РОЛЬ NMDA-РЕЦЕПТОРОВ В ЭПИЛЕПТОГЕНЕЗЕ
PDF

Ключевые слова

NMDA-рецептор
антагонист NMDA-рецепторов
субъединицы NMDA-рецепторов
эпилептогенез
модели эпилепсии

Как цитировать

Ергина, Ю. Л., Коваленко, А. А., & Зайцев , А. В. (2020). РОЛЬ NMDA-РЕЦЕПТОРОВ В ЭПИЛЕПТОГЕНЕЗЕ. Российский физиологический журнал им. И. М. Сеченова, 106(12), 1455–1478. https://doi.org/10.31857/S0869813920120031

Аннотация

Эпилепсия характеризуется повторяющимися, возникающими внезапно эпилептическими приступами. При эпилепсии почти в 30% случаев наблюдается фармакорезистентность, в результате чего болезнь может прогрессировать и приводить к ухудшению когнитивных способностей и возникновению сопутствующих психоневрологических заболеваний. Раннее терапевтическое вмешательство способно снизить тяжесть протекания заболевания, а подавление эпилептогенеза считается наиболее перспективной стратегией предотвращения развития эпилепсии после провоцирующих это заболевание событий. NMDA-рецепторы рассматриваются как одна из перспективных мишеней для подавления эпилептогенеза. Нарушение функций NMDA-рецепторов фиксируется на всех этапах развития эпилепсии. Изменения в их экспрессии наблюдаются уже в первые часы после острых судорог, а сами NMDA-рецепторы активно вовлечены в генерацию эпилептической активности. Кроме того, антагонисты NMDA-рецепторов эффективно подавляют эпилептиформную активность в различных моделях судорожных состояний и эпилептического статуса. В этом обзоре мы рассматриваем имеющиеся данные о том, какую роль NMDA-рецепторы играют в развитии эпилепсии, как меняется их экспрессия в разные периоды эпилептогенеза, а также обсуждаем перспективы применения антагонистов и модуляторов NMDA-рецепторов для предотвращения эпилептогенеза.

https://doi.org/10.31857/S0869813920120031
PDF

Литература

Berg A.T., Berkovic S.F., Brodie M.J., Buchhalter J., Cross J.H., van Emde Boas W., Engel J., French J., Glauser T.A., Mathern G.W., Moshé S.L., Nordli D., Plouin P., Scheffer I.E. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia. 51(4): 676–685. 2010.

Sharm A.K., Reams R.Y., Jordan W.H., Miller M.A., Thacker H.L., Snyder P.W. Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions. Toxicol. Pathol. 35(7): 984–999. 2007.

Herman S.T. Epilepsy after brain insult: targeting epileptogenesis. Neurology. 59(9) Suppl 5: S21-S26. 2002.

Anderson G.D., Temkin N.R., Chandler W.L.,Winn H.R. Effect of valproate on hemostatic function in patients with traumatic brain injury. Epilepsy Res. 57(2–3): 111–119. 2003.

Chang B.S., Lowenstein D.H. Epilepsy. N. Engl. J. Med. 349(13): 1257–1266. 2003.

Altındağ E., Erdoğan F.F., Tezer İ., Özkara Ç. Management and Early Treatment of Status Epilepticus in Adults and Children. Turkish J. Neurol. 23(4): 155–161. 2017.

Betjemann J.P., Lowenstein D.H. Status epilepticus in adults. Lancet Neurol. 14(6): 615–624. 2015.

Bayer T.A., Wiestler O.D., Wolf H.K. Hippocampal loss of N-methyl-D-aspartate receptor subunit 1 mRNA in chronic temporal lobe epilepsy. Acta Neuropathol. 89(5): 446–450. 1995.

Mathern G.W., Leite J.P., Babb T.L., Pretorius J.K., Kuhlman P.A., Mendoza D., Fried I., Sakamoto A.C., Assirati J.A., Adelson P.D., Peacock W.J. Aberrant hippocampal mossy fiber sprouting correlates with greater NMDAR2 receptor staining. Neuroreport. 7(5): 1029–1035. 1996.

Punnakkal P., Dominic D. NMDA Receptor GluN2 Subtypes Control Epileptiform Events in the Hippocampus. Neuromolec. Med. 20(1): 90–96. 2018.

Kubová H., Mares P. Effects of MK-801 (dizocilpine) and ketamine on strychnine-induced convulsions in rats: comparison with benzodiazepines and standard anticonvulsants. Physiol. Res. 43(5): 313–320. 1994.

Laube B., Kuhse J., Betz H. Evidence for a tetrameric structure of recombinant NMDA receptors. J. Neurosci. 18(8): 2954–2961. 1998.

Mano I., Teichberg V.I. A tetrameric subunit stoichiometry for a glutamate receptor-channel complex. Neuroreport. 9(2): 327–331. 1998.

Sobolevsky A.I., Rosconi M.P., Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature. 462(7274): 745–756. 2009.

Ayalon G., Segev E., Elgavish S., Stern-Bach Y. Two regions in the N-terminal domain of ionotropic glutamate receptor 3 form the subunit oligomerization interfaces that control subtype-specific receptor assembly. J. Biol. Chem. 280(15): 15053–15060. 2005.

Hansen K.B., Yi F., Perszyk R.E., Furukawa H., Wollmuth L.P., Gibb A.J., Traynelis S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 150(8): 1081–1105. 2018.

Ulbrich M.H., Isacoff E.Y. Subunit counting in membrane-bound proteins. Nat. Methods. 4(4): 319–321. 2007.

