РОССИЙСКИЙ ФИЗИОЛОГИЧЕСКИЙ ЖУРНАЛ им. И.М. СЕЧЕНОВА 2023, том 109, № 8, с. 1094-1107

= ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ =

H₂S-ОПОСРЕДОВАННАЯ ДИЛАТАЦИЯ ПИАЛЬНЫХ АРТЕРИЙ У КРЫС РАЗНОГО ВОЗРАСТА: ВКЛАД К_{АТФ} И ВК_{Са}-КАЛИЕВЫХ КАНАЛОВ

© 2023 г. О. П. Горшкова^{1, *}, И. Б. Соколова¹

¹Институт физиологии имени И.П. Павлова РАН, Санкт-Петербург, Россия *E-mail: o_gorshkova@inbox.ru

> Поступила в редакцию 28.04.2023 г. После доработки 02.07.2023 г. Принята к публикации 04.07.2023 г.

Проведено исследование реакций пиальных артерий на воздействие экзогенного сероводорода и оценка вклада К_{АТФ}- и ВК_{Са}-каналов в Н₂S-опосредованную дилатацию у крыс разного возраста. Методом прижизненной микрофотосъемки у крыс Sprague-Dawley в возрасте 4 и 18 мес. исследовались реакции пиальных артерий различных диаметров на воздействие раствора донора экзогенного сероводорода – гидросульфида натрия (NaHS, 30 мкМ), а также их изменение при предварительном применении блокаторов калиевых каналов: КАТФ (глибенкламид, 10 мкМ) и ВК_{Са} (тетраэтиламмоний, 2 мМ). Установлено, что у крыс с возрастом происходит угнетение H₂S-индуцированной дилатации пиальных артерий и увеличение констрикторных ответов на воздействие экзогенного сероводорода. Возрастные изменения H₂S-индуцированной дилататорной реакции пиальных артерий у крыс зависят от размера сосудов. С возрастом уменьшается число дилатаций артерий диаметром больше 20 мкм. При этом старение не влияет на дилатацию более мелких артерий. Эти нарушения могут быть связаны с изменениями процессов, обусловленных активацией калиевых каналов. Обнаружено, что старение сопровождается увеличением вклада КАТФ-каналов в осуществление H₂S-опосредованной дилатации пиальных артерий диаметров менее 40 мкм. Вклад ВК_{Са}-каналов в дилатацию с возрастом снижается: у 18-месячных крыс эти каналы практически не участвуют в H₂S-опосредованной дилатации пиальных артерий диаметром более 20 мкм.

Ключевые слова: H₂S-опосредованная вазодилатация, К_{АТФ}-каналы, ВК_{Са}-каналы, старение, пиальные артериальные сосуды

DOI: 10.31857/S0869813923080034, EDN: WPAUXQ

введение

С возрастом в сердечно-сосудистой системе происходят существенные физиологические изменения, приводящие к дисфункции и нарушению регуляции тонуса кровеносных сосудов. В основе этих процессов может лежать нарушение действия и/или эффективности сигнальных молекул [1]. Сероводород (H_2S) является одним из трех известных газотрансмиттеров, играющих значительную роль в развитии патологических процессов в сердечно-сосудистой системе [2]. Ключевые молекулярные механизмы, которые управляют процессом развития возрастной сосудистой дисфункции, могут находиться под его влиянием [3]. Однако влияние старения на сигнальную систему H_2S до конца не изучено.

