ФОНОВЫЕ ПОКАЗАТЕЛИ МОЩНОСТИ ЭЭГ КАК КОРРЕЛЯТЫ ВЕРБАЛЬНЫХ И НЕВЕРБАЛЬНЫХ КОМПОНЕНТОВ КРЕАТИВНОСТИ И ИНТЕЛЛЕКТА
PDF

Ключевые слова

креативность
интеллект
ритмы ЭЭГ
фронто-париетальная система мозга
частотно-пространственная координация ритмов ЭЭГ

Как цитировать

Разумникова, О. М. (2021). ФОНОВЫЕ ПОКАЗАТЕЛИ МОЩНОСТИ ЭЭГ КАК КОРРЕЛЯТЫ ВЕРБАЛЬНЫХ И НЕВЕРБАЛЬНЫХ КОМПОНЕНТОВ КРЕАТИВНОСТИ И ИНТЕЛЛЕКТА. Российский физиологический журнал им. И. М. Сеченова, 107(8), 955–972. https://doi.org/10.31857/S0869813921080100

Аннотация

Интенсивные исследования нейрофизиологических коррелятов креативности последних лет выявили связь фоновой активности мозга (в том числе активности DMN – «сети в режиме по умолчанию») и показателей креативности. Однако не ясны пока специфические компоненты такой активности, определяющие высокий уровень вербальной или невербальной креативности, и значение интеллектуальных способностей для успешного решения экспериментального творческого задания. Баланс фоновой активности фронтальных и задних отделов коры может отражать индивидуальный стиль решения проблемы, в качестве индикаторов такого баланса рассматриваются осцилляции разных частотных диапазонов.

В связи с этим нами был выполнен анализ частотно-пространственной организации фоновой ЭЭГ, который выявил различия в мощности дельта-, тета-, альфа 2- и бета 2-ритмов в группах, дифференцированных по показателям оригинальности ответов при тестировании вербальной и образной креативности. Более высоким креативным способностям соответствуют большие значения мощности низкочастотных биопотенциалов в передней части коры и снижение мощности альфа-ритма в задних отделах. «Преднастройка» активности коры к вербальной оригинальности проявляется преимущественно в височных и центрально-париетальных областях коры, а к образной - для париетально-окципитальных. Вклад зрительно-пространственного компонента интеллекта в связанные с образной креативностью изменения активности коры представлен в большей степени на частоте дельта- и альфа 2-ритма, а вклад вербального компонента интеллекта в «преднастройку» нейронных систем коры для вербальной креативности – на частоте тета- и бета 2-диапазона.

Следовательно, анализ частотно-пространственной организации активности коры головного мозга может быть полезным инструментом для выявления роли интеллектуальных способностей и эмоционально-мотивационной регуляции при формировании разных стратегий достижения высокого уровня креативности.

https://doi.org/10.31857/S0869813921080100
PDF

Литература

Beaty RE, Benedek M, Wilkins RW, Jauk E (2014) Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia 64: 92–98. https://doi.org/10.1016/j.neuropsychologia.2014.09.019

Schuler A-L, Tik M, Sladky R, Luft CDB, Hoffmann A, Woletz M, Zioga I, Bhattacharya J, Windischberger C (2019) Modulations in resting state networks of subcortical structures linked to creativity. Neuroimage 195: 311–319. https://doi.org/10.1016/j.neuroimage.2019.03.017

Shi L, Sun J, Xia Y, Ren Z, Chen Q, Wei D, Yang W, Qiu J (2018) Large-scale brain network connectivity underlying creativity in resting-state and task fMRI: Cooperation between default network and frontal-parietal network. Biol Psychol 135: 102-111. https://doi.org/10.1016/j.biopsycho.2018.03.005

Sun J, Liu Z, Rolls ET, Chen Q, Yao Y, Yang W, Wei D, Zhang Q, Zhang J, Feng J (2019) Verbal creativity correlates with the temporal variability of brain networks during the resting state. Cerebr Cortex 29 (3): 1047-1058. https://doi.org/10.3389/fpsyg.2019.00894

Zhu W, Chen Q, Xia L, Beaty RE, Yang W, Tian F, Sun J, Cao G, Zhang Q, Chen X, Qiu J (2017) Common and distinct brain networks underlying verbal and visual creativity. Hum Brain Mapp 38(4): 2094-2111. https://doi.org/10.1002/hbm.23507

