СТРУКТУРЫ НАТРИЕВЫХ И КАЛЬЦИЕВЫХ КАНАЛОВ С ЛИГАНДАМИ
PDF

Ключевые слова

агонисты
антагонисты
кристаллография
крио-ЭМ структуры
лиганд-рецепторные взаимодействия
молекулярные модели
токсины

Как цитировать

Жоров, Б. С. (2021). СТРУКТУРЫ НАТРИЕВЫХ И КАЛЬЦИЕВЫХ КАНАЛОВ С ЛИГАНДАМИ. Российский физиологический журнал им. И. М. Сеченова, 107(4-5), 417–435. https://doi.org/10.31857/S0869813921040178

Аннотация

Натриевые и кальциевые каналы играют фундаментальную роль в физиологии электровозбудимых клеток. Эти каналы являются мишенями для разнообразных природных токсинов, синтетических лекарственных веществ и инсектицидов. Генетические мутации в натриевых и кальциевых каналах сопряжены с такими наследственными заболеваниями, как сердечные аритмии, эпилепсии, миотонии, повышенная или пониженная чувствительность к боли. Неудивительно, что создание селективных модуляторов натриевых и кальциевых каналов является важной задачей нейрофармакологии. В последние годы опубликованы кристаллические и крио-электронно-микроскопические структуры натриевых и кальциевых каналов и их комплексов c токсинами и лекарственными веществами. В этих работах предложено структурное объяснение многочисленным экспериментальным данным, накопленным в предыдущие десятилетия. В настоящем обзоре рассмотрены комплексы натриевых и кальциевых каналов с токсинами и лекарственными веществами. Описаны некоторые компьютерные модели таких комплексов. Обсуждается возможная роль токонесущих катионов и мест их связывания в действии некоторых лигандов. 

https://doi.org/10.31857/S0869813921040178
PDF

Литература

Stevens M, Peigneur S, Tytgat J (2011) Neurotoxins and their binding areas on voltage-gated sodium channels. Front Pharmacol 2:71. https://doi.org/10.3389/fphar.2011.00071

Catterall WA, Swanson TM (2015) Structural Basis for Pharmacology of Voltage-Gated Sodium and Calcium Channels. Mol Pharmacol 88:141-150. https://doi.org/10.1124/mol.114.097659

Catterall WA (2014) Sodium channels, inherited epilepsy, and antiepileptic drugs. Annu Rev Pharmacol Toxicol 54:317-338. https://doi.org/10.1146/annurev-pharmtox-011112-140232

Silver KS, Du Y, Nomura Y, Oliveira EE, Salgado VL, Zhorov BS, Dong K (2014) Voltage-Gated Sodium Channels as Insecticide Targets. Adv In Insect Phys 46:389-433. https://doi.org/10.1016/B978-0-12-417010-0.00005-7

Pan X, Li Z, Zhou Q, Shen H, Wu K, Huang X, Chen J, Zhang J, Zhu X, Lei J, Xiong W, Gong H, Xiao B, Yan N (2018) Structure of the human voltage-gated sodium channel Nav1.4 in complex with beta1. Science 362. https://doi.org/10.1126/science.aau2486

Chatterjee S, Vyas R, Chalamalasetti SV, Sahu ID, Clatot J, Wan X, Lorigan GA, Deschenes I, Chakrapani S (2018) The voltage-gated sodium channel pore exhibits conformational flexibility during slow inactivation. J Gen Physiol 150:1333-1347. https://doi.org/10.1085/jgp.201812118

Stotz SC, Jarvis SE, Zamponi GW (2004) Functional roles of cytoplasmic loops and pore lining transmembrane helices in the voltage-dependent inactivation of HVA calcium channels. J Physiol 554:263-273. https://doi.org/10.1113/jphysiol.2003.047068

Abderemane-Ali F, Findeisen F, Rossen ND, Minor DL, Jr. (2019) A Selectivity Filter Gate Controls Voltage-Gated Calcium Channel Calcium-Dependent Inactivation. Neuron 101:1134-1149 e1133. https://doi.org/10.1016/j.neuron.2019.01.011

Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69-77. https://doi.org/10.1126/science.280.5360.69

Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353-358. https://doi.org/10.1038/nature10238

Shen H, Zhou Q, Pan X, Li Z, Wu J, Yan N (2017) Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355. https://doi.org/10.1126/science.aal4326

Moczydlowski EG (2013) The molecular mystique of tetrodotoxin. Toxicon 63:165-183. https://doi.org/10.1016/j.toxicon.2012.11.026

Thottumkara AP, Parsons WH, Du Bois J (2014) Saxitoxin. Angew Chem Int Ed Engl 53:5760-5784. https://doi.org/10.1002/anie.201308235

Terlau H, Heinemann SH, Stuhmer W, Pusch M, Conti F, Imoto K, Numa S (1991) Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett 293:93-96. https://doi.org/10.1016/0014-5793(91)81159-6

Lipkind GM, Fozzard HA (1994) A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys J 66:1-13. https://doi.org/10.1016/S0006-3495(94)80746-5

Dudley SC, Jr., Chang N, Hall J, Lipkind G, Fozzard HA, French RJ (2000) mu-conotoxin GIIIA interactions with the voltage-gated Na(+) channel predict a clockwise arrangement of the domains. J Gen Physiol 116:679-690. https://doi.org/10.1085/jgp.116.5.679

Tikhonov DB, Zhorov BS (2005) Modeling P-loops domain of sodium channel: homology with potassium channels and interaction with ligands. Biophys J 88:184-197. https://doi.org/10.1529/biophysj.104.048173

Lipkind GM, Fozzard HA (2000) KcsA crystal structure as framework for a molecular model of the Na(+) channel pore. Biochemistry 39:8161-8170. https://doi.org/10.1021/bi000486w

Tikhonov DB, Zhorov BS (2012) Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure. Mol Pharmacol 82:97-104. https://doi.org/10.1124/mol.112.078212

Tikhonov DB, Zhorov BS (2018) Predicting Structural Details of the Sodium Channel Pore Basing on Animal Toxin Studies. Front Pharmacol 9:880. https://doi.org/10.3389/fphar.2018.00880

Korkosh VS, Zhorov BS, Tikhonov DB (2014) Folding similarity of the outer pore region in prokaryotic and eukaryotic sodium channels revealed by docking of conotoxins GIIIA, PIIIA, and KIIIA in a NavAb-based model of Nav1.4. J Gen Physiol 144:231-244. https://doi.org/10.1085/jgp.201411226

Choudhary G, Aliste MP, Tieleman DP, French RJ, Dudley SC, Jr. (2007) Docking of mu-conotoxin GIIIA in the sodium channel outer vestibule. Channels (Austin) 1:344-352. https://doi.org/10.4161/chan.5112

Chang NS, French RJ, Lipkind GM, Fozzard HA, Dudley S, Jr. (1998) Predominant interactions between mu-conotoxin Arg-13 and the skeletal muscle Na+ channel localized by mutant cycle analysis. Biochemistry 37:4407-4419. https://doi.org/10.1021/bi9724927

Khan A, Romantseva L, Lam A, Lipkind G, Fozzard HA (2002) Role of outer ring carboxylates of the rat skeletal muscle sodium channel pore in proton block. J Physiol 543:71-84. https://doi.org/10.1113/jphysiol.2002.021014

McArthur JR, Ostroumov V, Al-Sabi A, McMaster D, French RJ (2011) Multiple, distributed interactions of mu-conotoxin PIIIA associated with broad targeting among voltage-gated sodium channels. Biochemistry 50:116-124. https://doi.org/10.1021/bi101316y

Wilson MJ, Yoshikami D, Azam L, Gajewiak J, Olivera BM, Bulaj G, Zhang MM (2011) mu-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc Natl Acad Sci U S A 108:10302-10307. https://doi.org/10.1073/pnas.1107027108

Hui K, Lipkind G, Fozzard HA, French RJ (2002) Electrostatic and steric contributions to block of the skeletal muscle sodium channel by mu-conotoxin. J Gen Physiol 119:45-54. https://doi.org/10.1085/jgp.119.1.45