H₂S в клетках продуцируется тремя ферментативными системами: цистатионин-γ-лиазой (CSE) и цистатионин-β-синтазой (CBS) и 3-меркаптопируватсульфуртрансферазой [4, 5]. В стенках церебральных артерий H₂S может синтезироваться как в гладкомышечных клетках, так и в эндотелии с помощью CSE- и CBS-ферментов [5]. H₂S является регулятором тонуса кровеносных сосудов, он принимает участие в осуществлении как сосудистой дилатации, так и констрикции [4, 6]. Механизмы H₂S-опосредованной вазодилатации включают активацию калиевых каналов, снижение внутриклеточного рН и метаболическое ингибирование [7]. Кроме того, возможна эндотелий-зависимая H2S-индуцированная вазорелаксация, непосредственно не связанная с активацией каналов, включающая высвобождение NO [2, 7]. Исследования возрастных изменений H₂S-опосредованных сосудистых реакций немногочисленны и их результаты весьма противоречивы. В качестве одной из причин изменения H₂S-опосредованных реакций при старении указывается уменьшение концентрации H₂S в плазме крови [8], что может быть связано с изменением экспрессии CSE- и CBS-ферментов [9, 10] или окислительным повреждением этих белков [1]. Экспрессия ферментов, продуцирующих H₂S, и вазоактивные свойства H_2S во многом зависят от NO [4, 11, 12], уровень и доступность которого с возрастом снижается [13]. Одним из основных механизмов реализации вазодилататорного эффекта H₂S является активация калиевых каналов. В мозговых сосудах дилататорное действие H₂S преимущественно связывают с открытием АТФ-зависимых калиевых каналов (КАТФ) [2, 6, 14]. Также показана H₂S-опосредованная активация кальций-чувствительных калиевых каналов большой проводимости (ВК_{Са}), потенциал-зависимых калиевых каналов и TRPканалов, которая может приводить к гиперполяризации либо в эндотелии, либо в клетках гладкой мускулатуры сосудов и расширению сосудов [2, 15–17]. Некоторыми исследователями H₂S рассматривается как эндотелиальный гиперполяризующий фактор, который может действовать посредством активации кальцийчувствительных калиевых каналов малой и средней проводимости [15]. Литературные данные о возрастных изменениях экспрессии и функциональной активности калиевых каналов ограничены и противоречивы [18-20], высказываются даже предположения о существовании регионарных различий во влиянии старения на активность калиевых каналов [20]. Изменения функциональной активности этих каналов могут влиять на развитие возрастных нарушений H₂S-опосредованной вазодилатации. Целью данного исследования было изучение у крыс разного возраста роли H₂S-индуцированных процессов в дилатации мозговых сосудов и оценка возрастных изменений вклада калиевых каналов в H₂S-опосредованную дилатацию мозговых сосудов. В задачи исследования входило сравнительное изучение реакций пиальных артерий на воздействие экзогенного H₂S и вклада К_{АТФ}- и ВК_{Са}-каналов в осуществление H₂S-опосредованной дилатации у крыс в возрасте 4 и 18 мес.

МЕТОДЫ ИССЛЕДОВАНИЯ

Эксперименты проведены на самцах крыс Sprague-Dawley в возрасте 4 (n = 15, массой 328 ± 21 г) и 18 месяцев (n = 12, массой 390 ± 75 г). Использовались крысы из ЦКП "Биоколлекция ИФ РАН для исследования интегративных механизмов деятельности нервной и висцеральных систем" (Санкт-Петербург). До проведения эксперимента животные содержались в стандартных условиях вивария при свободном доступе к воде и пище по 6 особей в клетках Т4 на стандартной лабораторной диете в условиях искусственного освещения (цикл: 12 ч свет/12 ч темнота).

При проведении прижизненного исследования реакций пиальных артерий крыс наркотизировали золетилом (внутрибрюшинно, 20 мг/кг, Virbac, Франция). Показатель среднего АД, измеренного прямым методом через катетер в бедренной артерии [21], в течение всего эксперимента оставался примерно на одном уровне: у крыс в возрасте 4 месяцев – 124 ± 3 мм рт. ст., а в возрасте 18 мес. – 128 ± 6 мм рт. ст. Температура тела животного при проведении эксперимента поддерживалась на уровне 38° С.