Beaty RE, Seli P, Schacter DL (2019) Network neuroscience of creative cognition: Mapping cognitive mechanisms and individual differences in the creative brain. Curr Opin Behav Sci 27: 22-30. https://doi.org/10.1016/j.cobeha.2018.08.013

Gulbinaite R, van Rijn H, Cohen MX (2014) Fronto-parietal network oscillations reveal relationship between working memory capacity and cognitive control. Front Human Neurosci 8: 761. https://doi.org/10.3389/fnhum.2014.00761

Heinonen J, Numminen J, Hlushchuk Y, Antell H, Taatila V, Suomala J (2016) Default Mode and Executive Networks areas: Association with the serial order in divergent thinking. PLoS ONE 11(9): e0162234. https://doi.org/10.1371/journal.pone.0162234

Beaty RE, Kenett YN., Christensen AP, Rosenberg MD, Benedek M, Chen Q, Fink A, Qiu J, Kwapil TR, Kane MJ., Silvia PJ (2018) Robust prediction of individual creative ability from brain functional connectivity. Proc Nat Acad Sci 115(5): 1087-1092. https://doi.org/10.1073/pnas.1713532115

Feng Q, He L, Yang W, Zhang Y, Wu X, Qiu J (2019) Verbal creativity is correlated with the dynamic reconfiguration of brain networks in the resting state. Front Psychol 10: 894. https://doi.org/10.3389/fpsyg.2019.00894

Li W, Yang J, Zhang Q, Li G, Qiu J (2016) The association between resting functional connectivity and visual creativity. Sci Rep 6: 25395. https://doi.org/10.1038/srep25395

Mihov KM, Denzler M, Förster J (2010) Hemispheric specialization and creative thinking: a meta-analytic review of lateralization of creativity. Brain Cogn 72(3): 442-448. https://doi.org/10.1016/j.bandc.2009.12.007

Aziz-Zadeh L, Liew SL, Dandekar F (2013) Exploring the neural correlates of visual creativity. Soc Cognitiv Affective Neurosci 8: 475-480. https://doi.org/10.1093/scan/nss021

Hahm J, Kim KK, Park SH, Lee HM (2017) Brain areas subserving torrance tests of creative thinking: an functional magnetic resonance imaging study. Dementia and Neurocognitiv Disord 16(2): 48-53. https://doi.org/10.12779/dnd.2017.16.2.48

Benedek M, Jung RE, Vartanian O (2018) The neural bases of creativity and intelligence: Common ground and differences. Neuropsychologia 118 (Part A): 1–3. https://doi.org/10.1016/j.neuropsychologia.2018.09.006

Frith E, Elbich DB, Christensen AP, Rosenberg MD, Chen Q, Kane MJ, Silvia PJ, Seli P, Beaty RE (2020) Intelligence and creativity share a common cognitive and neural basis. J Exp Psychol Gen. https://doi.org10.1037/xge0000958

Jung RE, Haier RJ (2007) The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30(2): 135-154. https://doi.org/ 10.1017/S0140525X07001185

Lee KH, Choi YY, Gray JR, Cho SH, Chae JH, Lee S, Kim K (2006) Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. NeuroImage 29: 578–586. https://doi.org/10.1016/j.neuroimage.2005.07.036

Pamplona GSP, Neto GSS, Rosset SRE, Rogers BP, Salmon CEG (2015) Analyzing the association between functional connectivity of the brain and intellectual performance. Front Human Neurosci 9: 1–11. https://doi.org/10.3389/fnhum.2015.00061

Kenett YN, Medaglia JD, Beaty RE, Chen Q, Betzel RF, Thompson-Schill SL, Qiu J (2018) Driving the brain towards creativity and intelligence: A network control theory analysis. Neuropsychologia 118 (PtA): 79–90. https://doi.org/10.1016/j.neuropsychologia.2018.01.001

Разумникова ОМ (2009) Связь частотно-пространственных параметров фоновой ЭЭГ с уровнем интеллекта и креативности. Журн высш нервн деятельн 59(6): 686–695. [Razumnikova OM (2009) Svyaz chastotno-prostranstvennyh parametrov fonovoi EEG s urovnem intellekta b kreativnosti. Zurn Vysshei Nervn Deyatel’osti 59(6): 686–695 (In Russ)].