Ulbrich M.H., Isacoff E.Y. Rules of engagement for NMDA receptor subunits. Proc. Natl. Acad. Sci. USA. 105(37): 14163–14168. 2008.

Forrest D., Yuzaki M., Soares H.D., Ng L., Luk D.C., Sheng M., Stewart C.L., Morgan J.I., Connor J.A., Curran T. Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron. 13(2): 325–338. 1994.

Traynelis S.F., Wollmuth L.P., McBain C.J., Menniti F.S., Vance K.M., Ogden K.K., Hansen K.B., Yuan H., Myers S.J., Dingledine R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 62(3): 405-496. 2010.

Regan M.C., Romero-Hernandez A., Furukawa H. A structural biology perspective on NMDA receptor pharmacology and function. Current Opin. Struct. Biol. 33: 68-75. 2015.

Punnakkal P., Jendritza P., Köhr G. Influence of the intracellular GluN2 C-terminal domain on NMDA receptor function. Neuropharmacology. 62(5-6): 1985-1992. 2012.

Maki B.A., Aman T.K., Amico-Ruvio S.A., Kussius C.L., Popescu G.K. C-terminal domains of N-methyl-D-aspartic acid receptor modulate unitary channel conductance and gating. J. Biol. Chem. 287(43): 36071-36080. 2012.

Sheng M., Cummings J., Roldan L.A., Jan Y.N., Jan L.Y. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature. 368(6467): 144–147. 1994.

Dunah A.W., Luo J., Wang Y.H., Yasuda R.P., Wolfe B.B. Subunit composition of N-methyl-D-aspartate receptors in the central nervous system that contain the NR2D subunit. Mol. Pharmacol. 53(3): 429–437. 1998.

Dunah A.W., Standaert D.G. Subcellular segregation of distinct heteromeric NMDA glutamate receptors in the striatum. J. Neurochem. 85(4): 935–943. 2003.

Rauner C., Köhr G. Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J. Biol. Chem. 286(9): 7558–7566. 2011.

Tovar K.R., McGinley M.J., Westbrook G.L. Triheteromeric NMDA receptors at hippocampal synapses. J. Neurosci. 33(21): 9150–9160. 2013.

Johnson J.W., Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 325(6104): 529-531. 1987.

Furukawa H., Singh S.K., Mancusso R., Gouaux E. Subunit arrangement and function in NMDA receptors. Nature. 438(7065): 185–192. 2005.

Yao Y., Harrison C.B., Freddolino P.L., Schulten K., Mayer M.L. Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors. EMBO J. 27(15): 2158–2170. 2008.

Pullan L.M., Olney J.W., Price M.T., Compton R.P., Hood W.F., Michel J., Monahan J.B. Excitatory amino acid receptor potency and subclass specificity of sulfur-containing amino acids. J. Neurochem. 49(4): 1301–1307. 1987.

McBain C.J., Kleckner N.W., Wyrick S., Dingledine R. Structural requirements for activation of the glycine coagonist site of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Mol. Pharmacol. 36(4): 556–565. 1989.

Panatier A., Theodosis D.T., Mothet J., Touquet B., Pollegioni L., Poulain D.A., Oliet S.H.R. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell. 125(4): 775–784. 2006.

Wolosker H., Blackshaw S., Snyder S.H. Serine racemase: A glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc. Natl. Acad. Sci. USA. 96(23): 13409–13414. 1999.

Balu D.T., Takagi S., Puhl M.D., Benneyworth M.A., Coyle J.T. D-serine and serine racemase are localized to neurons in the adult mouse and human forebrain. Cell. Mol. Neurobiol. 34(3): 419-435. 2014.

Miya K., Inoue R., Takata Y., Abe M., Natsume R., Sakimura K., Hongou K., Miyawaki T., Mori H. Serine racemase is predominantly localized in neurons in mouse brain. J. Compar. Neurol. 510(6): 641–654. 2008.

Benveniste H. Brain microdialysis. J. Neurochem. 52(6): 1667–1679. 1989.

Zhang X., Nadler J.V. Postsynaptic response to stimulation of the Schaffer collaterals with properties similar to those of synaptosomal aspartate release. Brain Res. 1295: 13–20. 2009.

Do K.Q., Herrling P.L., Streit P., Turski W.A., Cuenod M. In vitro release and electrophysiological effects in situ of homocysteic acid, an endogenous N-methyl-(D)-aspartic acid agonist, in the mammalian striatum. J. Neurosci. 6(8): 2226–2234. 1986.

Yuzaki M., Connor J.A. Characterization of L-homocysteate-induced currents in Purkinje cells from wild-type and NMDA receptor knockout mice. J. Neurophysiol. 82(5): 2820–2826. 1999.

Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., Seeburg P.H. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 256(5060): 1217–1221. 1992.

Monyer H., Burnashev N., Laurie D.J., Sakmann B., Seeburg P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 12(3): 529–540. 1994.

Akazawa C., Shigemoto R., Bessho Y., Nakanishi S., Mizuno N. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J. Compar. Neurol. 347(1): 150–160. 1994.

Zhong J., Carrozza D.P., Williams K., Pritchett D.B., Molinoff P.B. Expression of mRNAs encoding subunits of the NMDA receptor in developing rat brain. J. Neurochem. 64(2): 531–539. 1995.

