КАНАЛОБЛОКАТОРЫ ИОНОТРОПНЫХ РЕЦЕПТОРОВ ГЛУТАМАТА
PDF

Ключевые слова

синаптическая передача
ионотропные рецепоры
блокада канала
лиганд-рецепторные взаимодействия

Как цитировать

Тихонов, Д. Б. (2021). КАНАЛОБЛОКАТОРЫ ИОНОТРОПНЫХ РЕЦЕПТОРОВ ГЛУТАМАТА. Российский физиологический журнал им. И. М. Сеченова, 107(4-5), 403–416. https://doi.org/10.31857/S0869813921040142

Аннотация

Глутаматергическая передача отвечает за большинство возбуждающих синаптических процессов ЦНС позвоночных. Глутаматергические синапсы участвуют в подавляющем большинстве физиологических и патологических процессов, и их модуляция оказывает непосредственное влияние практически на все функции мозга. Неудивительно, что разработка и исследования действия препаратов, способных воздействовать на глутаматергический синапс, являлась и является одной из приоритетных задач нейрофармакологии. Дать даже краткий обзор по этой комплексной проблеме – задача, не решаемая в рамках одной статьи, поэтому в обзоре представлены данные только по одной из тем, а именно по лигандам ионотропных рецепторов глутамата, которые непосредственно блокируют ионные поры этих каналов.

https://doi.org/10.31857/S0869813921040142
PDF

Литература

Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496. https://doi.org/10.1124/pr.109.002451

Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, Traynelis SF (2018) Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 150(8):1081–1105. https://doi.org/10.1085/jgp.201812032

Tikhonov DB, Zhorov BS (2020) The pore domain in glutamate-gated ion channels: Structure, drug binding and similarity with potassium channels. Bioch Biophys Biomembr 1862(10):183401. https://doi.org/10.1016/j.bbamem.2020.183401

Bennett JA, Dingledine R (1995) Topology profile for a glutamate receptor: three transmembrane domains and a channel-lining reentrant membrane loop. Neuron 14(2):373–384. https://doi.org/10.1016/0896-6273(95)90293-7

Hollmann M, Maron C, Heinemann S (1994) N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron 13(6):1331–1343. https://doi.org/10.1016/0896-6273(94)90419-7

Kuner T, Wollmuth LP, Karlin A, Seeburg PH, Sakmann B (1996) Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 17(2):343–352. https://doi.org/10.1016/s0896-6273(00)80165-8

Laube B, Kuhse J, Betz H (1998) Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci 18(8):2954–2961. https://doi.org/10.1523/JNEUROSCI.18-08-02954.1998

Mano I, Teichberg VI (1998) A tetrameric subunit stoichiometry for a glutamate receptor-channel complex. Neuroreport 9(2):327–331. https://doi.org/10.1097/00001756-199801260-00027

Panchenko VA, Glasser CR, Mayer ML (2001) Structural similarities between glutamate receptor channels and K(+) channels examined by scanning mutagenesis. J Gen Physiol 117(4):345–360. https://doi.org/10.1085/jgp.117.4.345

Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280(5369):1596–1599. https://doi.org/10.1126/science.280.5369.1596

Wo ZG, Oswald RE (1995) Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci 18(4):161–168. https://doi.org/10.1016/0166-2236(95)93895-5

Zhorov BS, Tikhonov DB (2004) Potassium, sodium, calcium and glutamate-gated channels: pore architecture and ligand action. J Neurochem 88(4):782–799. https://doi.org/10.1111/j.1471-4159.2004.02261.x

Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77. https://doi.org/10.1126/science.280.5360.69

Tikhonov DB, Mellor JR, Usherwood PN, Magazanik LG (2002) Modeling of the pore domain of the GLUR1 channel: homology with K+ channel and binding of channel blockers. Biophys J 82(4):1884–1893. https://doi.org/10.1016/S0006-3495(02)75538-0

Tikhonov DB (2007) Ion channels of glutamate receptors: structural modeling. Mol Membr Biol 24(2):135–147. https://doi.org/10.1080/09687860601008806

Kaczor AA, Kijkowska-Murak UA, Kronbach C, Unverferth K, Matosiuk D (2009) Modeling of glutamate GluR6 receptor and its interactions with novel noncompetitive antagonists. J Chem Informat Modeling 49(4):1094–1104. https://doi.org/10.1021/ci900033m

