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Синдром раздраженного кишечника (СРК) – функциональное, многофакторное рас-
стройство желудочно-кишечного тракта, характеризующееся нарушением моторики 
кишечника и  висцеральной гиперчувствительностью. Целью исследования явился 
анализ влияния H2S и NO на спонтанные сокращения тощей кишки крыс с моделью 
СРК. СРК вызывался неонатальной материнской депривацией и верифицировался 
оценкой висцеральной гиперчувствительности. Спонтанные сокращения изолиро-
ванного препарата тощей кишки крысы регистрировались в изометрических усло-
виях. У  крыс с  СРК амплитуда спонтанных сокращений и  тонус препарата были 
ниже, чем в группе контроля, без изменения частоты спонтанных сокращений. До-
нор H2S  – гидросульфид натрия (NaHS) оказывал ингибирующее действие на  со-
кращения тощей кишки в контроле, тогда как в группе СРК угнетающие эффекты 
NaHS не проявлялись. Донор NO – нитропруссид натрия (SNP) вызывал угнетение 
амплитуды в обеих группах и уменьшал угнетающие эффекты NaHS в контрольной 
группе. Ингибитор синтазы оксида азота (NOS) – L-NAME приводил к повышению 
амплитуды спонтанных сокращений в обеих группах с более выраженными эффек-
тами в группе СРК. В условиях блокирования NOS наблюдали восстановление ин-
гибирующего действия NaHS на амплитуду спонтанных сокращений в группе СРК. 
В группе СРК экспрессия цистатионин-β-синтазы (CBS), уровень сульфидов и ак-
тивность ферментов синтеза H2S в тканях тощей кишки крысы были ниже, тогда как 
экспрессия нейрональной NOS и  концентрация метаболитов NO были повышены 
по сравнению с  контролем. Предположено, что при СРК вследствие избыточного 
синтеза NO происходят изменения активности CBS, сигнальных путей и/или ми-
шеней, через которые действует H2S, что приводит к нарушению моторики тощей 
кишки и  обуславливает симптомы усиления перистальтики при СРК диарейного 
типа (СРК-Д).
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ВВЕДЕНИЕ

Синдром раздраженного кишечника (СРК) является одним из наиболее распро-
страненных функциональных желудочно-кишечных расстройств [1–3], который в со-
ответствии с Римскими критериями IV диагностируется на основании рецидивирую-
щей боли в животе, связанной с дефекацией, или в связи с изменением частоты или 
консистенции стула. Хотя патофизиология этого заболевания до сих пор неизвестна, 
считается, что СРК является многофакторным заболеванием, вызванным нарушением 
моторики желудочно-кишечного тракта (ЖКТ), висцеральной гиперчувствительно-
стью, активацией иммунитета и психосоциальными факторами  [3, 4]. Висцеральная 
чувствительность – это один из критериев, используемых при диагностике СРК. Па-
тофизиологию СРК традиционно связывают с  дисфункцией толстой кишки. Однако 
растущее число исследований указывают на вовлечение тонкой кишки в развитие дан-
ного заболевания. В частности, изменения в микробиоме тонкой кишки могут сущест-
венно влиять на метаболизм, всасывание питательных веществ и иммунный ответ, тем 
самым способствуя развитию симптомов СРК  [5–7]. Дисбаланс микрофлоры может 
приводить к увеличению проницаемости кишечного эпителия, нарушению моторики, 
создавая условия для активации воспалительных процессов и синдрома избыточного 
бактериального роста (СИБР), наиболее часто ассоциируемого с тонким кишечником. 
При этом наблюдается увеличение популяции тучных клеток и легкое воспаление, ко-
торые являются ключевыми факторами в патогенезе СРК [7, 8]. Кроме того, при разви-
тии СРК с преобладанием диареи (СРК-Д) отмечается ускоренный транзит не только 
в толстой, но и в тонкой кишке по сравнению с другими подтипами СРК [9]. В свою 
очередь, развитие СИБР может быть связано с нарушением мигрирующих моторных 
комплексов [10, 11], которые зависят от активности интерстициальных клеток Кахаля, 
выполняющих функцию “пейсмекеров” кишечной моторики [12].

Газообразные посредники, сероводород (H2S) и оксид азота (NO), играют важную 
роль в регуляции функций ЖКТ в физиологических и патофизиологических услови-
ях [13–19]. Однако влияние H2S и NO при патологических состояниях, в том числе 
СРК, на двигательную активность тонкого кишечника не изучено. При этом изме-
нения концентраций H2S и NO в просвете толстой кишки, по-видимому, отражают 
их вклад в развитие СРК [20–22]. Эндогенно H2S в ЖКТ синтезируется ферментами 
цистатионин-β-синтаза (CBS) и цистатионин-γ-лиаза (CSE) [23], которые экспресси-
руются в гладкомышечных клетках, энтеральных нейронах, интерстициальных клет-
ках Кахаля и эпителиальных клетках [24]. Эндогенный H2S может играть роль в ре-
гуляции секреции, моторики, нейротрансмиссии, болевой чувствительности  [25]. 
H2S, синтезируемый кишечными микробами и  тканями стенки кишечника, может 
участвовать в  диарейных состояниях, однако роль эндогенно синтезируемого тка-
нями тонкой кишки H2S в регуляции моторики при СРК не изучено [17, 26]. Показа-
но, что эндогенные уровни H2S, вырабатываемые тканью толстой кишки, лишенной 
слизистой и подслизистой оболочки, а также экспрессия CSE и CBS были снижены 
у взрослых крыс при хроническом стрессе [20]. Авторы предполагают, что усиление 
синтеза эндогенного H2S или доставка экзогенного H2S могут иметь потенциальную 
клиническую ценность при лечении гипермоторики кишечника, вызванной хрониче-
ским стрессом [20]. 