Zhang MM, McArthur JR, Azam L, Bulaj G, Olivera BM, French RJ, Yoshikami D (2009) Synergistic and antagonistic interactions between tetrodotoxin and mu-conotoxin in blocking voltage-gated sodium channels. Channels (Austin) 3:32-38. https://doi.org/10.4161/chan.3.1.7500

Pan X, Li Z, Huang X, Huang G, Gao S, Shen H, Liu L, Lei J, Yan N (2019) Molecular basis for pore blockade of human Na(+) channel Nav1.2 by the mu-conotoxin KIIIA. Science 363:1309-1313. https://doi.org/10.1126/science.aaw2999

Shen H, Liu D, Wu K, Lei J, Yan N (2019) Structures of human Nav1.7 channel in complex with auxiliary subunits and animal toxins. Science 363:1303-1308. https://doi.org/10.1126/science.aaw2493

Shen H, Li Z, Jiang Y, Pan X, Wu J, Cristofori-Armstrong B, Smith JJ, Chin YKY, Lei J, Zhou Q, King GF, Yan N (2018) Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science 362. https://doi.org/10.1126/science.aau2596

Wang J, Yarov-Yarovoy V, Kahn R, Gordon D, Gurevitz M, Scheuer T, Catterall WA (2011) Mapping the receptor site for alpha-scorpion toxins on a Na+ channel voltage sensor. Proc Natl Acad Sci U S A 108:15426-15431. https://doi.org/10.1073/pnas.1112320108

Zhang JZ, Yarov-Yarovoy V, Scheuer T, Karbat I, Cohen L, Gordon D, Gurevitz M, Catterall WA (2011) Structure-function map of the receptor site for beta-scorpion toxins in domain II of voltage-gated sodium channels. J Biol Chem 286:33641-33651. https://doi.org/10.1074/jbc.M111.282509

Zhang JZ, Yarov-Yarovoy V, Scheuer T, Karbat I, Cohen L, Gordon D, Gurevitz M, Catterall WA (2012) Mapping the interaction site for a beta-scorpion toxin in the pore module of domain III of voltage-gated Na(+) channels. J Biol Chem 287:30719-30728. https://doi.org/10.1074/jbc.M112.370742

Bosmans F, Swartz KJ (2010) Targeting voltage sensors in sodium channels with spider toxins. Trends Pharmacol Sci 31:175-182. https://doi.org/10.1016/j.tips.2009.12.007

Minassian NA, Gibbs A, Shih AY, Liu Y, Neff RA, Sutton SW, Mirzadegan T, Connor J, Fellows R, Husovsky M, Nelson S, Hunter MJ, Flinspach M, Wickenden AD (2014) Analysis of the structural and molecular basis of voltage-sensitive sodium channel inhibition by the spider toxin huwentoxin-IV (mu-TRTX-Hh2a). J Biol Chem 288:22707-22720. https://doi.org/10.1074/jbc.M113.461392

Xiao Y, Blumenthal K, Cummins TR (2014) Gating-pore currents demonstrate selective and specific modulation of individual sodium channel voltage-sensors by biological toxins. Mol Pharmacol 86:159-167. https://doi.org/10.1124/mol.114.092338

Thomsen WJ, Catterall WA (1989) Localization of the receptor site for alpha-scorpion toxins by antibody mapping: implications for sodium channel topology. Proc Natl Acad Sci U S A 86:10161-10165. https://doi.org/10.1073/pnas.86.24.10161

Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA (1996) Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit. J Biol Chem 271:15950-15962. https://doi.org/10.1074/jbc.271.27.15950

Cestele S, Yarov-Yarovoy V, Qu Y, Sampieri F, Scheuer T, Catterall WA (2006) Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin. J Biol Chem 281:21332-21344. https://doi.org/10.1074/jbc.M603814200

Clairfeuille T, Cloake A, Infield DT, Llongueras JP, Arthur CP, Li ZR, Jian Y, Martin-Eauclaire MF, Bougis PE, Ciferri C, Ahern CA, Bosmans F, Hackos DH, Rohou A, Payandeh J (2019) Structural basis of alpha-scorpion toxin action on Nav channels. Science 363. https://doi.org/10.1126/science.aav8573