Kaczor AA, Kijkowska-Murak UA, Matosiuk D (2008) Theoretical studies on the structure and symmetry of the transmembrane region of glutamatergic GluR5 receptor. J Med Chem 51(13):3765–3776. https://doi.org/0.1021/jm7011694

Sobolevsky AI, Yelshansky MV, Wollmuth LP (2003) Different gating mechanisms in glutamate receptor and K+ channels. J Neurosci 23(20):7559–7568. https://doi.org/10.1523/JNEUROSCI.23-20-07559.2003

Sobolevsky AI, Rooney L, Wollmuth LP (2002) Staggering of subunits in NMDAR channels. Biophys J 83(6):3304–3314. https://doi.org/10.1016/S0006-3495(02)75331-9

Sobolevsky AI, Beck C, Wollmuth LP (2002) Molecular rearrangements of the extracellular vestibule in NMDAR channels during gating. Neuron 33(1):75–85. https://doi.org/10.1016/s0896-6273(01)00560-8

Hoffmann J, Villmann C, Werner M, Hollmann M (2006) Investigation via ion pore transplantation of the putative relationship between glutamate receptors and K+ channels. Mol Cell Neurosci 33(4):358–370. https://doi.org/10.1016/j.mcn.2006.08.004

Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462(7274):745–756. https://doi.org/10.1038/nature08624

Yelshanskaya MV, Li M, Sobolevsky AI (2014) Structure of an agonist-bound ionotropic glutamate receptor. Science 345(6200):1070-1074. https://doi.org/10.1126/science.1256508

Karakas E, Furukawa H (2014) Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344(6187):992–997. https://doi.org/10.1126/science.1251915

Durr KL, Chen L, Stein RA, De Zorzi R, Folea IM, Walz T, McHaourab HS, Gouaux E (2014) Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Cell 158(4):778–792. https://doi.org/10.1016/j.cell.2014.07.023

Twomey EC, Yelshanskaya MV, Vassilevski AA, Sobolevsky AI (2018) Mechanisms of Channel Block in Calcium-Permeable AMPA Receptors. Neuron 99(5):956–968 e4. https://doi.org/10.1016/j.neuron.2018.07.027

Herguedas B, Watson JF, Ho H, Cais O, Garcia-Nafria J, Greger IH (2019) Architecture of the heteromeric GluA1/2 AMPA receptor in complex with the auxiliary subunit TARP gamma8. Science 364(6438) https://doi.org/10.1126/science.aav9011

Zhao Y, Chen S, Swensen AC, Qian WJ, Gouaux E (2019) Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM. Science 364(6438):355–362. https://doi.org/10.1126/science.aaw8250

Phillips MB, Nigam A, Johnson JW (2020) Interplay between Gating and Block of Ligand-Gated Ion Channels. Brain Sci 10(12). https://doi.org/10.3390/brainsci10120928

Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) The open pore conformation of potassium channels. Nature 417(6888):523–526. https://doi.org/10.1038/417523a

Chang HR, Kuo CC (2008) The activation gate and gating mechanism of the NMDA receptor. J Neurosci 28(7):1546–1556. https://doi.org/10.1523/JNEUROSCI.3485-07.2008

Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N (1997) Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388(6644):769–773. https://doi.org/10.1038/42009

Kashiwagi K, Masuko T, Nguyen CD, Kuno T, Tanaka I, Igarashi K, Williams K (2002) Channel blockers acting at N-methyl-D-aspartate receptors: differential effects of mutations in the vestibule and ion channel pore. Mol Pharmacol 61(3):533–545. https://doi.org/10.1124/mol.61.3.533

Yuan H, Erreger K, Dravid SM, Traynelis SF (2005) Conserved structural and functional control of N-methyl-D-aspartate receptor gating by transmembrane domain M3. J Biol Chem 280(33):29708–29716. https://doi.org/10.1074/jbc.M414215200

Sobolevsky AI, Yelshansky MV, Wollmuth LP (2005) State-dependent changes in the electrostatic potential in the pore of a GluR channel. Biophys J 88(1):235–242. https://doi.org/10.1529/biophysj.104.049411

Berneche S, Roux B (2005) A gate in the selectivity filter of potassium channels. Structure 13(4):591–600. https://doi.org/10.1016/j.str.2004.12.019