Еще одним агентом, который играет ключевую роль в регуляции широкого спектра 
функций ЖКТ как в норме, так и при заболеваниях, является NO. NO, выделяясь из не-
адренергических нехолинергических нервных волокон, регулирует моторику, целост-
ность слизистой оболочки посредством регуляции секреции, механизмы висцеральной 
гиперчувствительности и боли [27]. Показана его роль в функциональных изменениях 
ЖКТ при СРК и возникновении его симптомов [28]. Были выявлены антиноцицептив-
ные и антидиарейные эффекты NO в модели СРК с диареей у крыс [29]. Экспрессия 
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нейрональной синтазы оксида азота (nNOS) в миентеральном сплетении тонкой и тол-
стой кишки изменяется в  зависимости от возраста. Наибольший процент нейронов, 
содержащих nNOS, был выявлен у  новорожденных крыс, который снижался в  ходе 
онтогенеза до 60-го дня жизни, а затем не изменялся до старения [30, 31]. Чрезмер-
ный синтез NO характерен для воспалительных заболеваний кишечника, где он может 
способствовать повреждению эпителия кишечника, нарушению барьерной функции 
и развитию осложнений [32, 33]. Избыточный синтез NO может привести к гибели кле-
ток, но может быть и защитным механизмом для предотвращения апоптоза [34]. NO 
может ингибировать дыхательную цепь митохондрий, вызывая накопление активных 
форм кислорода (АФК), что способствует апоптозу энтероцитов [35, 36]. Кроме того, 
NO влияет на эндогенный синтез H2S путем связывания с гемом CBS, что приводит 
к ингибированию каталитической активности CBS, значит клеточный метаболизм H2S 
может зависеть от локальной концентрации NO [37, 38].

Несмотря на  интенсивные исследования патофизиологии СРК, роль H2S и  NO 
в развитии СРК остается неизвестной. Настоящее исследование направлено на изуче-
ние влияния H2S и NO на сократительную активность препарата тощей кишки крысы 
при моделировании СРК. Кроме того, был произведен анализ концентрации сульфи-
дов, нитритов и экспрессии ферментов CBS и nNOS в ткани тощей кишки крысы при 
моделировании СРК.

МЕТОДЫ ИССЛЕДОВАНИЯ

Животные
Эксперименты проводились на самцах крыс массой 250–275 г, имеющих свобод-

ный доступ к воде и пище, в контролируемых условиях окружающей среды при тем-
пературе 21 ± 2 °С с постоянной влажностью и 12-часовым световым циклом. Для по-
лучения потомства ссаживали одного самца и двух самок в одну клетку на две недели, 
затем беременные самки помещались отдельно в стандартные клетки. Эксперименты 
проводились на  потомстве крыс: в  контрольной группе использовалось 11 пометов, 
в группе СРК – 6 пометов. Размер пометов составлял от 8 до 12 крысят как в группе 
контроля, так и в группе СРК. Размер помета не влиял на результаты исследования. 
Все новорожденные крысы, используемые в экспериментах, содержались вместе с ма-
терью до достижения ими 22-дневного возраста.

Индукция синдрома раздраженного кишечника и оценка висцеральной 
чувствительности

CРК у крыс моделировали с помощью материнской депривации путем неонаталь-
ного разлучения с  матерью. Для этого после получения потомства, начиная с  1-го 
постнатального дня (Р1, дата рождения считалась Р0) и до Р14, крысят (весь помет) 
ежедневно вынимали из домашней клетки на 3 ч (с 09:00 до 12:00) при температуре 
34 ± 1 °C. Крысят контрольной группы оставляли в домашней клетке. С Р15 по Р22 
день все крысята (депривированные и контрольные) находились на содержании самки. 
Отлучение от самки проводили на 22-й день, самцов и самок разделяли и содержали 
в разных клетках до проведения экспериментов. В возрасте 6 недель у крыс контроль-
ной группы и группы с неонатальной материнской депривацией оценивали гиперчув-
ствительность толстой кишки путем измерения пороговой интенсивности брюшного 
сгибательного рефлекса (БСР), возникающего в ответ на колоректальное растяжение 
с характерным поднятием задней части тела животного и отчетливо видимым сокра-
щением брюшной полости, как было показано ранее [39]. Ректальное растяжение про-
водили с использованием артериального эмболэктомического катетера (4-Fr, Edwards 
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Lifesciences, США), который вводили внутриректально в  нисходящую ободочную 
кишку крыс. После 30 мин адаптации животного проводили измерение БСР, для чего 
визуально наблюдали реакции на быстрое фазное растяжение баллона объемами 0.1, 
0.25, 0.35, 0.5 и 0.65 мл в течение 20 с. Каждый уровень растяжения повторяли три раза 
с интервалом в 30 с. Реакцию животного оценивали по балльной шкале БСР: 0 – от-
сутствие поведенческого ответа на колоректальное растяжение; 1 – короткое движение 
головы и замирание; 2 – сокращение мышц живота; 3 – подъем живота; 4 – выгибание 
тела и подъем тазовой части.

