ВЛИЯНИЕ ПРИНУДИТЕЛЬНЫХ БЕГОВЫХ НАГРУЗОК НА СОДЕРЖАНИЕ МИОКИНОВ В СКЕЛЕТНЫХ МЫШЦАХ МЫШЕЙ С МОДЕЛЬЮ САХАРНОГО ДИАБЕТА II ТИПА
PDF

Ключевые слова

миокины
цитокины
мышцы
беговая нагрузка
сахарный диабет II типа

Как цитировать

Захарова, А. Н., Кироненко, Т. А., Милованова, К. Г., Орлова, А. А., Дьякова, Е. Ю., Калинникова, Ю. Г., Чибалин, А. В., & Капилевич, Л. В. (2021). ВЛИЯНИЕ ПРИНУДИТЕЛЬНЫХ БЕГОВЫХ НАГРУЗОК НА СОДЕРЖАНИЕ МИОКИНОВ В СКЕЛЕТНЫХ МЫШЦАХ МЫШЕЙ С МОДЕЛЬЮ САХАРНОГО ДИАБЕТА II ТИПА. Российский физиологический журнал им. И. М. Сеченова, 107(6-7), 864–875. https://doi.org/10.31857/S0869813921060157

Аннотация

Изучено влияние принудительных беговых нагрузок на содержание некоторых цитокинов в скелетных мышцах мышей с моделью сахарного диабета II типа. Для формирования модели заболевания использовалась высокожировая диета; физические нагрузки в виде принудительного бега проводились в течение 4-х недель. Концентрация миокинов в мышечной ткани m. gastrocnemius определялась методом иммуноферментного анализа. Формирование диабета у мышей сопровождалось возрастанием концентрации IL-6 и снижением концентрации IL-15 в мышечной ткани. Принудительные беговые нагрузки по-разному влияли на содержание миокинов в мышечной ткани у здоровых и больных мышей. У здоровых животных наблюдалось снижение концентрации IL-6 и IL-15 и увеличение концентрации лейкемия-ингибирующего фактора (LIF) в мышечной ткани после 4-х недель регулярного принудительного бега. В то же время у мышей с диабетом концентрации IL-6 и IL-15 после нагрузок возрастала, а LIF – напротив, снижалась. Концентрация NAP3 в мышечной ткани мышей оказалась нечувствительной ни к формированию сахарного диабета, ни к регулярному принудительному бегу.

https://doi.org/10.31857/S0869813921060157
PDF

Литература

Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96:183–195. https://doi.org/10.1007/s00223-014-9915-y

Sprenger H, Jacobs C, Nain M, Gressner A, Prinz H, Wesemann W, Gemsa D (1992) Enhanced release of cytokines, interleukin-2 receptors, and neopterin after long-distance running. Clin Immun Immunopathol 63:188–195. https://doi.org/10.1016/0090-1229(92)90012-d

Drenth JP, Van Uum SH, van Deuren MG, Pesman J, Van der Ven-Jongekrijg J, Van der Meer JW (1995) Endurance run increases circulation IL-6 and IL-1ra but downregulatesex vivo TNF-α and Il-1α production. J Appl Physiol 79:1497–1503. doi:10.1152/jappl.1995.79.5.1497

Nehlsen-Cannarella SL, Fagoaga OR, Nieman DC, Henson DA, Butterworth DE, Schmitt RL, Bailey EM, Warren BJ, Utter A, Davis JM (1997) Carbohydrate and the cytokine response to 2.5 h of running. J Appl Physiol. 82:1662–1667. https://doi.org/10.1152/jappl.1997.82.5.1662

Ostrowski K, Ronde T, Asp S, Schjerling P, Pedersen BK (1999) Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 515:287–291. https://doi.org/10.1111/j.1469-7793.1999.287ad.x

Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Pedersen B (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529:237–242. https://doi.org/10.1111/j.1469-7793.2000.00237.x.

Keller C, Steensberg A, Pilegaard H, Osada T, Saltin B, Pedersen BK, Neufer PD (2001) Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J 15:2748–2750. https://doi.org/10.1096/fj.01-0507fje

Капилевич ЛВ, Кабачкова АВ, Захарова АН, Лалаева ГС, Кироненко ТА, Дьякова ЕЮ, Орлов СН (2016) Секреторная функция скелетных мышц: механизмы продукции и физиологические эффекты миокинов. Успехи физиол наук 47(2):7–26. [Kapilevich LV, Kabachkova AV, Zakharova AN, Lalaeva GS, Kironenko TA, Dyakova EYu, Orlov SN (2016) Secretory Function of Skeletal Muscles: Producing Mechanisms and Myokines Physiological Effects. Uspekhi Fiziol Nauk 47(2):7–26. (In Russ)]. PMID: 27530041

Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406. https://doi.org/10.1152/physrev.90100.2007

Iizuka K, Machida T, Hirafuji M (2014) Skeletal muscle is an endocrine organ. J Pharmacol Sci 125:125–131. https://doi.org/10.1254/jphs.14r02cp.

Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secetory organ. Nat Rev Endocrinol 8:457–465. https://doi.org/10.1038/nrendo.2012.49

Groop LC, Eriksson JG (1992) The etiology and pathogenesis of non-insulin-dependent diabetes. Ann Med 24(6):483–489. https://doi.org/10.1002/dmr.5610090503

Fujimaki S, Kuwabara T (2017) Diabetes-induced dysfunction of mitochondria and stem cells in skeletal muscle and the nervous system. Int J Mol Sci 18(10):2147. https://doi.org/10.3390/ijms18102147

Højlund K (2014) Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Dan Med J 61(7):B4890. PMID: 25123125

Nagy C, Einwallner E (2018) Study of In vivo glucose metabolism in high-fat diet-fed mice using oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). J Vis Exp 7(131):1–12. https://doi.org/10.3791/56672

Huh JY (2018) The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 41(1):14–29. https://doi.org/10.1007/s12272-017-0994-y

Meneilly GS (2001) Pathophysiology of diabetes in the elderly. In: Diabetes in old age. John Wiley & Sons 155–164. https://doi.org/10.1002/0470842326.ch2

Brandt C, Pedersen BK (2010) The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol 520258. https://doi.org/10.1155/2010/520258

Hansen JS, Zhao X, Irmler M, Liu X, Hoene M, Scheler M, Li Y, Beckers J, Hrabĕ de Angelis M, Häring HU, Pedersen BK, Lehmann R, Xu G, Plomgaard P, Weigert C (2015) Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery. Diabetologia 58:1845–1854. https://doi.org/10.1007/s00125-015-3584-x

Karstoft K, Pedersen BK (2016) Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol 94:146–150. https://doi.org/10.1038/icb.2015.101

Kapilevich L, Zakharova A, Kabachkova A, Kironenko T, Milovanova K, Orlov S (2017) Different impact of physical activity on plasma myokines content in athletes and untrained volunteers. FEBS J 284(1):373–373. WOS:000409918904202

Kapilevich LV, Zakharova AN, Kabachkova AV, Kironenko TA, Orlov SN (2017) Dynamic and static exercises differentially affect plasma cytokine content in elite endurance- and strength-trained athletes and untrained volunteers. Front Physiol 8:35. https://doi.org/10.3389/fphys.2017.00035

Winzell MS, Ahren B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(3):S215–S219. https://doi.org/10.2337/diabetes.53.suppl_3.s215

Kapilevich LV, Zakharova AN, Dyakova EYu, Kalinnikova JG, Chibalin AV (2019) Mice experimental model of diabetes mellitus type ii based on high fat diet. Bull Siberian Med 18(3):53–61. https/doi.org:10.20538/1682-0363-2019-3-53-61

Zakharova AN, Kalinnikova Y, Negodenko ES, Orlova AA, Kapilevich LV. (2020) Experimental simulation of cyclic training loads. Teor Prakt Fizich Kult 10:26–27.

Шварц В (2009) Регуляция метаболических процессов интерлейкином-6. Цитокины и воспаление 3:3–10 [Schwartz V (2009) Regulation of metabolic processes by interleukin-6. Cytokines and Inflam 3:3–10. (In Russ)].

Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Febbraio M, Saltin B (2003) Searching for the exercise factor : is IL-6 a candidate ? J Muscle Res Cell Motil 24(2-3):113–119. https/doi.org:10.1023/a:1026070911202

Pedersen BK, Fischer CP (2007) Beneficial health effects of exercise: the role of Il-6 as a myokine. Trends Pharmacol Sci 28:152–156. https/doi.org:10.1016/j.tips.2007.02.002

Малашенкова ИК, Казанова ГВ, Дидковский НА (2014) Интерлейкин-15: строение, сигналинг и роль в иммунной защите. Молек мед 3:9–20. [Malashenkova IK, Casanova GV, Didkovsky NA (2014) Interleukin-15: structure, signaling and role in immune defense. Molec Med 3:9–20. (In Russ)].