Liu Y, Jurman ME, Yellen G (1996) Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16(4):859–867. https://doi.org/10.1016/s0896-6273(00)80106-3

Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504(7478):113–118. https://doi.org/10.1038/nature12823

Chen S, Zhao Y, Wang Y, Shekhar M, Tajkhorshid E, Gouaux E (2017) Activation and Desensitization Mechanism of AMPA Receptor-TARP Complex by Cryo-EM. Cell 170(6):1234–1246 e1214. https://doi.org/10.1016/j.cell.2017.07.045

Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, Sobolevsky AI (2017) Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature 549(7670):60–65. https://doi.org/10.1038/nature23479

MacDonald JF, Bartlett MC, Mody I, Pahapill P, Reynolds JN, Salter MW, Schneiderman JH, Pennefather PS (1991) Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones. J Physiol 432:483–508. https://doi.org/10.1113/jphysiol.1991.sp018396

Bormann J (1989) Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels. Eur J Pharmacol 166(3):591–592. https://doi.org/10.1016/0014-2999(89)90385-3

Kroemer RT, Koutsilieri E, Hecht P, Liedl KR, Riederer P, Kornhuber J (1998) Quantitative analysis of the structural requirements for blockade of the N-methyl-D-aspartate receptor at the phencyclidine binding site. J Med Chem 41(3):393–400. https://doi.org/10.1021/jm9704412

Manallack DT, Wong MG, Costa M, Andrews PR, Beart PM (1998) Receptor site topographies for phencyclidine-like and sigma drugs: predictions from quantitative conformational, electrostatic potential, and radioreceptor analyses. Mol Pharmacol 34(6):863–879.

Bolshakov KV, Kim KH, Potapjeva NN, Gmiro VE, Tikhonov DB, Usherwood PNR, Mellor IR, Magazanik LG (2005) Design of antagonists for NMDA and AMPA receptors. Neuropharmacology 49(2):144–155. https://doi.org/10.1016/j.neuropharm.2005.02.007

Bolshakov KV, Tikhonov DB, Gmiro VE, Magazanik LG (2000) Different arrangement of hydrophobic and nucleophilic components of channel binding sites in N-methyl-D-aspartate and AMPA receptors of rat brain is revealed by channel blockade. Neurosci Lett 291(2):101–104. https://doi.org/10.1016/s0304-3940(00)01386-0.

Brackley PT, Bell DR, Choi SK, Nakanishi K, Usherwood PN (1993) Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins. J Pharmacol Exp Ther 266(3):1573–1580.

Antonov SM, Johnson JW, Lukomskaya NY, Potapyeva NN, Gmiro VE, Magazanik LG (1995) Novel adamantane derivatives act as blockers of open ligand-gated channels and as anticonvulsants. Mol Pharmacol 47(3):558–567.

Bolshakov V, Gapon SA, Magazanik LG (1991) Different types of glutamate receptors in isolated and identified neurones of the mollusc Planorbarius corneus. J Physiol 439:15–35. https://doi.org/10.1113/jphysiol.1991.sp018654

Tikhonov DB, Magazanik LG (1998) Voltage dependence of open channel blockade: onset and offset rates. J Membr Biol 161(1):1–8. https://doi.org/10.1007/s002329900309

Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465. https://doi.org/10.1038/307462a0

Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309(5965):261–263. https://doi.org/10.1038/309261a0

Kotermanski SE, Johnson JW (2009) Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer's drug memantine. J Neurosci 29(9):2774–2779. https://doi.org/10.1523/JNEUROSCI.3703-08.2009

Nikolaev MV, Magazanik LG, Tikhonov DB (2012) Influence of external magnesium ions on the NMDA receptor channel block by different types of organic cations. Neuropharmacology 62(5–6):2078–2085. https://doi.org/10.1016/j.neuropharm.2011.12.029

Otton HJ, Lawson McLean A, Pannozzo MA, Davies CH, Wyllie DJ (2011) Quantification of the Mg2+-induced potency shift of amantadine and memantine voltage-dependent block in human recombinant GluN1/GluN2A NMDARs. Neuropharmacology 60(2-3):388–396. https://doi.org/10.1016/j.neuropharm.2010.10.008