Herrmann CS, Strüber D, Helfrich RF, Engel AK (2016) EEG oscillations: From correlation to causality. Internat J Psychophysiol 103: 12–21. https://doi.org/10.1016/j.ijpsycho.2015.02.003

Stevens CEJ, Zabelina DL (2019) Creativity comes in waves: An EEG-focused exploration of the creative brain. Curr Opinion Behav Sci 27: 154-162. https://doi.org/10.31234/osf.io/ke6wq

Takeshi O, Aihara T, Shimokawa T, Yamashita O (2018) Large-scale brain network associated with creative insight: combined voxel-based morphometry and resting-state functional connectivity analyses. Scient Rep 8: 6477. https://doi.org/10.1038/s41598-018-24981-0

Benedek M, Jauk E, Sommer M, Arendasy M, Neubauer AC (2014) Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence 46: 73–83. https://doi.org/10.1016/j.intell.2014.05.007

Benedek M, Bergner S, Könen T, Fink A, Neubauer AC (2011) EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia 49: 3505–3511. https://doi.org/10.1016/ j.neuropsychologia.2011.09.004

Lustenberger C, Boyle MR, Foulser AA, Mellin JM, Fröhlich F (2015) Functional role of frontal alpha oscillations in creativity. Cortex 67: 74-82. https://doi.org/10.1016/j.cortex.2015.03.012

Erickson B, Truelove-Hill M, Oh Y, Anderson J, Zhang FZ, Kounios J (2018) Resting-state brain oscillations predict trait-like cognitive styles. Neuropsychologia 120: 1-8. https://doi.org/10.1016/j.neuropsychologia.2018.09.014

Kounios J, Fleck JI, Green DL, Payne L, Stevenson JL, Bowden EM, Jung-Beeman M (2008) The origins of insight in resting-state brain activity. Neuropsychologia 46: 281-291. https://doi.org/10.1016/j.neuropsychologia. 2007.07.013

Briley PM, Liddle EB, Groom MJ, Smith HJF, Morris PG, Colclough GL, Liddle PF (2018) Development of human electrophysiological brain networks. J Neurophysiol 120(6): 3122-3130. https://doi.org/10.1152/jn.00293.2018

Costa V (2014) The EEG as an index of neuromodulator balance in memory and mental illness. Front Neurosci 8: 63. https://doi.org/10.3389/fnins.2014.00063

Solomon EA, Kragel JE, Sperling MR, Sharan A, Worrell G, Kucewicz M, Inman CS, Lega B, Davis KA, Stein JM, Jobst BC, Zaghloul KA, Sheth SA, Rizzuto DS, Kahana MJ (2017) Widespread theta synchrony and high-frequency desynchronization underlies enhanced cognition. Nat Communicat 8: 1704. https://doi.org/10.1038/s41467-017-01763-2

Hacker CD, Snyder AZ, Pahwa M, Corbetta M, Leuthardt EC (2017) Frequency-specific electrophysiologic correlates of resting state fMRI networks. Neuroimage 149: 446–457. https://doi.org/10.1016/j.neuroimage. 2017.01.054

Разумникова ОМ (2009) Особенности селекции информации при креативном мышлении. Психология. Журн Высшей школы экономики 6(3): 134-161. [Razumnikova OM (2009) Osobennosti selekcii infoemacii pri kreativnom myshlenii. Zurn vysshei shkoly ekonomiki 6(3): 134-161 (In Russ)].

Razumnikova OM, Krivonogova KD (2019) Electroencephalographic correlates of the activity of the frontoparietal system as predictors of verbal intelligence and non-verbal creativity. Rus Psychol J 16 (2/1): 45-59. https://doi.org/10.21702/rpj.2019.2.1.4

Разумникова ОМ (2002) Способы определения креативности. Новосибирск: НГТУ. [Razumnikova OM (2002) Sposoby opredeleniya kreativnosti. Novosibirsk: NGTU (In Russ)].

Sunavsky A, Poppenk J (2020) Neuroimaging predictors of creativity in healthy adults. NeuroImage 206: 116292. https://doi.org/10.1016/j.neuroimage. 2019.116292

Разумникова ОМ, Каган ВА, Панова НВ (2020) Возрастная динамика показателей вербальной и образной креативности школьников. Комплексные исследования детства. 2 (2): 72-79. [Razumnikova OM, Kagan VA, Panova NV (2020) Vozrastnaya dinamika pokazatelei verbalnoi I obraznoi kreativnosti. Kompleksnye issledovaniya detstva. 2 (2): 72-79 (In Russ)]. https://doi.org/10.33910/2687-0223-2020- 2-2-72-79

Christensen AP, Benedek M, Silvia P, Beaty R (2019) Executive and default network connectivity reflects conceptual interference during creative imagery generation. PsyArXiv Preprints. https://doi.org/10.31234/osf.io/n438d