Erreger K., Geballe M.T., Kristensen A., Chen P.E., Hansen K.B., Lee C.J., Yuan H., Le P., Lyuboslavsky P.N., Micale N., Jørgensen L., Clausen R.P., Wyllie D.J.A., Snyder J.P., Traynelis S.F. Subunit-specific agonist activity at NR2A-, NR2B-, NR2C-, and NR2D-containing N-methyl-D-aspartate glutamate receptors. Mol. Pharmacol. 72(4): 907–920. 2007.

Chen P.E., Geballe M.T., Katz E., Erreger K., Livesey M.R., O'Toole K.K., Le P., Lee C.J., Snyder J.P., Traynelis S.F., Wyllie D.J.A. Modulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. J. Physiol. 586(1): 227–245. 2008.

Hansen K.B., Bräuner-Osborne H., Egebjerg J. Pharmacological characterization of ligands at recombinant NMDA receptor subtypes by electrophysiological recordings and intracellular calcium measurements. Comb. Chem. High Throughput Screen. 11(4): 304–315. 2008.

Lester R.A.J., Clements J.D., Westbrook G.L., Jahr C.E. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature. 346(6284): 565–567. 1990.

Vicini S., Wang J.F., Li J.H., Zhu W.J., Wang Y.H., Luo J.H., Wolfe B.B., Grayson D.R. Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J. Neurophysiol. 79(2): 555–566. 1998.

Erreger K., Chen P.E., Wyllie D.J.A., Traynelis S.F. Glutamate receptor gating. Crit. Rev. Neurobiol. 16(3): 187–224. 2004.

Glasgow N.G., Siegler- Retchless B., Johnson J.W. Molecular bases of NMDA receptor subtype-dependent properties. J. Physiol. 593(1): 83–95. 2015.

Yuan H., Geballe M.T., Hansen K.B, Traynelis S.F. Structure and Function of the NMDA Receptor. In: Structural And Functional Organization of the Synapse. Eds. J. W. Hell, M.D. Ehlers. Boston. MA. Springer. 289-316. 2008.

Burnashev N., Zhou Z., Neher E., Sakmann B. Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J. Physiol. 485(2): 403–418. Jun. 1995.

Jatzke C., Watanabe J., Wollmuth L.P. Voltage and concentration dependence of Ca(2+) permeability in recombinant glutamate receptor subtypes. J. Physiol. 538(1): 25–39. 2002.

Siegler Retchless B., Gao W., Johnson J.W. A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction. Nat. Neurosci. 15(3): 406–413. S1-2. 2012.

Kuner T., Schoepfer R. Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels. J. Neurosci. 16(11): 3549–3558. 1996.

Nevian T., Sakmann B. Single spine Ca2+ signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex. J. Neurosci. 24(7): 1689–1699. 2004.

Nevian T., Sakmann B. Spine Ca2+ signaling in spike-timing-dependent plasticity. J. Neurosci. 26(43): 11001–11013. 2006.

Carter B.C., Jahr C.E. Postsynaptic, not presynaptic NMDA receptors are required for spike-timing-dependent LTD induction. Nat. Neurosci. 19(9): 1218–1224. 2016.

Tomek S.E., Lacrosse A.L., Nemirovsky N.E., Olivev M.F. NMDA Receptor Modulators in the Treatment of Drug Addiction. Pharmaceuticals (Basel). 6(2): 251–268. 2013.

Croucher M.J., Collins J.F., Meldrum B.S. Anticonvulsant action of excitatory amino acid antagonists. Science. 216(4548): 899–901. 1982.

Patel S., Chapman A.G., Graham J.L., Meldrum B.S., Frey P. Anticonvulsant activity of the NMDA antagonists, D(-)4-(3-phosphonopropyl)-piperazine-2-carboxylic acid (D-CPP) and D(-)(E)-4-(3-phosphonoprop-2-enyl)-piperazine-2-carboxylic acid (D-CPPene) in a rodent and a primate model of reflex epilepsy. Epilepsy Res. 7(1): 3–10. 1990.

Burnell E.S., Irvine M., Fang G., Sapkota K., Jane D.E., Monaghan D.T. Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action. J. Med. Chem. 62(1): 3–23. 2019.

Ogden K.K., Traynelis S.F. New advances in NMDA receptor pharmacology. Trends Pharmacol. Sci. 32(12): 726–733. 2011.

Karakas E., Simorowski N., Furukawa H. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature. 475(7355): 249–253. 2011.

Karakas E., Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science. 344(6187): 992–997. 2014.

Stroebel D., Buhl D.L., Knafels J.D., Chanda P.K., Green M., Sciabola S., Mony L., Paoletti P., Pandit J. A Novel Binding Mode Reveals Two Distinct Classes of NMDA Receptor GluN2B-selective Antagonists. Mol. Pharmacol. 89(5): 541–551. 2016.

Burger P.B., Yuan H., Karakas E., Geballe M., Furukawa H., Liotta D.C., Snyder J.P., Traynelis S.F. Mapping the binding of GluN2B-selective N-methyl-D-aspartate receptor negative allosteric modulators. Mol. Pharmacol. 82(2): 344–359. 2012.

Romero-Hernandez A., Simorowski N., Karakas E., Furukawa H. Molecular Basis for Subtype Specificity and High-Affinity Zinc Inhibition in the GluN1-GluN2A NMDA Receptor Amino-Terminal Domain. Neuron. 92(6): 1324–1336. 2016.

Parsons C.G., Quack G., Bresink I., Baran L., Przegalinski E., Kostowski W., Krzascik P., Hartmann S., Danysz W. Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology. 34(10): 1239–1258. 1995.