Xu H, Li T, Rohou A, Arthur CP, Tzakoniati F, Wong E, Estevez A, Kugel C, Franke Y, Chen J, Ciferri C, Hackos DH, Koth CM, Payandeh J (2019) Structural Basis of Nav1.7 Inhibition by a Gating-Modifier Spider Toxin. Cell 176:702-715 e714. https://doi.org/10.1016/j.cell.2018.12.018

Wisedchaisri G, Tonggu L, Gamal El-Din TM, McCord E, Zheng N, Catterall WA (2020) Structural Basis for High-Affinity Trapping of the NaV1.7 Channel in Its Resting State by Tarantula Toxin. Mol Cell. https://doi.org/10.1016/j.molcel.2020.10.039

Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci U S A 93:9270-9275. https://doi.org/10.1073/pnas.93.17.9270

O'Leary ME, Chahine M (2002) Cocaine binds to a common site on open and inactivated human heart (Na(v)1.5) sodium channels. J Physiol 541:701-716. https://doi.org/10.1113/jphysiol.2001.016139

Yarov-Yarovoy V, McPhee JC, Idsvoog D, Pate C, Scheuer T, Catterall WA (2002) Role of amino acid residues in transmembrane segments IS6 and IIS6 of the Na+ channel alpha subunit in voltage-dependent gating and drug block. J Biol Chem 277:35393-35401. https://doi.org/10.1074/jbc.M206126200

Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1994) Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science 265:1724-1728. https://doi.org/10.1126/science.8085162

Ahern CA, Eastwood AL, Dougherty DA, Horn R (2008) Electrostatic contributions of aromatic residues in the local anesthetic receptor of voltage-gated sodium channels. Circ Res 102:86-94. https://doi.org/10.1161/CIRCRESAHA.107.160663

Mike A, Lukacs P (2010) The enigmatic drug binding site for sodium channel inhibitors. Curr Mol Pharmacol 3:129-144. https://doi.org/10.2174/1874467211003030129

Yamagishi T, Xiong W, Kondratiev A, Velez P, Mendez-Fitzwilliam A, Balser JR, Marban E, Tomaselli GF (2009) Novel molecular determinants in the pore region of sodium channels regulate local anesthetic binding. Mol Pharmacol 76:861-871. https://doi.org/10.1124/mol.109.055863

Liu G, Yarov-Yarovoy V, Nobbs M, Clare JJ, Scheuer T, Catterall WA (2003) Differential interactions of lamotrigine and related drugs with transmembrane segment IVS6 of voltage-gated sodium channels. Neuropharmacology 44:413-422. https://doi.org/10.1016/s0028-3908(02)00400-8

Kuo CC (1998) A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuronal Na+ channels. Mol Pharmacol 54:712-721.

Catterall WA (1987) Common modes of drug action on Na+ channels: local anesthetics, antiarrhythmics and anticonvulsants. Trends Pharmacol Sci 8:57-65. https://doi.org/10.1016/0165-6147(87)90011-3

Catterall WA (2012) Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol 590:2577-2589. https://doi.org/10.1113/jphysiol.2011.224204

Tikhonov DB, Bruhova I, Zhorov BS (2006) Atomic determinants of state-dependent block of sodium channels by charged local anesthetics and benzocaine. FEBS Lett 580:6027-6032. https://doi.org/10.1016/j.febslet.2006.10.035

Naylor CE, Bagneris C, DeCaen PG, Sula A, Scaglione A, Clapham DE, Wallace BA (2016) Molecular basis of ion permeability in a voltage-gated sodium channel. EMBO J 35:820-830. https://doi.org/10.15252/embj.201593285

Sula A, Booker J, Ng LC, Naylor CE, DeCaen PG, Wallace BA (2017) The complete structure of an activated open sodium channel. Nat Commun 8:14205. https://doi.org/10.1038/ncomms14205

Tikhonov DB, Zhorov BS (2017) Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants. J Gen Physiol 149:465-481. https://doi.org/10.1085/jgp.201611668

Nguyen PT, DeMarco KR, Vorobyov I, Clancy CE, Yarov-Yarovoy V (2019) Structural basis for antiarrhythmic drug interactions with the human cardiac sodium channel. Proc Natl Acad Sci U S A 116:2945-2954. https://doi.org/10.1073/pnas.1817446116