Quinn LS, Strait-Bodey L, Anderson BG, Argilés JM, Havel PJ (2005) Interleukin-15 stimulates adiponectin secretion by 3T3-L1 adipocytes: evidence for a skeletal muscle-to-fat signaling pathway. Cell Biol Int 29:449–457. https/doi.org:10.1016/j.cellbi.2005.02.005

Broholm C, Pedersen BK (2010) Leukemia inhibitory factor – an exercise-induced myokine. Exerc Immunol Rev 16:77–85. PMID:20839492

Srikuea R, Esser KA, Pholpramool C (2011) Lekemia factor is expressed in rat gastrocnemius muscle after contusion and increases proliferation of rat L6 myoblasts via c-Myc signalling. Clin Exp Pharmacol Physiol 38:501–509. https/doi.org:10.1111/j.1440-1681.2011.05537.x

Pedersen BK, Saltin B (2015) Exercise as medicine – evodence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports 25:1–72. https/doi.org:10.1111/sms.12581

Pedersen L, Pilegaard H, Hansen J, Brandt C, Adser H, Hidalgo J, Olesen J, Pedersen BK, Hojman P (2011) Exercise-induced liver chemokine CXCL-1 expression is linked to muscle-derived interleukin-6 expression J Physiol 589(6):1409–1420. https/doi.org:10.1113/jphysiol.2010.200733

Pedersen L, Olsen CH, Pedersen BK, Hojman P (2012) Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in the muscle. Am J Physiol Endocrinol Metab 302(7):831–840. https/doi.org:10.1152/ajpendo.00339.2011

Peake JM, Gatta PD, Suzuki K, Nieman DC (2015) Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exercise Immunol Rev 21:8–25. PMID: 25826432

Fitts RH, Widrick JJ (1996) Muscle mechanics: adaptations with exercise-training. Exerc Sport Sci Rev 24:427–473. PMID: 8744258

Raue U, Trappe T.A, Estrem S.T, Qian H-R, Helvering LM, Smith RC, Trappe S (2012) Transcriptomic signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. J Appl Physiol 112:1625–1636. https/doi.org:10.1152/japplphysiol.00435.2011

Gundersen K (2011) Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev 86:564–600. https/doi.org:10.1111/j.1469-185X.2010.00161.x

Kapilevich LV, Kironenko TA, Zaharova AN, Kotelevtsev YV, Dulin NO, Orlov SN (2015) Skeletal muscle as an endicrine organ: role of [Na+]i/[K+]i-mediated excitation-transcription coupling. Gen Diseas 2:328–336. https/doi.org:10.1016/j.gendis.2015.10.001

Ma H, Groth RD, Wheeler DG, Barrett CF, Tsien RW (2011) Excitation-transcription coupling in sympathetic neurons and the molecular mechanism of its initiation. Neurosci Res 70:2–8. https/doi.org:10.1016/j.neures.2011.02.004

Holmes AG, Watt MJ, Carey AL, Febbraio MA (2004) Ionomycin, but not physiological doses of epinephrine, stimulates skeletal muscle interleukin-6 mRNA expression and protein release. Metabolism 53:1492–1495. https/doi.org:10.1016/j.metabol.2004.05.015

Whitham M, Chan MHS, Pal M, Matthews VB, Prelovsek O, Lunke S, El-Osta A, Broenneke H, Alber J, Brüning JC, Wunderlich FT, Lancaster GI, Febbraio MA (2012) Contraction-induced interleukin-6 gene transcription in skeletal muscle is regulated by c-Jun terminal kinase/activator protein-1. J Biol Chem 287:10771–10779. https/doi.org:10.1074/jbc.M111.31058

Nedachi T, Hatakeyama H, Kono T, Sato M, Kanzaki M (2009) Charactrization of contraction-inducible CXC chemokines and their roles in C2C12 myocytes. Am J Physiol Endocrinol Metab 297:E866–E878. https/doi.org:10.1152/ajpendo.00104.2009

McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+, and Cl- disturbances and Na+-K+ pump inactivation: implications for fatigue. J Appl Physiol 104:288–295. https/doi.org:10.1152/japplphysiol.01037.2007

Koltsova SV, Trushina Y, Haloui M, Akimova OA, Tremblay J, Hamet P, Orlov SN (2012) Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for [Ca2+]i-independent excitation-transcription coupling. PLoS One 7:e38032. https/doi.org:10.1371/journal.pone.0038032