Benveniste M., Mayer M.L. Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine. J. Physiol. 483(2): 367–384. 1995.

Bolshakov K.V., Gmiro V.E., Tikhonov D.B., Magazanik L.G. Determinants of trapping block of N-methyl-d-aspartate receptor channels. J. Neurochem. 87(1): 56–65. 2003.

Barygin O.I., Gmiro V.E., Kim K.K., Magazanik L.G., Tikhonov D.B. Blockade of NMDA receptor channels by 9-aminoacridine and its derivatives. Neurosci. Lett. 451(1): 29–33. 2009.

Blanpied T.A., Boeckman F.A., Aizenman E., Johnson J.W. Trapping channel block of NMDA-activated responses by amantadine and memantine. J. Neurophysiol. 77(1): 309–323. 1997.

Kotermanski S.E., Wood J.T., Johnson J.W. Memantine binding to a superficial site on NMDA receptors contributes to partial trapping. J. Physiol. 587(19): 4589–4604. 2009.

Johnson J.W., Glasgow N.G., Povysheva N.V. Recent insights into the mode of action of memantine and ketamine. Curr. Opin. Pharmacol. 20: 54–63. 2015.

Sobolevsky A.I., Yelshansky M.V. The trapping block of NMDA receptor channels in acutely isolated rat hippocampal neurones. J. Physiol. 526(3): 493–506. 2000.

Poulsen M.H., Andersen J., Christensen R., Hansen K.B., Traynelis S.F., Strømgaard K., Kristensen A.S. Binding of ArgTX-636 in the NMDA receptor ion channel. J. Mol. Biol. 427 (1): 176–189. 2015.

Takahashi H., Xia P., Cui J., Talantova M., Bodhinathan K., Li W., Saleem S., Holland E.A., Tong G., Piña-Crespo J., Zhang D., Nakanishi N., Larrick J.W., McKercher S.R., Nakamura T., Wang Y., Lipton S.A. Pharmacologically targeted NMDA receptor antagonism by NitroMemantine for cerebrovascular disease. Sci. Rep. 5: 14781. 2015.

Hamilton N.B., Attwell D. Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 11(4): 227–238. 2010.

Duan S., Anderson C.M., Keung E.C., Chen Y., Chen Y., Swanson R.A. P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J. Neurosci. 23(4): 1320–1328. 2003.

Malarkey E.B., Parpura V. Mechanisms of glutamate release from astrocytes. Neurochem. Int. 52(1–2): 142–154. 2008.

Szatkowski M., Barbour B., Attwell D. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature. 348(6300): 443–446. 1990.

Nicholls D., Attwell D. The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11(11): 462–468. 1990.

Hardingham G.E., Bading H. Coupling of extrasynaptic NMDA receptors to a CREB shut-off pathway is developmentally regulated. Biochim. Biophys. Acta. 1600(1–2): 148–153. 2002.

Tu W., Xu X., Peng L., Zhong X., Zhang W., Soundarapandian M.M., Balel C., Wang M., Jia N., Zhang W., Lew F., Chan S.L., Chen Y., Lu Y. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell. 140(2): 222–234. 2010.

Wroge C.M., Hogins J., Eisenman L., Mennerick S. Synaptic NMDA receptors mediate hypoxic excitotoxic death. J. Neurosci. 32(19): 6732–6742. 2012.

Sattler R., Xiong Z., Lu W.Y., Hafner M., MacDonald J.F., Tymianski M. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science. 284(5421): 1845–1848. 1999.

Tajima N., Karakas E., Grant T., Simorowski N., Diaz-Avalos R., Grigorieff N., Furukawa H. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature. 534(7605): 63–68. 2016.

Ahmadirad N., Shojaei A., Javan M., Pourgholami M.H., Mirnajafi-Zadeh J. Effect of minocycline on pentylenetetrazol-induced chemical kindled seizures in mice. Neurol. Sci. 35(4): 571–576. 2014.

Davoudi M., Shojaei A., Palizvan M.R., Javan M., Mirnajafi-Zadeh J. Comparison between standard protocol and a novel window protocol for induction of pentylenetetrazol kindled seizures in the rat. Epilepsy Res. 106(1–2): 54–63. 2013.

Lopes M.W., Soares F.M.S., de Mello N., Nunes J.C., Cajado A.G., de Brito D., de Cordova F.M., da Cunha R.M.S., Walz R., Leal R.B. Time-dependent modulation of AMPA receptor phosphorylation and mRNA expression of NMDA receptors and glial glutamate transporters in the rat hippocampus and cerebral cortex in a pilocarpine model of epilepsy. Exp. Brain Res. 226(2): 153–163. 2013.

Zubareva O.E., Kovalenko A.A., Karyakin V.B., Kalemenev S.V., Lavrent’eva V.V., Magazanik L.G., Zaitsev A.V. Changes in the Expression of Genes of the Glutamate Transporter and Subunits of the NMDA and AMPA Receptors in the Rat Amygdala in the Lithium–Pilocarpine Model of Epilepsy. Neurochem. J. 12(3): 222–227. 2018.

di Maio R., Mastroberardino P.G., Hu X., Montero L.M., Greenamyre J.T. Pilocapine alters NMDA receptor expression and function in hippocampal neurons: NADPH oxidase and ERK1/2 mechanisms. Neurobiol. Dis. 42(3): 482–95. 2011.

di Maio R., Mastroberardino P.G., Hu X., Montero L.M., Greenamyre J.T. Thiol oxidation and altered NR2B/NMDA receptor functions in in vitro and in vivo pilocarpine models: implications for epileptogenesis. Neurobiol. Dis. 49: 87–98. 2013.

