/10.1161/HYPERTENSIONAHA.113.01474

Bellot M, Galandrin S, Boularan C, Matthies HJ, Despas F, Denis C (2015) Dual agonist occupancy of AT1-R-alpha2C-AR heterodimers results in atypical Gs-PKA signaling. Nat Chem Biol 11: 271-279. https://doi.org/10.1038/nchembio.1766

Toth AD, Gyombolai P, Szalai B, Varnai P, Turu G, Hunyady L (2017) Angiotensin type 1A receptor regulates beta-arrestin binding of the beta2-adrenergic receptor via heterodimerization. Mol Cell Endocrinol 442:113-124. https://doi.org/10.1016/j.mce.2016.11.027

Bardsley EN, Davis H, Buckler KJ, Paterson DJ (2018) Neurotransmitter Switching Coupled to beta-Adrenergic Signaling in Sympathetic Neurons in Prehypertensive States. Hypertension 71:1226-1238. https://doi.org/10.1161/HYPERTENSIONAHA.118.10844

Sperlagh B, Heinrich A, Csolle C (2007) P2 receptor-mediated modulation of neurotransmitter release-an update. Purinergic Signal 3:269-284. https://doi.org/10.1007/s11302-007-9080-0

Braganca B, Nogueira-Marques S, Ferreirinha F, Fontes-Sousa AP, Correia-de-Sa P (2019) The Ionotropic P2X4 Receptor has Unique Properties in the Heart by Mediating the Negative Chronotropic Effect of ATP While Increasing the Ventricular Inotropy. Front Pharmacol 10:1103. https://doi.org/10.3389/fphar.2019.01103

Burgdorf C, Richardt D, Kurz T, Seyfarth M, Jain D, Katus HA (2001) Adenosine inhibits norepinephrine release in the postischemic rat heart: the mechanism of neuronal stunning. Cardiovasc Res 49:713-720. https://doi.org/10.1016/s0008-6363(00)00309-6

Olivas A, Gardner RT, Wang L, Ripplinger CM, Woodward WR, Habecker BA (2016) Myocardial Infarction Causes Transient Cholinergic Transdifferentiation of Cardiac Sympathetic Nerves via gp130. J Neurosci 36(2):479-488. https://doi.org/10.1523/JNEUROSCI.3556-15.2016

Wang L, Olivas A, Francis Stuart SD, Tapa S, Blake MR, Woodward WR (2020) Cardiac sympathetic nerve transdifferentiation reduces action potential heterogeneity after myocardial infarction. Am J Physiol Heart Circ Physiol 318:H558-H565. https://doi.org/10.1152/ajpheart.00412.2019

Kanazawa H, Ieda M, Kimura K, Arai T, Kawaguchi-Manabe H, Matsuhashi (2010) Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. J Clin Invest 120:408-421. https://doi.org/10.1172/JCI39778

Vaaga CE, Borisovska M, Westbrook GL (2016) Dual-transmitter neurons: functional implications of co-release and co-transmission. Curr Opin Neurobiol 29:25-32. https://doi.org/10.1016/j.conb.2014.04.010

Franzoso M, Zaglia T, Mongillo M (2016) Putting together the clues of the everlasting neuro-cardiac liaison. Biochim Biophys Acta 1863:1904-1915. https://doi.org/10.1016/j.bbamcr.2016.01.009

Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, Armanini MP,Ling LM, McMahon SB,Shelton DL, Levinson AD (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76:1001-1011. https://doi.org/10.1016/0092-8674(94)90378-6

Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature. 368(6468):246-249. https://doi.org/10.1038/368246a0

Mok SA, Lund K, Campenot RB (2009) A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures. Cell Res 19:546-560. https://doi.org/10.1038/cr.2009.11

Oh Y, Cho GS, Li Z, Hong I, Zhu R, Kim MJ (2016) Functional Coupling with Cardiac Muscle Promotes Maturation of hPSC-Derived Sympathetic Neurons. Cell Stem Cell 19:95-106. https://doi.org/10.1016/j.stem.2016.05.002

Kreipke RE, Birren SJ (2015) Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal. J Physiol 593:5057-5073. https://doi.org/10.1113/JP270917

Zaglia T, Milan G, Franzoso M, Bertaggia E, Pianca N, Piasentini E, Voltarelli VA, Chiavegato D, Brum PC, Glass DJ, Schaffino S, Sandri M, Mongillo M (2013) Cardiac sympathetic neurons provide trophic signal to the heart via beta2-adrenoceptor-dependent regulation of proteolysis. Cardiovasc Res 97:240-250. https://doi.org/10.1093/cvr/cvs320

Myagmar BE, Flynn JM, Cowley PM, Swigart PM, Montgomery MD, Thai K, Nair D, Gupta R, Deng Dx, Hosoda C, Melov S. Baker AJ, Simpson PC (2017) Adrenergic Receptors in Individual Ventricular Myocytes: The Beta-1 and Alpha-1B Are in All Cells, the Alpha-1A Is in a Subpopulation, and the Beta-2 and Beta-3 Are Mostly Absent. Circ Res 120:1103-1115. https://doi.org/10.1161/CIRCRESAHA.117.310520

Gao X, Lowry PR, Zhou X, Depry C, Wei Z, Wong GW, Zhang Y (2011) PI3K/Akt signaling requires spatial compartmentalization in plasma membrane microdomains. Proc Natl Acad Sci U S A 108:14509-14514. https://doi.org/10.1073/pnas.1019386108.

Belotti E, Schaeffer L (2020) Regulation of Gene expression at the neuromuscular Junction. Neurosci Lett 735:135163 https://doi.org/10.1016/j.neulet.2020.135163

Wang J, Gareri C, Rockman HA (2018) G-Protein–Coupled Receptors in Heart Disease. Circul Res 123:716-735. https://doi.org/10.1161/circresaha.118.311403

White IA, Gordon J, Balkan W, Hare JM (2015) Sympathetic Reinnervation Is Required for Mammalian Cardiac Regeneration. Circ Res117(12):990-994 https://doi.org/10.1161/CIRCRESAHA.115.307465

Hoffman JI (1987) Transmural myocardial perfusion. Prog Cardiovasc Dis 29:429-464. https://doi.org/10.1016/0033-0620(87)90016-8

Yoshioka K, Gao DW, Chin M, Stillson C, Penades E, Lesh M, et al. (2000) Heterogeneous sympathetic innervation influences local myocardial repolarization in normally perfused rabbit hearts. Circulation 101:1060-1066. https://doi.org/10.1161/01.cir.101.9.1060

Momose M, Tyndale-Hines L, Bengel FM, Schwaiger M (2001) How heterogeneous is the cardiac autonomic innervation? Basic Res Cardiol 96:539-546. https://doi.org/10.1007/s003950170004

Millar BC, Schluter KD, Zhou XJ, McDermott BJ, Piper HM (1994) Neuropeptide Y stimulates hypertrophy of adult ventricular cardiomyocytes. Am J Physiol. 266:C1271-1277. https://doi.org/10.1152/ajpcell.1994.266.5.C1271

Kanevskij M, Taimor G, Schafer M, Piper HM, Schluter KD (2002) Neuropeptide Y modifies the hypertrophic response of adult ventricular cardiomyocytes to norepinephrine. Cardiovasc Res 53:879-887. https://doi.org/10.1016/s0008-6363(01)00517-x

Wang J, Hao D, Zeng L, Zhang Q, Huang W (2021) Neuropeptide Y mediates cardiac hypertrophy through microRNA-216b/FoxO4 signaling pathway. Int J Med Sci 18:18-28. https://doi.org/10.7150/ijms.51133