Blanpied TA, Clarke RJ, Johnson JW (2005) Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J Neurosci 25(13):3312–3322. https://doi.org/10.1523/JNEUROSCI.4262-04.2005

Sobolevsky AI, Koshelev SG, Khodorov BI (1999) Probing of NMDA channels with fast blockers. J Neurosci 19(24):10611–10626. https://doi.org/10.1523/JNEUROSCI.19-24-10611.1999

Antonov SM, Johnson JW (1996) Voltage-dependent interaction of open-channel blocking molecules with gating of NMDA receptors in rat cortical neurons. J Physiol 493 ( Pt 2):425–445. https://doi.org/10.1113/jphysiol.1996.sp021394

Benveniste M, Mayer ML (1995) Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine. J Physiol 483 ( Pt 2):367–384. https://doi.org/10.1113/jphysiol.1995.sp020591

Barygin OI, Gmiro VE, Kim KK, Magazanik LG, Tikhonov DB (2009) Blockade of NMDA receptor channels by 9-aminoacridine and its derivatives. Neurosci Lett 451(1):29–33. https://doi.org/10.1016/j.neulet.2008.12.036

Vorobjev VS, Sharonova IN (1994) Tetrahydroaminoacridine blocks and prolongs NMDA receptor-mediated responses in a voltage-dependent manner. Eur J Pharmacol 253(1-2):1–8. https://doi.org/10.1016/0014-2999(94)90750-1

Bolshakov KV, Gmiro VE, Tikhonov DB, Magazanik LG (2003) Determinants of trapping block of N-methyl-D-aspartate receptor channels. J Neurochem 87(1):56–65. https://doi.org/10.1046/j.1471-4159.2003.01956.x

Mealing GA, Lanthorn TH, Small DL, Murray RJ, Mattes KC, Comas TM, Morley P (2001) Structural modifications to an N-methyl-D-aspartate receptor antagonist result in large differences in trapping block. J Pharmacol Exp Ther 297(3):906–914.

Blanpied TA, Boeckman FA, Aizenman E, Johnson JW (1997) Trapping channel block of NMDA-activated responses by amantadine and memantine. J Neurophysiol 77(1):309–323. https://doi.org/10.1152/jn.1997.77.1.309

Taverna FA, Cameron BR, Hampson DL, Wang LY, MacDonald JF (1994) Sensitivity of AMPA receptors to pentobarbital. Eur J Pharmacol 267(3):R3–5. https://doi.org/10.1016/0922-4106(94)90161-9

Yamakura T, Sakimura K, Mishina M, Shimoji K (1995) The sensitivity of AMPA-selective glutamate receptor channels to pentobarbital is determined by a single amino acid residue of the alpha 2 subunit. FEBS Lett 374(3):412–414. https://doi.org/10.1016/0014-5793(95)01163-9

Tikhonov DB, Samoilova MV, Buldakova SL, Gmiro VE, Magazanik LG (2000) Voltage-dependent block of native AMPA receptor channels by dicationic compounds. Br J Pharmacol 129(2):265–274. https://doi.org/10.1038/sj.bjp.0703043

Magazanik LG, Buldakova SL, Samoilova MV, Gmiro VE, Mellor IR, Usherwood PN (1997) Block of open channels of recombinant AMPA receptors and native AMPA/kainate receptors by adamantane derivatives. J Physiol 505 (Pt 3):655–663. https://doi.org/10.1111/j.1469-7793.1997.655ba.x

Bahring R, Bowie D, Benveniste M, Mayer ML (1997) Permeation and block of rat GluR6 glutamate receptor channels by internal and external polyamines. J Physiol 502 ( Pt 3):575–589. https://doi.org/10.1111/j.1469-7793.1997.575bj.x

Bahring R, Mayer ML (1998) An analysis of philanthotoxin block for recombinant rat GluR6(Q) glutamate receptor channels. J Physiol 509 (Pt 3):635–650. https://doi.org/10.1111/j.1469-7793.1998.635bm.x

Tikhonova TB, Barygin OI, Gmiro VE, Tikhonov DB, Magazanik LG (2008) Organic blockers escape from trapping in the AMPA receptor channels by leaking into the cytoplasm. Neuropharmacology 54(4):653–664. https://doi.org/10.1016/j.neuropharm.2007.11.014

Zaitsev AV, Kim KK, Fedorova IM, Dorofeeva NA, Magazanik LG, Tikhonov DB (2011) Specific mechanism of use-dependent channel block of calcium-permeable AMPA receptors provides activity-dependent inhibition of glutamatergic neurotransmission. J Physiol 589(7):1587–1601.