Alsharafi W.A., Xiao B., Li J. MicroRNA-139-5p negatively regulates NR2A-containing NMDA receptor in the rat pilocarpine model and patients with temporal lobe epilepsy. Epilepsia. 57(11): 1931–1940. 2016.

Müller L., Tokay T., Porath K., Köhling R., Kirschstein T. Enhanced NMDA receptor-dependent LTP in the epileptic CA1 area via upregulation of NR2B. Neurobiol. Dis. 54: 183–193. 2013.

Postnikova T.Y., Zubareva O.E., Kovalenko A.A., Kim K.K., Magazanik L.G., Zaitsev A.V. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors. Biochemistry. 82(3): 282-290. 2017.

Alinaghipour A., Mazoochi T., Ardjmand A. Low-dose ethanol ameliorates amnesia induced by a brief seizure model: the role of NMDA signaling. Neurol. Res. 41(7): 624–632. 2019.

Wang W.-P., Lou Y., Li Z.-Z., Li P., Duan R.-S. Change of hippocampal NMDA receptor and emotional behavior and spatial learning and memory in status epilepticus rat model. Chinese J. Appl. Physiol. 23(1): 51–55. 2007.

Zhu X., Dong J., Shen K., Bai Y., Zhang Y., Xuan L., Chao J., Yao H. NMDA receptor NR2B subunits contribute to PTZ-kindling-induced hippocampal astrocytosis and oxidative stress. Brain Res. Bull. 114: 70–78. 2015.

Lasoń W., Turchan J., Przewłocka B., Łabuz D., Machelska H., Przewłocki R. Effects of pentylenetetrazol kindling on glutamate receptor genes expression in the rat hippocampus. Brain Res. 785(2): 355–358. 1998.

Gori M.B., Girardi E. 3-Mercaptopropionic acid-induced repetitive seizures increase glun2a expression in rat hippocampus: A potential neuroprotective role of cyclopentyladenosine. Cell. Mol. Neurobiol. 33(6): 803–813. 2013.

Girardi E., Auzmendi J., Charó N., Gori M.B., Castro M. 3-Mercaptopropionic Acid-Induced Seizures Decrease NR2B Expression in Purkinje Cells: Cyclopentyladenosine Effect. Cell. Mol. Neurobiol. 30(7): 985–990. 2010.

Auzmendi J., González N., Girardi E. The NMDAR subunit NR2B expression is modified in hippocampus after repetitive seizures. Neurochem. Res. 34(5): 819–826. 2009.

Zhu L.-J., Chen Z., Zhang L.-S., Xu S.-J., Xu A.-J., Luo J.-H. Spatiotemporal changes of the N-methyl-d-aspartate receptor subunit levels in rats with pentylenetetrazole-induced seizures. Neurosci. Lett. 356(1): 53–56. 2004.

Peng W.-F., Ding J., Li X., Fan F., Zhang Q.-Q.,Wang X. N-methyl-d-aspartate receptor NR2B subunit involved in depression-like behaviours in lithium chloride-pilocarpine chronic rat epilepsy model. Epilepsy Res. 119: 77–85. 2016.

Lasón W., Turchan J., Przewłocki R., Machelska H., Labuz D., Przewłocka B. Effects of pilocarpine and kainate-induced seizures on N-methyl-D-aspartate receptor gene expression in the rat hippocampus. Neuroscience. 78(4): 997–1004. 1997.

Zhou C., Sun H., Klein P.M., Jensen F.E. Neonatal seizures alter NMDA glutamate receptor GluN2A and 3A subunit expression and function in hippocampal CA1 neurons. Front. Cell. Neurosci. 9: 362. 2015.

Curia G., Longo D., Biagini G., Jones R.S.G., Avoli M. The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods. 172(2): 143–157. 2008.

Lévesque M., Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci. Biobehav. Rev. 37(10): 2887–2899. 2013.

Dalby N.O., Mody I. The process of epileptogenesis: A pathophysiological approach. Current Opin. Neurol. 14(2): 187–192. 2001.

Pitkänen A., Sutula T.P. Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol. 1(3): 173–181. 2002.

Zubareva O.E., Kovalenko A.A., Kalemenev S.V., Schwarz A.P., Karyakin V.B., Zaitsev A. V. Alterations in mRNA expression of glutamate receptor subunits and excitatory amino acid transporters following pilocarpine-induced seizures in rats. Neurosci. Lett. 686: 94–100. 2018.

Ehlers M.D., Tingley W.G., Huganir R.L. Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science. 269(5231): 1734–1737. 1995.

Tingley W.G., Ehlers M.D., Kameyama K., Doherty C., Ptak J.B., Riley C.T., Huganir R.L. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J. Biol. Chem. 272(8): 5157–5166. 1997.

Crump F.T., Dillman K.S.,Craig A.M. cAMP-dependent protein kinase mediates activity-regulated synaptic targeting of NMDA receptors. J. Neurosci. 21(14): 5079–5088. 2001.

Fong D.K., Rao A., Crump F.T., Craig A.M. Rapid synaptic remodeling by protein kinase C: Reciprocal translocation of NMDA receptors and calcium/calmodulin-dependent kinase II. J. Neurosci. 22(6): 2153–2164. 2002.