Регистрация сократительной активности сегмента тощей кишки крысы
Исследования сократимости препаратов тощей кишки самцов крыс контрольной 

и СРК групп проводились в соответствии с нашими предыдущими работами [14, 15, 
18, 39, 40]. Перед проведением эксперимента животное анестезировалось с использо-
ванием 2%-ного изофлурана (Abbott Laboratories, США), после декапитации произ-
водилась препаровка. Эксперименты проводились на  4-канальной установке фирмы 
Biopac (США) с использованием изометрических датчиков. Сегменты тощей кишки 
крысы (возраст 45–50 дней) осторожно выделялись и помещались в ванночку объемом 
20 мл, которая содержала (мМ): NaCl 121.0; KCl 5.9; CaCl2 2.5; MgCl2 1.2; NaHCO3 25.0; 
NaH2PO4 1.2; глюкоза 8.0 (pH 7.2–7.4). Во время экспериментов температура раствора 
поддерживалась на уровне 37 °С, раствор аэрировался карбогеном (O2 95% и CO2 5%). 
Препарат тощей кишки длиной 5–7 мм фиксировался вдоль брыжеечного края с помо-
щью нержавеющих клипс и подвешивался вертикально. Один конец препарата соеди-
нялся с изометрическим датчиком силы (TSD125C, Biopac, США), а другой фиксиро-
вался на закрепленном крючке. После подвешивания каждый препарат тощей кишки 
разрабатывался в течение 40–60 мин при натяжении в 1 г до получения стабильных 
сокращений, при этом каждые 10  мин производилась смена раствора. Регистрация 
и  последующий анализ параметров сокращения препарата проводились с  помощью 
программы AcqKnowledge 4.1 (Biopac, США).

В экспериментах использовались следующие химические вещества: гидросуль-
фид натрия (NaHS, 200 мкМ), NG-нитро-L-аргинин-метил-эфир – неспецифический 
блокатор NО-синтазы (L-NAME, 100 мкМ), нитропруссид натрия – донор NO (SNP, 
100 мкМ). Все препараты были получены от Sigma (США). Растворы веществ были 
свежеприготовленными. Для анализа собственных эффектов NaHS, L-NAME, SNP 
вещества апплицировали на  различные препараты тощей кишки в  течение 10  мин. 
Для анализа роли NO в эффектах H2S NaHS апплицировался последовательно после 
L-NAME или SNP.

Вестерн-блоттинг
Экспрессия CBS и  nNOS измерялась вестерн-блоттингом, как описано ра-

нее [41, 42]. Препарат тощей кишки крысы гомогенизировался в лизирующем буфе-
ре, содержащем ингибиторы протеазы (S8820, Sigma, США). Лизаты центрифуги-
ровались при 12000 об/мин. Отбиралась фракция без осадка (прозрачная жидкость). 
Образцы, содержащие равное количество белка, разделяли вертикально на 10%-ном 
геле, затем производился горизонтальный перенос белка на мембраны. Для блокиро-
вания участков неспецифического связывания на мембране использовался 3%-ный 
раствор бычьего сывороточного альбумина. Мембраны из поливинилиденфторида 
(PVDF) (Thermo Scientific Pierce, США) инкубировались в течение 12 ч с первичны-
ми антителами против CBS (1 : 500, sc-271886, Santa Cruz Biotechnology Inc., США) 
и nNOS (1 : 500, #610308, BD Transduction Laboratories), после промывания с помо-
щью трис-буферного раствора (TBST) блоты подвергались реакции со вторичными 
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антителами, конъюгированными с пероксидазой хрена (1 : 3000; ab205719, Abcam, 
США) при комнатной температуре в  течение 2 ч. Усиленная хемилюминесценция 
использовалась для визуализации белковых полос на мембране. Изображения были 
получены с  помощью ChemiDoc XRS (Bio-Rad, США), оптическая плотность по-
лос была количественно оценена с помощью программного обеспечения Image Lab 
(Bio-Rad, США). Интенсивность каждой полосы нормализовалась по экспрессии 
референсного белка GAPDH (1  :  2500; ab8245, Abcam, США). Данные вестерн-
блоттинга представлены в виде отношения оптической плотности полосы целевого 
белка к оптической плотности полосы белка-контроля (GAPDH), детектированного 
на той же мембране.