Buyan A, Sun D, Corry B (2018) Protonation state of inhibitors determines interaction sites within voltage-gated sodium channels. Proc Natl Acad Sci U S A 115:E3135-E3144. https://doi.org/10.1073/pnas.1714131115

Gamal El-Din TM, Lenaeus MJ, Zheng N, Catterall WA (2018) Fenestrations control resting-state block of a voltage-gated sodium channel. Proc Natl Acad Sci U S A 115:13111-13116. https://doi.org/10.1073/pnas.1814928115

Jiang D, Shi H, Tonggu L, Gamal El-Din TM, Lenaeus MJ, Zhao Y, Yoshioka C, Zheng N, Catterall WA (2020) Structure of the Cardiac Sodium Channel. Cell 180:122-134 e110. https://doi.org/10.1016/j.cell.2019.11.041

Silver K, Dong K, Zhorov BS (2017) Molecular Mechanism of Action and Selectivity of Sodium Ch annel Blocker Insecticides. Curr Med Chem 24:2912-2924. https://doi.org/10.2174/0929867323666161216143844

Zhang Y, Du Y, Jiang D, Behnke C, Nomura Y, Zhorov BS, Dong K (2016) The Receptor Site and Mechanism of Action of Sodium Channel Blocker Insecticides. J Biol Chem 291:20113-20124. https://doi.org/10.1074/jbc.M116.742056

Schewe M, Sun H, Mert U, Mackenzie A, Pike ACW, Schulz F, Constantin C, Vowinkel KS, Conrad LJ, Kiper AK, Gonzalez W, Musinszki M, Tegtmeier M, Pryde DC, Belabed H, Nazare M, de Groot BL, Decher N, Fakler B, Carpenter EP, Tucker SJ, Baukrowitz T (2019) A pharmacological master key mechanism that unlocks the selectivity filter gate in K(+) channels. Science 363:875-880. https://doi.org/10.1126/science.aav0569

Huang W, Liu M, Yan SF, Yan N (2017) Structure-based assessment of disease-related mutations in human voltage-gated sodium channels. Protein Cell. 8(6):401-438. https://doi.org/10.1007/s13238-017-0372-z

Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W, Karapetyan K, Katz K, Liu C, Maddipatla Z, Malheiro A, McDaniel K, Ovetsky M, Riley G, Zhou G, Holmes JB, Kattman BL, Maglott DR (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46:D1062-D1067. https://doi.org/10.1093/nar/gkx1153

Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A, Giustino A, Pierno S, De Luca A, Tricarico D, Desaphy JF, Conte D (2016) Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol 7:121. https://doi.org/10.3389/fphar.2016.00121

El-Sherif N, Boutjdir M (2015) Role of pharmacotherapy in cardiac ion channelopathies. Pharmacol Ther 155:132-142. https://doi.org/10.1016/j.pharmthera.2015.09.002

Antzelevitch C, Burashnikov A, Sicouri S, Belardinelli L (2011) Electrophysiologic basis for the antiarrhythmic actions of ranolazine. Heart Rhythm 8:1281-1290. https://doi.org/10.1016/j.hrthm.2011.03.045

Zhu W, Mazzanti A, Voelker TL, Hou P, Moreno JD, Angsutararux P, Naegle KM, Priori SG, Silva JR (2019) Predicting Patient Response to the Antiarrhythmic Mexiletine Based on Genetic Variation. Circ Res 124:539-552. https://doi.org/10.1161/CIRCRESAHA.118.314050

Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757-1768. https://doi.org/10.1021/ci3001277

Wang SY, Wang GK (2003) Voltage-gated sodium channels as primary targets of diverse lipid-soluble neurotoxins. Cell Signal 15:151-159. https://doi.org/10.1016/s0898-6568(02)00085-2

Tikhonov DB, Zhorov BS (2005) Sodium channel activators: model of binding inside the pore and a possible mechanism of action. FEBS Lett 579:4207-4212. https://doi.org/10.1016/j.febslet.2005.07.017