Ehlers M.D., Zhang S., Bernhardt J.P., Huganir R.L. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell. 84(5): 745–755. 1996.

Hisatsune C., Umemori H., Inoue T., Michikawa T., Kohda K., Mikoshiba K., Yamamoto T. Phosphorylation-dependent regulation of N-methyl-D-aspartate receptors by calmodulin. J. Biol. Chem. 272(33): 20805–20810. 1997.

Ryu H.J., Kim J.E., Yeo S.I., Kim D.S., Kwon O.S., Choi S.Y. Potential roles of D-serine and serine racemase in experimental temporal lobe epilepsy. J. Neurosci. Res. 88(11): 2469–2482. 2010.

Naylor D.E., Liu H., Niquet J., Wasterlain C.G. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol. Dis. 54: 225–238. 2013.

Ouardouz M., Lema P., Awad P.N., di Cristo G., Carmant L. N-methyl-d-aspartate, hyperpolarization-activated cation current (I h) and -aminobutyric acid conductances govern the risk of epileptogenesis following febrile seizures in rat hippocampus. Eur. J. Neurosci. 31(7): 1252–1260. 2010.

Chen Q., He S., Hu X.L., Yu J., Zhou Y., Zheng J., Zhang S., Zhang C., Duan W.H., Xiong Z.Q. Differential Roles of NR2A- and NR2B-Containing NMDA Receptors in Activity-Dependent Brain-Derived Neurotrophic Factor Gene Regulation and Limbic Epileptogenesis. J. Neurosci. 27(3): 542–552. 2007.

Eyo U.B., Bispo A., Liu J., Sabu S., Wu R., Dibona V.L., Zheng J., Murugan M., Zhang H., Tang Y., Wu L.J. The GluN2A Subunit Regulates Neuronal NMDA receptor-Induced Microglia-Neuron Physical Interactions. Sci. Rep. 8(1): 828. 2018.

Wu Y., Chen C., Yang Q., Jiao M., Qiu S. Endocytosis of GluN2B-containing NMDA receptor mediates NMDA-induced excitotoxicity. Mol. Pain. 13: 1744806917701921. 2017.

Bertram E.H., Lothman E.W. NMDA receptor antagonists and limbic status epilepticus: a comparison with standard anticonvulsants. Epilepsy Res. 5(3): 177–184. 1990.

Rogawski M.A. The NMDA receptors. NMDA antagonists and epilepsy therapy. Drugs. 44(3): 279–292. 1992.

Farber N.B. The NMDA receptor hypofunction model of psychosis. Ann. N. Y. Acad. Sci. 1003: 119–130. 2003.

Muir K.W., Lees K.R. Clinical experience with excitatory amino acid antagonist drugs. Stroke. 26(3): 503–513. 1995.

Gouzoulis-Mayfrank E., Heekeren K., Neukirch A., Stoll M., Stock C., Obradovic M., Kovar K.A. Psychological effects of (S)-ketamine and N,N-dimethyltryptamine (DMT): a double-blind, cross-over study in healthy volunteers. Pharmacopsychiatry. 38(6): 301–311. 2005.

Zeiler F.A. Early Use of the NMDA Receptor Antagonist Ketamine in Refractory and Superrefractory Status Epilepticus. Crit. Care Res. Pract. 2015: 831260. 2015.

Ghasemi M., Shafaroodi H., Nazarbeiki S., Meskar H., Heydarpour P., Ghasemi A., Talab S.S., Ziai P., Bahremand A., Dehpour A.R. Voltage-dependent calcium channel and NMDA receptor antagonists augment anticonvulsant effects of lithium chloride on pentylenetetrazole-induced clonic seizures in mice. Epilepsy Behav. 18(3): 171–178. 2010.

Lukomskaya N.Y., Rukoyatkina N.I., Gorbunova L.V., Magazanik L.G., Gmiro V.E. Studies of the roles of NMDA and AMPA glutamate receptors in the mechanism of corasole convulsions in mice. Neurosci. Behav. Physiol. 34(8): 783–789. 2004.

Vermoesen K., Smolders I., Massie A., Michotte Y., Clinckers R. The control of kainic acid-induced status epilepticus. Epilepsy Res. 90(1–2): 164–166. 2010.

Dorandeu F., Carpentier P., Baubichon D., Four E., Bernabé D., Burckhart M.F., Lallement G. Efficacy of the ketamine-atropine combination in the delayed treatment of soman-induced status epilepticus. Brain Res. 1051(1–2): 164–175. 2005.

Zellinger C., Salvamoser J.D., Soerensen J., van Vliet E.A., Aronica E., Gorter J., Potschka H. Pre-treatment with the NMDA receptor glycine-binding site antagonist L-701,324 improves pharmacosensitivity in a mouse kindling model. Epilepsy Res. 108(4): 634–643. 2014.

Loss C.M., da Rosa N.S., Mestriner R.G., Xavier L.L.,Oliveira D.L. Blockade of GluN2B-containing NMDA receptors reduces short-term brain damage induced by early-life status epilepticus. Neurotoxicology. 71: 138–149. 2019.

Clasadonte J., Dong J., Hines D.J., Haydon P.G. Astrocyte control of synaptic NMDA receptors contributes to the progressive development of temporal lobe epilepsy. Proc. Natl. Acad. Sci. USA. 110(43): 17540–17545. 2013.

Yu W., Calos M., Pilitsis J., Shin D.S.H. Deconstructing the neural and ionic involvement of seizure-like events in the striatal network. Neurobiol. Dis. 52: 128–136. 2013.