Bowie D (2018) Polyamine-mediated channel block of ionotropic glutamate receptors and its regulation by auxiliary proteins. J Biol Chem 293(48):18789–18802. https://doi.org/10.1113/jphysiol.2011.204362

Ferrer-Montiel AV, Sun W, Montal M (1995) Molecular design of the N-methyl-D-aspartate receptor binding site for phencyclidine and dizolcipine. Proc Natl Acad Sci USA 92(17):8021–8025. https://doi.org/10.1073/pnas.92.17.8021

Burnashev N, Schoepfer R, Monyer H, Ruppersberg JP, Gunther W, Seeburg PH, Sakmann B (1992) Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 257(5075):1415–1419. https://doi.org/10.1126/science.1382314

Mori H, Masaki H, Yamakura T, Mishina M (1992) Identification by mutagenesis of a Mg(2+)-block site of the NMDA receptor channel. Nature 358(6388):673–675. https://doi.org/10.1038/358673a0

Tikhonov DB, Zhorov BS, Magazanik LG (1999) Intersegment hydrogen bonds as possible structural determinants of the N/Q/R site in glutamate receptors. Biophys J 77(4):1914–1926. https://doi.org/10.1016/S0006-3495(99)77033-5

Nelson JK, Frølund SU, Tikhonov DB, Kristensen AS, Strømgaard K (2009) Synthesis and biological activity of argiotoxin 636 and analogues: selective antagonists for ionotropic glutamate receptors. Angew Chem Int Ed Engl 48(17):3087–3091. https://doi.org/10.1002/anie.200805426

Andersen TF, Tikhonov DB, Bolcho U, Bolshakov K, Nelson JK, Pluteanu F, Mellor IR, Egebjerg J, Stromgaard K (2006) Uncompetitive antagonism of AMPA receptors: Mechanistic insights from studies of polyamine toxin derivatives. J Med Chem 49(18):5414–5423. https://doi.org/10.1021/jm060606j

Franzyk H, Grzeskowiak JW, Tikhonov DB, Jaroszewski JW, Mellor IR (2014) The Effects of Conformational Constraints in the Polyamine Moiety of Philanthotoxins on AMPAR Inhibition. ChemMedChem 9(8):1725–1731. https://doi.org/10.1002/cmdc.201402109

Zhao Y, Huang G, Wu Q, Wu K, Li R, Lei J, Pan X, Yan N (2019) Cryo-EM structures of apo and antagonist-bound human Cav3.1. Nature 576(7787):492–497. doi: 10.1038/s41586-019-1801-3

Song X, Jensen MO, Jogini V, Stein RA, Lee CH, McHaourab HS, Shaw DE, Gouaux E (2018) Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature 556(7702):515–519. https://doi.org/10.1038/s41586-019-1801-3

Alam S, Lingenfelter KS, Bender AM, Lindsley CW (2017) Classics in Chemical Neuroscience: Memantine. ACS Chem Neurosci 8(9):1823–1829. https://doi.org/10.1021/acschemneuro.7b00270

Wei Y, Chang L, Hashimoto K (2020) A historical review of antidepressant effects of ketamine and its enantiomers. Pharmacol Biochem Behav 190:172870. https://doi.org/10.1016/j.pbb.2020.172870

Povysheva NV, Johnson JW (2016) Effects of memantine on the excitation-inhibition balance in prefrontal cortex. Neurobiol Disease 96:75–83. https://doi.org/10.1016/j.nbd.2016.08.006

Nikolaev MV, Chizhov AV, Tikhonov DB (2020) Molecular mechanisms of action determine inhibition of paroxysmal depolarizing shifts by NMDA receptor antagonists in rat cortical neurons. Neuropharmacology 184:108443. https://doi.org/

Malkin SL, Kim KK, Tikhonov DB, Magazanik LG, Zaitsev AV (2015) Statistical models suggest presence of two distinct subpopulations of miniature epscs in fast-spiking interneurons of rat prefrontal cortex. Neuroscience 301:508–519. https://doi.org/10.1016/j.neuroscience.2015.06.034