Wang SY, Tikhonov DB, Mitchell J, Zhorov BS, Wang GK (2007) Irreversible block of cardiac mutant Na+ channels by batrachotoxin. Channels (Austin) 1:179-188. https://doi.org/10.4161/chan.4437

Wang SY, Tikhonov DB, Zhorov BS, Mitchell J, Wang GK (2007) Serine-401 as a batrachotoxin- and local anesthetic-sensing residue in the human cardiac Na+ channel. Pflugers Arch 454:277-287. https://doi.org/10.1007/s00424-006-0202-2

Wang SY, Mitchell J, Tikhonov DB, Zhorov BS, Wang GK (2006) How batrachotoxin modifies the sodium channel permeation pathway: computer modeling and site-directed mutagenesis. Mol Pharmacol 69:788-795. https://doi.org/10.1124/mol.105.018200

Du Y, Garden DP, Wang L, Zhorov BS, Dong K (2011) Identification of new batrachotoxin-sensing residues in segment IIIS6 of the sodium channel. J Biol Chem 286:13151-13160. https://doi.org/10.1074/jbc.M110.208496

Finol-Urdaneta RK, McArthur JR, Goldschen-Ohm MP, Gaudet R, Tikhonov DB, Zhorov BS, French RJ (2019) Batrachotoxin acts as a stent to hold open homotetrameric prokaryotic voltage-gated sodium channels. J Gen Physiol 151:186-199. https://doi.org/10.1085/jgp.201812278

Wang GK, Wang SY (2003) Veratridine block of rat skeletal muscle Nav1.4 sodium channels in the inner vestibule. J Physiol 548:667-675. https://doi.org/10.1113/jphysiol.2002.035469

Dong K, Du Y, Rinkevich F, Nomura Y, Xu P, Wang L, Silver K, Zhorov BS (2014) Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem Mol Biol 50:1-17. https://doi.org/10.1016/j.ibmb.2014.03.012

O'Reilly AO, Khambay BP, Williamson MS, Field LM, Wallace BA, Davies TG (2006) Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochem J 396:255-263. https://doi.org/10.1042/BJ20051925

Du Y, Nomura Y, Satar G, Hu Z, Nauen R, He SY, Zhorov BS, Dong K (2013) Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel. Proc Natl Acad Sci U S A 110:11785-11790. https://doi.org/10.1073/pnas.1305118110

Du Y, Nomura Y, Zhorov BS, Dong K (2015) Rotational symmetry of two pyrethroid receptor sites in the mosquito sodium channel. Mol Pharmacol 88:273-280. https://doi.org/10.1124/mol.115.098707

Du Y, Nomura Y, Zhorov BS, Dong K (2016) Evidence for Dual Binding Sites for 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in Insect Sodium Channels. J Biol Chem 291:4638-4648. https://doi.org/10.1074/jbc.M115.678672

Hille B (1977) Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 69:497-515. https://doi.org/10.1085/jgp.69.4.497

Alpert LA, Fozzard HA, Hanck DA, Makielski JC (1989) Is there a second external lidocaine binding site on mammalian cardiac cells? Am J Physiol 257:H79-84. https://doi.org/10.1152/ajpheart.1989.257.1.H79

Qu Y, Rogers J, Tanada T, Scheuer T, Catterall WA (1995) Molecular determinants of drug access to the receptor site for antiarrhythmic drugs in the cardiac Na+ channel. Proc Natl Acad Sci U S A 92:11839-11843. https://doi.org/10.1073/pnas.92.25.11839

Bruhova I, Tikhonov DB, Zhorov BS (2008) Access and binding of local anesthetics in the closed sodium channel. Mol Pharmacol 74:1033-1045. https://doi.org/10.1124/mol.108.049759

Sait LG, Sula A, Ghovanloo MR, Hollingworth D, Ruben PC, Wallace BA (2020) Cannabidiol interactions with voltage-gated sodium channels. Elife 9. 9:e58593. https://doi.org/10.7554/eLife.58593

Hockerman GH, Peterson BZ, Johnson BD, Catterall WA (1997) Molecular determinants of drug binding and action on L-type calcium channels. Annu Rev Pharmacol Toxicol 37:361-396.