Hanna S., Harrison M., Macintyre I., Fraser R. The syndrome of magnesium deficiency in man. Lancet. 276(7143): 172–176. 1960.

Buck D.R., Mahoney A.W., Hendricks D.G. Effect of magnesium deficiency on nonspecific excitability level (NEL) and audiogenic seizure susceptibility. Pharmacol. Biochem. Behav. 5(5): 529–534. 1976.

Randall R.E.J., Rossmeisl E.C., Bleifer K.H. Magnesium depletion in man. Ann. Intern. Med. 50(2): 257–287. 1959.

Govil M.K., Mangal B.D., Alam S.M., Mahendru R.K., Srivastava D.K., Mudgal J.C. Serum and cerebrospinal fluid calcium and magnesium levels in cases of idiopathic grand mal epilepsy and induced convulsions. J. Assoc. Physic. India. 29(9): 695–699. 1981.

Sinert R., Zehtabchi S., Desai S., Peacock P., Altura B.T., Altura B.M. Serum ionized magnesium and calcium levels in adult patients with seizures. Scand. J. Clin. Lab. Invest. 67(3): 317–326. 2007.

Mikati M.A., Injibar H., Kurdi R.M., El H.J., Abou R.S., Lteif L., Abdul J.M., Francis E., Geha G., Farhat F. Effects of magnesium sulfate in kainic acid-induced status epilepticus. J. Med. Liban. 54(4): 200–204. 2006.

Ghasemi A., Saberi M., Ghasemi M., Shafaroodi H., Moezi L., Bahremand A., Montaser-Kouhsari L., Ziai P., Dehpour A.R. Administration of lithium and magnesium chloride inhibited tolerance to the anticonvulsant effect of morphine on pentylenetetrazole-induced seizures in mice. Epilepsy Behav. 19(4): 568–574. 2010.

Bac P., Herrenknecht C., Binet P., Durlach J. Audiogenic seizures in magnesium-deficient mice: effects of magnesium pyrrolidone-2-carboxylate, magnesium acetyltaurinate. magnesium chloride and vitamin B-6. Magnes. Res. 6(1): 11–19. 1993.

Safar M.M., Abdallah D.M., Arafa N.M., Abdel-Aziz M.T. Magnesium supplementation enhances the anticonvulsant potential of valproate in pentylenetetrazol-treated rats. Brain Res. 1334: 58–64. 2010.

Cotton D.B., Hallak M., Janusz C., Irtenkauf S.M., Berman R.F. Central anticonvulsant effects of magnesium sulfate on N-methyl-D-aspartate-induced seizures. Am. J. Obstet. Gynecol. 168(3): 974–978. 1993.

Bennet L., Galinsky R., Draghi V., Lear C.A., Davidson J.O., Unsworth C.P., Gunn A.J. Time and sex dependent effects of magnesium sulphate on post-asphyxial seizures in preterm fetal sheep. J. Physiol. 596(23): 6079–6092. 2018.

Lipton S.A. Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx. 1(1): 101–110. 2004.

Bialer M., Johannessen S.I., Kupferberg H.J., Levy R.H., Loiseau P., Perucca E. Progress report on new antiepileptic drugs: a summary of the fourth Eilat conference (EILAT IV). Epilepsy Res. 34(1): 1–41. 1999.

Sun L., Lin S.S. The anticonvulsant SGB-017 (ADCI) blocks voltage-gated sodium channels in rat and human neurons: comparison with carbamazepine. Epilepsia. 41(3): 263–270. 2000.

Rogawski M.A., Yamaguchi S., Jones S.M., Rice K.C., Thurkauf A., Monn J.A. Anticonvulsant activity of the low-affinity uncompetitive N-methyl-D-aspartate antagonist (+-)-5-aminocarbonyl-10,11-dihydro-5H-dibenzoad-cyclohepten-5,10-imine (ADCI): comparison with the structural analogs dizocilpine (MK-801) and carbamazepine. J. Pharmacol. Exp. Ther. 259(1): 30–37. 1991.

Seidleck B.K., Thurkauf A., Witkin J.M. Evaluation of ADCI against convulsant and locomotor stimulant effects of cocaine: comparison with the structural analogs dizocilpine and carbamazepine. Pharmacol. Biochem. Behav. 47(4): 839–844. 1994.

Geter-Douglass B., Witkin J.M. Behavioral effects and anticonvulsant efficacies of low-affinity, uncompetitive NMDA antagonists in mice. Psychopharmacology. 146(3): 280–289. 1999.

Coleman M.H., Yamaguchi S., Rogawski M.A. Protection against dendrotoxin-induced clonic seizures in mice by anticonvulsant drugs. Brain Res. 575(1): 138–142. 1992.

Grant K.A., Snell L.D., Rogawski M.A., Thurkauf A., Tabakoff B. Comparison of the effects of the uncompetitive N-methyl-D-aspartate antagonist (+-)-5-aminocarbonyl-10,11-dihydro-5H-dibenzoad-cyclohepten-5,10-imine (ADCI) with its structural analogs dizocilpine (MK-801) and carbamazepine on ethanol withdrawal seizures. J. Pharmacol. Exp. Ther. 260(3): 1017–1022. 1992.

Ghasemi M., Shafaroodi H., Nazarbeiki S., Meskar H., Ghasemi A., Bahremand A., Ziai P., Dehpour A.R. Inhibition of NMDA receptor/NO signaling blocked tolerance to the anticonvulsant effect of morphine on pentylenetetrazole-induced seizures in mice. Epilepsy Res. 91(1): 39–48. 2010.