Определение концентрации сульфидов и нитритов
Концентрация сульфидов определялось в образцах тощей кишки массой 1 г. Кон-

центрация белка определялась по методу Брэдфорда. Ткань гомогенизировалась 
в  50  мМ фосфатного буфера (pH 7.4) с  соотношением 1  :  10 (вес/объем) на  льду. 
Синтез H2S в гомогенате тканей тощей кишки измеряли в присутствии экзогенного 
субстрата L-цистеина (L-cys) и кофактора, необходимого ферментам, продуцирую-
щим H2S, пиридоксаль-5-фосфат (P5P). Лизаты (860 мкл) добавлялись в реакцион-
ную смесь (общий объем 1000 мкл), содержащую P5P (40 мкл), L-cys (40 мкл) и фи-
зиологический раствор (60 мкл). Реакция проводилась в запечатанных парафильмом 
пробирках и инициировалась переносом пробирок со льда на водяную баню с тем-
пературой 37 °C. После 60-минутной инкубации добавлялся 1%-ный раствор ацетата 
цинка (ZnAc; 500 мкл) для улавливания, выделяющегося H2S, а затем 10%-ная трих-
лоруксусная кислота (ТХУ; 500 мкл). Впоследствии добавлялись N,N-диметилфени-
лендиамминсульфат (DPD; 20 мкМ, 266 мкл) и FeCl3 (30 мкМ, 266 мкл). Затем рас-
твор инкубировали в течение 20 мин, после чего измеряли поглощение полученного 
раствора при 670  нм методом спектрофотометрии (Спектрофотометр ПЭ-5300ВИ, 
ООО “ЭКРОСХИМ”, Россия) и рассчитывали концентрацию H2S по калибровочной 
кривой NaHS.

Для определения нитритов готовился реактив Грисса. Ткань гомогенизировалась 
в 0.1 М фосфатном буфере (pH 7.4) в соотношении 1 : 10 (вес/объем) на льду. Гомоге-
нат объемом 500 мкл соединялся с 500 мкл спирта и центрифугировался в течение 1 ч. 
После центрифугирования в каждую пробирку добавлялся реактив Грисса в соотноше-
нии 1 : 1. Пробирки ставились на водяную баню с температурой 37 °C на 30 мин. Из-
мерялось поглощение полученного раствора при 543 нм методом спектрофотометрии 
(Спектрофотометр ПЭ-5300ВИ, ООО “ЭКРОСХИМ”, Россия).

Статистический анализ
Статистический анализ выполнялся с помощью стандартных методик, где нормаль-

ность распределения выборки определялась при помощи F-теста Фишера и критерия 
Шапиро–Уилка с  использованием программного обеспечения OriginPro (OriginLab, 
США). Тоническое напряжение, амплитуда и частота спонтанной сократительной ак-
тивности препарата выражались в виде абсолютных значений (граммы и мин−1 соот-
ветственно) или в виде процентных изменений по отношению к собственному контр-
олю (принятому за 100%) для каждой группы животных после добавления препаратов 
в  ванночку. Достоверность различий определялась с  помощью парного t критерия 
Стьюдента и  дисперсионного анализа (ANOVA) с  применением теста Бонферрони. 
Результаты представлялись в виде среднего значения ± стандартная ошибка среднего 
(M ± SEM). Значения р < 0.05 считались статистически значимыми; n указывает на ко-
личество животных.
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РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Висцеральная гиперчувствительность у крыс с СРК
Для верификации модели СРК оценивалась висцеральная чувствительность крыс 

путем измерения пороговой интенсивности БСР в ответ на растяжение толстой киш-
ки. Обнаружено, что в ответ на растяжение толстой кишки объемами 0.1 и 0.25 мл 
отличий в реакции животных обеих групп не наблюдалось (р > 0.05; табл. 1). При 
растяжении объемом 0.35 мл в контроле значение БСР составило 2.12 ± 0.13 (n = 15) 
и 2.63 ± 0.18 в группе СРК (n = 11, р ˂ 0.05). При использовании объема 0.5 мл по-
казатели БСР в опытной группе (3.71 ± 0.17) были значительно выше, чем в контр-
оле (2.96 ± 0.18, p < 0.05), что указывает на висцеральную гиперчувствительность 
в модели СРК у крыс. При увеличении объема растяжения до 0.65 мл существенных 
различий между группами не наблюдалось (р  >  0.05), что может быть связано со 
сверхпороговым уровнем стимуляции. Таким образом, используемая нами модель 
СРК сопровождается висцеральной гиперчувствительностью и может использовать-
ся для изучения механизмов СРК. 

Таблица 1. Показатели брюшного сгибательного рефлекса (в баллах) в ответ на растяжение 
кишечника крыс контрольной и СРК групп

Группа n
Объем растяжения, мл

0.1 0.25 0.35 0.5 0.65

Контроль 15 0.52 ± 0.1 1.32 ± 0.2 2.12 ± 0.13 2.96 ± 0.18 3.83 ± 0.12

СРК 11 0.49 ± 0.1 1.38 ± 0.15 2.63 ± 0.18* 3.71 ± 0.17* 3.98 ± 0.22

* p < 0.05 – относительно контрольной группы.