Boot N, Baas M, Mühlfeld E, de Dreu CKW, van Gaal S (2017) Widespread neural oscillations in the delta band dissociate rule convergence from rule divergence during creative idea generation. Neuropsychologia 104: 8–17. https://doi.org/10.1016/j.neuropsychologia.2017.07.033

Foster PS, Williamson JB, Harrison DW (2005) The ruff figural fluency test: heightened right frontal lobe delta activity as a function of performance. Arch Clin Neuropsychol 20: 427–434. https://doi.org/10.1016/j.acn.2004.09.010

Dunst B, Benedek M, Jauk E, Bergner S, Koschutnig K, Sommer M, Ischebeck A, Spinath B, Arendasy M, Bühner M, Freudenthaler H, Neubauer AC (2014) Neural efficiency as a function of task demands. Intelligence 42 (100): 22–30. https://doi.org/10.1016/j.intell.2013.09.005

Haier RJ, Siegel BV, Nuechterlein KH, Hazlett E, Wu JC, Paek J (1988) Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence 12: 199–217.

Knyazev GG (2007) Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci Biobehav Rev 31 (3): 377–395. https://doi.org/10.1016/j.neubiorev.2006.10.004

Kropotov JD (2009) Frontal midline theta rhythm. In: Quantitative EEG, Event-Related Potentials and Neurotherapy 77-95.

Luo Q, Cheng X, Holroyd T, Xu D, Carver F, Blair J (2014) Theta band activity in response to emotional expressions and its relationship with gamma band activity as revealed by MEG and advanced beamformer source imaging. Front Human Neurosci 7: 940. https://doi.org/10.3389/fnhum.2013.00940

Doppelmayr M, Klimesch W, Hödlmoser K, Sauseng P, Gruber W (2005) Intelligence related upper alpha desynchronization in a semantic memory task. Brain Res Bull 66(2): 171-177. https://doi.org/10.1016/j.brainresbull.2005.04.007

Fellinger R, Grube W, Zaune A, Freunberge R, Klimesch W (2012) Evoked traveling alpha waves predict visual-semantic categorization-speed. NeuroImage 59(4): 3379–3388. https://doi.org/10.1016/j.neuroimage. 2011.11.010

Drijvers L, Özyürek A, Jensen O (2018) Alpha and beta oscillations index semantic congruency between speech and gestures in clear and degraded speech. J Cognitive Neurosci 30 (8): 1086-1097. https://doi.org/ 10.1162/jocn_a_01301

Terporten R, Schoffelen J-M, Dai B, Hagoort P, Kosem A (2019) The relation between alpha/beta oscillations and the encoding of sentence induced contextual information. Sci Rep 9: 20255. https://doi.org/10.1038/s41598-019-56600-x

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102(27): 9673-9678. https://doi.org/ 10.1073/pnas.0504136102

Riemer F, Grüner R, Beresniewicz J, Kazimierczak K, Ersland L, Hugdahl K (2020) Dynamic switching between intrinsic and extrinsic mode networks as demands change from passive to active processing. Sci Rep 10(1): 21463. https://doi.org/10.1038/s41598-020-78579-6

Stevens CEJr, Zabelina DL (2020) Classifying creativity: Applying machine learning techniques to divergent thinking EEG data. Neuroimage 219: 116990. https://doi.org/ 10.1016/j.neuroimage.2020.116990

Khalil R, Karim AA, Kondinska A, Godde B (2020) Effects of transcranial direct current stimulation of left and right inferior frontal gyrus on creative divergent thinking are moderated by changes in inhibition control. Brain Structure & Function 225(6): 1691–1704. https://doi.org/ 10.1007/s00429-020-02081-y

Hertenstein E, Waibel E, Frase L, Riemann D, Feige B, Nitsche MA, Kaller CP, Nissen C (2019) Modulation of creativity by transcranial direct current stimulation. Brain Stimul 12(5): 1213-1221. https://doi.org/10.1016/j.brs.2019.06.004

Ivancovsky T, Kurman J, Morio H, Shamay-Tsoory S (2019) Transcranial direct current stimulation (tDCS) targeting the left inferior frontal gyrus: Effects on creativity across cultures. Soc Neurosci 14(3): 277-285. https://doi.org/10.1080/17470919.2018.1464505

Lucchiari C, Sala PM, Vanutelli ME (2018) Promoting creativity through transcranial direct current stimulation (tDCS). A critical review. Front Behav Neurosci 2 (12):167. https://doi.org/10.3389/fnbeh.2018.00167