Taberner P.V. The anticonvulsant activity of ketamine against seizures induced by pentylenetetrazol and mercaptopropionic acid. Eur. J. Pharmacol. 39(2): 305–311. 1976.

Velísková J., Velísek L., Mares P., Rokyta R. Ketamine suppresses both bicuculline- and picrotoxin-induced generalized tonic-clonic seizures during ontogenesis. Pharmacol. Biochem. Behav. 37(4): 667–674. 1990.

D’Hooge R., Pei Y.Q., de Deyn P.P. N-methyl-D-aspartate receptors contribute to guanidinosuccinate-induced convulsions in mice. Neurosci. Lett. 157(2): 123–126. 1993.

Stafstrom C.E., Sasaki-Adams D.M. NMDA-induced seizures in developing rats cause long-term learning impairment and increased seizure susceptibility. Epilepsy Res. 53(1–2): 129–137. 2003.

Trommer B.L., Pasternak J.F. NMDA receptor antagonists inhibit kindling epileptogenesis and seizure expression in developing rats. Brain Res. Dev. 53(2): 248–252. 1990.

Borowicz K.K., Łuszczki J., Czuczwar S.J. Interactions between non-barbiturate injectable anesthetics and conventional antiepileptic drugs in the maximal electroshock test in mice — an isobolographic analysis. Eur. Neuropsychopharmacol. 14(2): 163–172. 2004.

Martin B.S., Kapur J. A combination of ketamine and diazepam synergistically controls refractory status epilepticus induced by cholinergic stimulation. Epilepsia. 49(2): 248–255. 2008.

Kim K.K., Zaitsev A.V., Lavrent’eva V.V., Zhabko E.P., Vataev S.I., Lukomskaya N.Y., Magazanik L.G. Effects of Ionotropic Glutamate Receptor Blockers on Pentylenetetrazole-Induced Seizures in Krushinskii–Molodkina Rats. Neurosci. Behav. Physiol. 44(8): 945–950. 2014.

Chen B., Feng B., Tang Y., You Y., Wang Y., Hou W., Hu W., Chen Z. Blocking GluN2B subunits reverses the enhanced seizure susceptibility after prolonged febrile seizures with a wide therapeutic time-window. Exp. Neurol. 283: 29–38. 2016.

Jansen M., Dannhardt G. Antagonists and agonists at the glycine site of the NMDA receptor for therapeutic interventions. Eur. J. Med. Chem. 38(7–8): 661–670. 2003.

Chen H.-S.V., Lipton S.A. The chemical biology of clinically tolerated NMDA receptor antagonists. J. Neurochem. 97(6): 1611–1626. 2006.

Kalia L.V., Kalia S.K., Salter M.W. NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol. 7(8): 742–755. 2008.

Berger P., Farrel K., Sharp F., Skolnick P. Drugs acting at the strychnine-insensitive glycine receptor do not induce HSP-70 protein in the cingulate cortex. Neurosci. Lett. 168(1–2): 147–150. 1994.

Niquet J., Lumley L., Baldwin R., Rossetti F., Suchomelova L., Naylor D., Estrada I.B.F., Schultz M., Furtado M. de A., Wasterlain C.G. Rational polytherapy in the treatment of cholinergic seizures. Neurobiol. Dis. 133: 104537. 2020.

Schidlitzki A., Twele F., Klee R., Waltl I., Römermann K., Bröer S., Meller S., Gerhauser I., Rankovic V., Li D., Brandt C., Bankstahl M., Töllner K., Löscher W. A combination of NMDA and AMPA receptor antagonists retards granule cell dispersion and epileptogenesis in a model of acquired epilepsy. Sci. Rep. 7(1): 1–19. 2017.

Brandt C., Potschka H., Loscher W., Ebert U. N-methyl-D-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy. Neuroscience. 118(3): 727–740. 2003.

Santamaría A., Ríos C. MK-801, an N-methyl-d-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neurosci. Lett. 159(1): 51–54. 1993.

Yang Q., Huang Z., Luo Y., Zheng F., Hu Y., Liu H., Zhu S., He M., Xu D., Li Y., Yang M., Yang Y., Wei X., Gao X., Wang W., Ma J., Ma Y., Wang X., Wang Q. Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus. EBioMedicine. 47: 470–483. 2019.

Rodríguez-Muñoz M., Onetti Y., Cortés-Montero E., Garzón J., Sánchez-Blázquez P. Cannabidiol enhances morphine antinociception, diminishes NMDA-mediated seizures and reduces stroke damage via the sigma 1 receptor. Mol. Brain. 11(1): 1–12. 2018.

Yang Y., Tian X., Xu D., Zheng F., Lu X., Zhang Y., Ma Y., Li Y., Xu X., Zhu B., Wang X. GPR40 modulates epileptic seizure and NMDA receptor function. Sci. Adv. 4(1): 1–12. 2018.

Koek W., Colpaert F.C. Selective blockade of N-methyl-D-aspartate (NMDA)-induced convulsions by NMDA antagonists and putative glycine antagonists: relationship with phencyclidine-like behavioral effects. J. Pharmacol. Exp. Ther. 252(1): 349–357. 1990.

Chiamulera C., Costa S., Reggiani A. Effect of NMDA- and strychnine-insensitive glycine site antagonists on NMDA-mediated convulsions and learning. Psychopharmacology (Berl). 102(4): 551–552. 1990.