Влияние H2S на сократительную активность тощей кишки крысы 
В контроле изолированный препарат тощей кишки крыс проявлял спонтанную со-

кратительную активность с  амплитудой 0.90  ±  0.08  г и  частотой 29.30  ±  0.61  мин–1 
(n = 19; рис. 1c, d), тоническое напряжение препарата составило 1.29 ± 0.09 г (n = 19; 
рис. 1b). У крыс с СРК тонус препарата (0.96 ± 0.06; n = 8, p < 0.05, рис. 1b) и амплитуда 
(0.65 ± 0.04 г; n = 8, p < 0.05, рис. 1a, c) спонтанных сокращений были ниже по сравнению 
с контрольной группой. Показатели частоты спонтанных сокращений (30.75 ± 0.55 мин–1; 
n = 8, p > 0.05, рис. 1d) в группе СРК не отличались от контроля. 

Далее анализировали влияние NaHS на  спонтанную сократительную актив-
ность препарата тощей кишки крыс в контроле и при моделировании СРК (рис. 2a). 
В контроле аппликация NaHS в концентрации 200 мкМ в течение 10 мин приводила 
к снижению тонуса препарата до 76% (с 1.20 ± 0.09 до 0.99 ± 0.05 г, n = 9; рис. 2b), 
амплитуды до 49% (с 0.90 ± 0.08 до 0.40 ± 0.06  г, n = 19; рис. 2b), частоты до 80% 
(с 29.3 ± 0.6 до 23.4 ± 1.1 мин–1, n = 19; рис. 2b). В группе СРК угнетающие эффекты 
NaHS не проявлялись: тоническое напряжение препарата составило 99% (с 0.96 ± 0.06 
до 0.95 ± 0.06 г; n = 8; рис. 2b), амплитуда и частота спонтанных сокращений 106% 
(с 0.65 ± 0.04 до 0.69 ± 0.04 г; n = 8; рис. 2b) и 96% (с 30.7 ± 0.55 до 29.7 ± 0.46 мин–1; 
n = 8; рис. 2b) соответственно по сравнению с группой контроля (рис. 2b). 

Таким образом, в группе СРК эффекты NaHS на спонтанные сокращения не про-
являются. 
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Эффекты ингибитора NOS и экзогенного NO на сократимость тощей кишки крысы 
Для определения роли эндогенного NO в регуляции спонтанной сократительной актив-

ности использовался неспецифический ингибитор NOS – L-NAME. В контрольной груп-
пе добавление L-NAME в концентрации 100 мкМ приводило к достоверному повыше-
нию амплитуды спонтанных сокращений тощей кишки крыс с 0.86 ± 0.04 до 1.02 ± 0.06 г 
(119%; n = 18; p ˂ 0.05; рис. 3b). В группе СРК эффекты L-NAME были более выражены, 
амплитуда сокращений увеличилась с 0.76 ± 0.07 до 1.05 ± 0.11 г (139%; n = 12; p ˂ 0.05; 
рис.  3b), а  тоническое напряжение и  частота спонтанных сокращений не изменились 
(p > 0.05; рис. 3a, c). Добавление донора NO – SNP в концентрации 100 мкМ на препарат 
тощей кишки крыс приводило к снижению амплитуды спонтанных сокращений к 30-й се-
кунде (p ˂ 0.05), после чего к 10-й минуте происходило восстановление амплитуды до ис-
ходных значений (p > 0.05) как в контрольной, так и в СРК-группах. Однако начальный 
ингибирующий эффект SNP на амплитуду сокращений в группе СРК был более выражен-
ным – с 0.71 ± 0.08 до 0.21 ± 0.04 г, что составляет 36% от начальных значений (n = 12; 
p ˂ 0.05; рис. 3b), по сравнению с группой контроля – с 0.74 ± 0.05 до 0.48 ± 0.06 г, что 
составляет 63% от начального уровня (n = 15; рис. 3b), при этом эффекты SNP на тонус 
и частоту спонтанных сокращений препаратов не проявлялись (p > 0.05; рис. 3a, c). 
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Рис. 1. Спонтанная сократительная активность препаратов тощей кишки крыс в  контрольной группе 
и в группе СРК. (a) – Механограммы сократительной активности препарата тощей кишки крыс в контр-
ольной группе и в группе СРК. Показатели среднего тонуса (b), амплитуды (с) и частоты (d) спонтанных 
сокращений препаратов тощей кишки крыс в контрольной группе (белые столбики) и группе СРК (серые 
столбики). * p < 0.05 относительно показателей контрольной группы.
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Рис. 2. Влияние донора сероводорода на спонтанные сокращения препаратов тощей кишки в контроле и в груп-
пе с моделью СРК. (a) – Оригинальные записи спонтанных сокращений тощего кишечника во время добавления 
NaHS (200 мкМ) в контрольной (n = 19) и в СРК (n = 8) группах. (b) – Влияние донора сероводорода (NaHS, 
200 мкМ) на тонус амплитуду и частоту спонтанных сокращений препаратов тощей кишки крыс в контрольной 
группе (белые столбики) и группе СРК (серые столбики). *p < 0.05 относительно исходных значений.
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Рис. 3. Влияние NO и ингибитора NOS на параметры спонтанной сократительной активности препаратов то-
щей кишки крыс в контрольной и СРК группах. Влияние L-NAME (100 мкМ) и SNP (100 мкМ) на тонус (a), 
амплитуду (b) и частоту (c) спонтанных сокращений сегментов тощей кишки в контрольной группе (белые 
столбики; n = 18) и в группе СРК (серые столбики; n = 12) по сравнению с исходными значениями, приня-
тыми за 100% и отмеченными пунктирной линией. *p < 0.05 относительно исходных значений; #p < 0.05 по 
сравнению с эффектами в контрольной группе. 