Визуализация пиальных артерий проводилась с помощью оригинальной установки [21], через отверстие в теменной области черепа животного (S ≈ 1 см²). Твердая мозговая оболочка в пределах отверстия удалялась. Поверхность мозга непрерывно орошалась раствором Кребса (в мМ: NaCl 120.4; КСl 5.9; NaHCO₃ 15.5; MgCl₂ 1.2; CaCl₂ 2.5; NaH₂PO4 1.2; глюкоза 11.5; pH 7.4), аэрированного карбогеном. Система орошения поверхности головного мозга включала в себя цилиндрические воронки ВД-1 на 125 мл со фторопластовыми кранами. Для раствора Кребса и всех используемых в эксперименте растворов использовались отдельные воронки, которые располагались на 50 см выше орошаемого поля, что позволяло жидкости самотеком поступать к поверхности мозга. При помощи тефлоновых трубок каждая из воронок присоединялась к капилляру, расположенному внутри стеклянного сосуда, по которому постоянно циркулировала вода с температурой 38°C, подаваемая перистальтическим насосом Унирол-01 (ООО "Партнер Про", Россия). Капилляр располагался в непосредственной близости от поверхности мозга и заканчивался короткой пипеткой, конец которой подводился к самому краю операционного поля. Система осуществляла медленную подачу жидкости (одинаковую для всех используемых растворов). При этом жидкость равномерно (без образования капель) поступала на поверхность мозга в течение всего процесса измерения диаметра пиальных сосудов, что исключало механическое воздействие. Об этом свидетельствовали изменения показателей колебания диаметра сосудов при орошении поверхности мозга раствором Кребса, которые не превышали $5.0 \pm 0.5\%$. При смене орошающих жидкостей трубки оросительной системы и термостатируемый капилляр тщательно промывались.

Исследования реакций пиальных артерий проводились в 4 отдельных группах животных. У первых 2 групп: крысы в возрасте 4 мес. (n = 7) и крысы в возрасте 18 мес. (n = 6), исследовали реакции артерий на воздействие H₂S. В качестве донора экзогенного H₂S использовался раствор гидросульфида натрия (Sodium hydrosulfide monohydrate (NaHS), Sigma-Aldrich, 30 мкМ, орошение поверхности головного мозга). Время орошения составляло 2 мин, т.к. предварительные эксперименты показали, что в этот промежуток времени в ответ на воздействие NaHS в данной концентрации достигается наибольший процент числа дилатаций пиальных артерий. После прекращения орошения поверхности мозга раствором NaHS проводили отмывку раствором Кребса в течение 20 мин. Предварительные эксперименты показали, что этого времени достаточно для полной отмывки и достижения размеров исследуемых сосудов исходных значений. В дальнейшем эксперимент продолжался на фоне блокады КАТФ-каналов раствором глибенкламида (Glybenclamide, Sigma-Aldrich, 10 мкМ, в растворе диметилсульфоксида (DMSO)). Проводилось предварительное орошение поверхности мозга раствором глибенкламида в течение 10 мин с последующим добавлением NaHS в раствор блокатора. Концентрация DMSO в применяемых растворах глибенкламида составляла 0.1%. В предварительно проведенной серии экспериментов было установлено, что орошение поверхности головного мозга раствором DMSO в этой концентрации достоверно не изменяет диаметр пиальных сосудов крыс.

В 2 других группах: крысы в возрасте 4 мес. (n = 8) и крысы в возрасте 18 мес. (n = 6) исследовали реакции сосудов на воздействие раствора NaHS в отсутствие и на фоне блокады ВК_{Са}-каналов раствором тетраэтиламмоний хлорида (TEA, "Вектон", Россия, 2 мМ, предварительное орошение поверхности мозга в течение 5 мин с последующим добавлением NaHS в раствор блокатора). Фоновую реакцию на воздействие раствора NaHS в каждой группе анализировали по всему массиву сосудов и принимали за 100%. Проверка по критерию Краскела–Уоллеса показала отсутствие значимых различий между отдельными животными в фоновых реакциях на воздействие NaHS внутри каждой из исследованных групп. Общая продолжительность эксперимента составляла 40–50 мин, после чего животных усыпляли передозировкой раствора золетила (60 мг/кг).