Godfraind T (2017) Discovery and Development of Calcium Channel Blockers. Front Pharmacol 8:286. https://doi.org/10.3389/fphar.2017.00286

Cosconati S, Marinelli L, Lavecchia A, Novellino E (2007) Characterizing the 1,4-dihydropyridines binding interactions in the L-type Ca2+ channel: model construction and docking calculations. J Med Chem 50:1504-1513. https://doi.org/10.1021/jm061245a

Cheng RC, Tikhonov DB, Zhorov BS (2009) Structural model for phenylalkylamine binding to L-type calcium channels. J Biol Chem 284:28332-28342. https://doi.org/10.1074/jbc.M109.027326

Lipkind GM, Fozzard HA (2003) Molecular modeling of interactions of dihydropyridines and phenylalkylamines with the inner pore of the L-type Ca2+ channel. Mol Pharmacol 63:499-511. https://doi.org/10.1124/mol.63.3.499

Tikhonov DB, Zhorov BS (2009) Structural Model for Dihydropyridine Binding to L-type Calcium Channels. Journal of Biological Chemistry 284:19006-19017. https://doi.org/10.1074/jbc.M109.011296

Tikhonov DB, Zhorov BS (2008) Molecular modeling of benzothiazepine binding in the L-type calcium channel. Journal of Biological Chemistry 283:17594-17604. https://doi.org/10.1074/jbc.M800141200

Li W, Shi G (2019) How CaV1.2-bound verapamil blocks Ca(2+) influx into cardiomyocyte: Atomic level views. Pharmacol Res 139:153-157. https://doi.org/10.1016/j.phrs.2018.11.017

Schramm M, Thomas G, Towart R, Franckowiak G (1983) Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature 303:535-537. https://doi.org/10.1038/303535a0

Gao S, Yan N (2020) Structural Basis of the Modulation of the Voltage-Gated Calcium Ion Channel Cav 1.1 by Dihydropyridine Compounds*. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.202011793

Tang L, Gamal El-Din TM, Swanson TM, Pryde DC, Scheuer T, Zheng N, Catterall WA (2016) Structural basis for inhibition of a voltage-gated Ca(2+) channel by Ca(2+) antagonist drugs. Nature 537:117-121. https://doi.org/10.1038/nature19102

Xu F, Xiong W, Huang Y, Shen J, Zhou D, Tang L (2019) Structural basis for efonidipine block of a voltage-gated Ca(2+) channel. Biochem Biophys Res Commun 513:631-634. https://doi.org/10.1016/j.bbrc.2019.03.176

Tang L, Gamal El-Din TM, Lenaeus MJ, Zheng N, Catterall WA (2019) Structural Basis for Diltiazem Block of a Voltage-Gated Ca(2+) Channel. Mol Pharmacol 96:485-492. https://doi.org/10.1124/mol.119.117531

Zhao Y, Huang G, Wu J, Wu Q, Gao S, Yan Z, Lei J, Yan N (2019) Molecular Basis for Ligand Modulation of a Mammalian Voltage-Gated Ca(2+) Channel. Cell 177:1495-1506 e1412. https://doi.org/10.1016/j.cell.2019.04.043

Fehrentz T, Huber FME, Hartrampf N, Bruegmann T, Frank JA, Fine NHF, Malan D, Danzl JG, Tikhonov DB, Sumser M, Sasse P, Hodson DJ, Zhorov BS, Klocker N, Trauner D (2018) Optical control of L-type Ca(2+) channels using a diltiazem photoswitch. Nat Chem Biol 14:764-767. https://doi.org/10.1038/s41589-018-0090-8

Tikhonov DB, Lin L, Yang DSC, Yuchi Z, Zhorov BS (2020) Phenylalkylamines in calcium channels: computational analysis of experimental structures. J Comput Aided Mol Des 34:1157-1169. https://doi.org/10.1007/s10822-020-00330-0

Zhao Y, Huang G, Wu Q, Wu K, Li R, Lei J, Pan X, Yan N (2019) Cryo-EM structures of apo and antagonist-bound human Cav3.1. Nature 576:492-497. https://doi.org/10.1038/s41586-019-1801-3