Роль NO в ингибирующем действии сероводорода на сократимость  
тощей кишки крыс

Далее мы анализировали роль NO в эффектах NaHS. В контрольной группе на фоне 
предварительной аппликации L-NAME ингибирующие эффекты NaHS на тонус, ампли-
туду и частоту спонтанных сокращений сохранялись (n = 18, p > 0.05; рис. 4а). На фоне 
действия донора NO – SNP эффекты NaHS на амплитуду спонтанных сокращений были 
выражены в меньшей степени (86%; n = 9; p ˂  0.05; рис. 4b), при этом на тонус препарата 
(92%; n = 9; p > 0.05) и частоту сокращений не проявлялись (96%; n = 9; p > 0.05).

В группе СРК на фоне действия L-NAME ингибирующие эффекты NaHS на ампли-
туду спонтанных сокращений восстанавливались, но в меньшей степени по сравнению 
с контрольной группой (p ˂ 0.05), а на тоническое напряжение препарата и на частоту 
спонтанных сокращений не проявлялись (p > 0.05; рис. 4а). Предварительная апплика-
ция SNP предотвращала ингибирующие эффекты NaHS в группе СРК (p > 0.05).
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Рис. 4. Роль системы NO в  эффектах сероводорода на  сократительную активность тощей кишки крыс.  
(а) – Оригинальные записи спонтанных сокращений тощей кишки крыс: эффекты NaHS (200 мкМ) после 
инкубации в L-NAME (100 мкМ) в контрольной (n = 15) и СРК-группах (n = 6); (b) – ингибирующее действие 
донора сероводорода на амплитуду спонтанных сокращений (NaHS, 200 мкМ) после инкубации в L-NAME 
(100 мкМ) или SNP (100 мкМ) в контрольной группе (белые столбики; n = 15) и группе СРК (серые столбики; 
n = 6). *p < 0.05 относительно исходных значений, принятых за 0%; #p < 0.05 по сравнению с эффектами 
в контрольной группе. 
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Концентрация сульфидов и нитритов и экспрессия ферментов CBS и nNOS в тканях 
тощей кишки крыс в контроле и при моделировании СРК

Концентрация сульфидов в ткани тощей кишки у крыс с СРК была ниже относи-
тельно контрольной группы (0.22 ± 0.06 по сравнению с 4.21 ± 1.45 мкМ в контроле; 
n = 6, р < 0.05, рис. 5а). Активность ферментов синтеза H2S в тощей кишке крыс груп-
пы СРК (0.79 ± 0.12 мкМ/г/мин) также была достоверно ниже контрольных значений 
(1.28 ± 0.22 мкМ/г/мин; n = 6, р < 0.05, рис. 5b). Экспрессия CBS в тощей кишке крыс, 
проанализированная методом вестерн-блоттинга, была меньше у крыс с СРК по срав-
нению с контрольной группой (n = 5, p < 0.05, рис. 5 c). 

(a)                                         (b)                                            (c)         
1.6

1.2

0.8

0.4

0

1.6

1.2

0.8

0.4

0

6

4

2

0

Ex
pr

es
si

on
 C

B
S 

re
la

tiv
e 

of
 G

A
PD

H

H
  S

 e
nz

ym
e 

sy
nt

he
si

s, 
μM

/g
/m

in

C
on

ce
nt

ra
tio

n 
of

 su
lfi

de
s, 

μM

Control          IBS                                    Control          IBS                                       Control          IBS

Control        IBS          

*

*

*

CBS
GAPDH

65 kDa
37 kDa

2

—
—

Рис. 5. Концентрация сульфидов (a), активность ферментов синтеза H2S (b) в  тканях тощей кишки крыс 
и экспрессия фермента CBS (c) в контрольной группе (белые столбики; n = 6) и в группе СРК (серые столби-
ки; n = 5). *p < 0.05 – относительно показателей контрольной группы.

Концентрация метаболитов NO в тканях тощей кишки крыс, определенных с по-
мощью реактива Грисса, в группе СРК была повышена по сравнению с контрольной 
группой (рис. 6а). По результатам вестерн-блоттинга экспрессия nNOS в тощей кишке 
крыс в группе СРК была выше относительно контрольной группы (5.09 ± 1.18 по срав-
нению с контролем 1 ± 0.11; n = 7, p < 0.05, рис. 6b).
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Рис. 6. Концентрация суммарных метаболитов NO (a) и  экспрессия фермента nNOS (b) в  тканях то-
щей кишки крыс в контрольной группе (белый столбик; n = 6) и в группе СРК (серые столбики; n = 7).  
*p < 0.05 – относительно показателей контрольной группы.
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ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

СРК является распространенным функциональным желудочно-кишечным рас-
стройством с  многофакторной патофизиологией, характеризующимся измененной 
моторикой кишечника, усилением проницаемости кишечного барьера и повышенной 
висцеральной чувствительностью [2, 43, 44]. СРК может быть вызван стрессом, рас-
стройствами настроения, желудочно-кишечными инфекциями и  неблагоприятными 
событиями в  раннем возрасте  [45–47]. Модель неонатальной материнской деприва-
ции у крыс приводит к постоянным висцеромоторным и соматическим нарушениям, 
связанными с измененной чувствительностью гипоталамо-гипофизарно-надпочечни-
ковой системы к стрессорам и повышенному риску развития депрессивно-подобного 
поведения. В этой модели у крыс была продемонстрирована висцеральная гипералге-
зия толстой кишки, которая является одним из симптомов развития СРК [48], что было 
продемонстрировано и в нашей модели. 

Известно, что при СРК наблюдается моторная дисфункция толстого кишечника 
и нарушения ее регуляции эндогенными модуляторами  [39, 49, 50]. Однако иссле-
дований регуляций двигательной функции тонкого кишечника в  условиях модели-
рования СРК не проводилось. При этом нарушения процессов всасывания, секре-
ции, двигательной активности в тонком кишечнике, а также СИБР могут оказывать 
вклад в развитие симптомов СРК [5–7, 51]. В данной работе нами проанализировано 
влияние NO и H2S на двигательную активность препарата тощей кишки крыс при 
моделировании СРК.

Донор H2S в контрольной группе вызывал снижение тонуса препарата, амплитуды 
и частоты спонтанных сокращений, как было показано ранее [15, 40], а в группе СРК 
ингибирующие эффекты NaHS на  спонтанные сокращения не проявлялись. Кроме 
того, нами было показано снижение концентрации сульфидов в ткани тощей кишки, 
экспрессии CBS и  активности ферментов синтеза H2S у  животных с  моделью СРК. 
Сходные данные были получены в модели СРК у взрослых крыс, вызванной стрессом 
“избегание воды”, где обнаружено снижение экспрессии и  активности CBS в  ткани 
толстой кишки, что может быть связано с активацией компонента MAPK пути – MEK1, 
вовлеченного в процессы воспаления и хронического стресса  [52]. Кроме того, сни-
жение экспрессии CBS обнаружено в толстой кишке у пациентов с воспалительными 
заболеваниями кишечника [53] и других органов [53–56]. Избыточная продукция NO 
также может обратимо ингибировать фермент синтеза H2S – CBS, таким образом сни-
жая эндогенную продукцию H2S [38].

С учетом протекторных свойств H2S снижение его концентрации в  условиях 
стресса может усиливать воспалительную реакцию, а также оказывать вклад в на-
рушение моторики [28, 56–59] и обуславливать симптомы усиления перистальтики 
при СРК-Д.

Известно, что NO, являясь медиатором неадренергических волокон, может быть 
вовлечен в эффекты H2S [15, 60–62]. Поэтому была проанализировали роль NO в ре-
гуляции сократимости тощей кишки в условиях СРК. В контроле экзогенный донор 
NO вызывал угнетение, а ингибирование NOS усиливало спонтанную сократительную 
активность, что свидетельствует о тоническом модулирующем действии NO в тощей 
кишке. В  условиях моделирования СРК наблюдали усиление позитивного эффекта 
блокатора NOS, что может быть обусловлено увеличением экспрессии фермента nNOS 
в тканях тощей кишки крыс и косвенно подтверждается повышенным уровнем сум-
марных метаболитов NO в тощей кишке. Усиление экспрессии nNOS и продукции NO 
было также продемонстрировано в экспериментальных моделях СРК [63–65], а также 
в клинических исследованиях у пациентов с СРК [66, 67]. Так, экспрессия nNOS и кон-
центрация NO повышались в тканях толстой кишки у мышей и крыс в модели СРК-Д, 
вызванной неонатальной материнской депривацией  [63–65], а  уровень экспрессии 
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nNOS позитивно коррелировал с  клиническими симптомами диареи  [65]. При этом 
уровни экспрессии еNOS и iNOS в толстой кишке не отличались от контрольных жи-
вотных [64]. Действительно, среди трех типов NOS экспрессия только nNOS коррели-
рует со стрессом [68]. 

Отличительным признаком СРК является слабовыраженное воспаление, обуслов-
ленное повышением экспрессии провоспалительных цитокинов (TLR1, TLR2, TLR4, 
TLR5, TLR7, IL-1β, и MCP1) [63], а также наличие окислительного стресса [64]. По-
вышение экспрессии тирозингидроксилазы в мозговом веществе надпочечников и тка-
ни тонкого и толстого кишечника указывает на активацию гипоталамо-гипофизарно-
надпочечниковой оси в результате хронического стресса с последующим выделением 
глюкокортикоидов  [69]. Можно предположить, что хронический стресс и умеренное 
воспаление приводят к усилению экспрессии nNOS в ткани тонкого кишечника при 
СРК-Д [65].

Ранее нами было показано взаимодействие NO и H2S в регуляции моторики тощей 
кишки крыс, где ингибиторные эффекты H2S полностью сохранялись на фоне дейст-
вия L-NAME, а в присутствии донора NO были выражены в меньшей степени  [37]. 
Было выявлено, что K+-каналы входящего выпрямления, включая Kir и KАТФ-каналы, 
являются общими мишенями действия обоих газов, поэтому предварительное воздей-
ствие NO предотвращало расслабляющие эффекты донора H2S  [15, 23, 70]. Актива-
ция Kir-каналов, включая KATФ-каналы на мембране гладкомышечных клеток, приводит 
к гиперполяризации мембраны, снижению входа ионов кальция и расслаблению глад-
кой мускулатуры  [23, 40, 70, 71]. Механизмы действия H₂S включают восстановле-
ние дисульфидных связей, а также S-сульфгидрирование (присоединение –SH-групп 
к  цистеиновым остаткам), которые модифицируют белки ионных каналов или фер-
ментов, изменяя их активность, и таким образом влияют на клеточные функции [71]. 
S-нитрозилирование является основным молекулярным механизмом действия NO 
в  ЖКТ  [72–74], поэтому можно предположить, что повышение уровня эндогенного 
NO в условиях СРК будет модифицировать K+-каналы, препятствуя их активации экзо-
генным донором H2S. При этом на фоне ингибирования NOS наблюдалось частичное 
восстановление эффекта NaHS, что подтверждает нашу гипотезу [40].

Поскольку на фоне донора NO ингибирующие эффекты H2S ослабляются, можно 
предположить, что избыток NO в используемой нами модели СРК приводит к сниже-
нию синтеза H2S и чувствительности ткани тощей кишки к расслабляющему действию 
H2S, что может потенциально приводить к усилению перистальтики кишечника при 
данной патологии [27, 63].

ЗАКЛЮЧЕНИЕ

Таким образом, в настоящем исследовании показано изменение регуляции спонтан-
ной сократительной активности газомедиаторами – H2S и NO препарата тощей кишки 
крыс в условиях моделирования СРК. Выявлено усиление экспрессии nNOS и повыше-
ние концентрации нитритов в ткани тощей кишки, что может служить как компенсатор-
ным фактором, препятствующим воспалению и окислительному стрессу, так и оказывать 
повреждающее действие на энтероциты, гладкомышечные клетки, усиливая продукцию 
АФК и вызывая модификацию белков путем S-нитрозилирования [35, 36]. Выявлено от-
сутствие ингибиторного эффекта донора H2S в условиях моделирования СРК наряду со 
снижением экспрессии/активности CBS и концентрации сульфидов в тканях тощей киш-
ки. Можно предположить, что при СРК вследствие избыточного синтеза NO происходит 
снижение активности/экспрессии CBS, а также изменения сигнальных путей и/или ми-
шеней, через которые действует H2S, что приводит к нарушению моторики тощей кишки 
при СРК и обуславливает симптомы усиления перистальтики при СРК-Д. Дальнейшие 
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исследования механизмов нарушения сократимости различных отделов ЖКТ при СРК 
и других заболеваний ЖКТ будут способствовать разработке мер профилактики или ле-
чения желудочно-кишечной дисмоторики, которая является осложнением, связанным со 
многими желудочно-кишечными заболеваниями.
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Effects of Hydrogen Sulfide and Nitric Oxide on Rat Jejunum Contractions in a Model 
of Irritable Bowel Syndrome

D. M. Sorokinaa, *, I. F. Shaidullova, N. N. Khaertdinova, A. S. Lifanovaa,  
F. G. Sitdikova, and G. F. Sitdikovaa

aKazan Federal University, Kazan, Russia
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Irritable bowel syndrome (IBS) is a functional, multifactorial gastrointestinal disorder that 
is characterized by impaired intestinal motility and visceral hypersensitivity. The aim of 
the study was to analyze the effect of H2S and NO on spontaneous contractions of the 
jejunum in a  rat model of IBS. The IBS was induced by neonatal maternal deprivation 
and verified by assessing visceral hypersensitivity. Spontaneous contractions of an 
isolated rat jejunum were recorded under isometric conditions. In a  rat model of IBS, 
the amplitude of spontaneous contractions and the tonus were lower than in the control 
group, without changing the frequency of spontaneous contractions. The H2S donor, 
sodium hydrosulfide (NaHS), had an inhibitory effect on jejunum contractions in the 
control, but this effects of NaHS were not manifested in the IBS group. The NO donor, 
sodium nitroprusside (SNP), caused inhibition of the amplitude in both groups, reduced 
the inhibitory effects of NaHS in the control group, while in the IBS group the effects of 
NaHS were not observed. The nitric oxide synthase (NOS) inhibitor, L-NAME, increased 
the amplitude of spontaneous contractions in both groups, with more pronounced effects in 
the IBS group. Under conditions of NOS inhibition, the inhibitory effect of NaHS on the 
amplitude of spontaneous contractions was restored in the IBS group. In the IBS group, 
the expression of cystathionine-β-synthase (CBS), the level of sulfides and the activity of 
H2S-synthesizing enzymes in the rat jejunum tissues were lower, while the expression of 
nNOS and the concentration of NO metabolites were increased compared to the control. 
It has been suggested that in IBS, due to excessive NO synthesis, changes occur in the 
signaling pathways and/or targets through which H2S acts, which leads to changes in 
jejunal motility in IBS and causes symptoms of increased peristalsis in IBS with diarrhea 
(IBS-D).

Keywords: hydrogen sulfide, nitric oxide, contractile activity, irritable bowel syndrome, 
jejunum