Диаметр сосудов измеряли на статических изображениях с помощью оригинальной компьютерной программы "Blood Vessel Media Analyzer" (© Denis Chouvaev, Швеция). В программе предусмотрен режим контраста и увеличения изображения, а также калибровки для пересчета всех координат в метрические единицы. С использованием программы измеряли ширину потока эритроцитов, соответствующую внутреннему диаметру сосуда. По изменению числа артерий, сузившихся в ответ на воздействие блокатора, судили об изменении вклада калиевых каналов в базальный тонус сосудов. Изменение вклада исследованных каналов в H_2S -опосредованную дилатацию артерий оценивали, сравнивая число дилатированных сосудов и степень их дилатации в ответ на воздействие раствора NaHS до и после применения блокатора.

Изменение количества расширившихся, сузившихся и не прореагировавших на воздействие сосудов выражалось в процентах относительно общего числа исследованных сосудов в группе. Степень дилатации $\Delta Д$ оценивали в процентах как разность между значениями диаметра после (Д2) и до (Д1) воздействия отнесенную к диаметру сосуда Д1 перед воздействием:

$\Delta \Pi = (\Pi 2 - \Pi 1)/\Pi 1 \times 100.$

При значениях 5.0 ± 0.5% считали, что реакция отсутствует, т.к. такие изменения соответствовали колебаниям диаметра в покое.

Проведено измерение 725 участков пиальных артериальных сосудов диаметром от 12 до 99 мкм у крыс в возрасте 4 мес. и 612 участков — у 18-месячных крыс (диаметр от 9 до 85 мкм). У каждой крысы было измерено от 30 до 70 участков сосудов. Выраженность сосудистой реакции на воздействие H_2S может варьировать в зависимости от размера сосудов [6]. Поэтому для последующего анализа измеренные участки сосудов разделялись на группы в соответствии с их исходными диаметрами: мелкие (диаметром до 20 мкм), средние (от 20 до 40 мкм) и крупные (диаметром более 40 мкм). Данные по отдельной группе сосудов усреднялись для каждого животного и использовались для статистических сравнений.

Статистический анализ данных проводили с использованием пакета статистических программ Microsoft Excel 2019 и программы InStat 3.02 ("GraphPad Software Inc.", США). Данные представлены в виде среднего арифметического значения и его ошибки. Проверка экспериментальных данных на нормальность распределения проводилась с использованием критерия Колмогорова–Смирнова. Сравнение средних данных независимых выборок при сравнении 2 групп при нормальном характере распределения проводилось с использованием непарного *t*-теста. При сравнении более 2 групп применялся двухфакторный дисперсионный анализ (ANOVA) с последующим попарным сравнением групп согласно критерию Тьюки. При распределении вариант в выборке отличном от нормального при сравнении 2 групп использовался *U*-критерий Манна–Уитни. Для сравнения большего числа групп применялся критерий Краскела–Уоллиса с последующим попарным срав-

Рис. 1. Реакция пиальных артерий на воздействие раствора NaHS. Микрофотографии пиальных сосудов крыс в возрасте 4 мес., $\times 140$: (а) – исходное состояние; (b) – реакция на орошение поверхности головного мозга раствором NaHS (30 мкМ, 2 мин). Стрелками указан артериальный участок пиальной сосудистой сети. (с) – реакции пиальных артерий (% от общего числа исследованных артерий): *темная заливка* – крысы в возрасте 4 мес.; *белая заливка* – крысы в возрасте 18 мес. Различия значимы по сравнению с соответствующими значениями у крыс в возрасте 4 мес. (* p < 0.05, ** p < 0.01, *U*-критерий Манна–Уитни).

нением групп согласно критерию Данна. Если исследование на нормальность показывало его отсутствие хотя бы для одной выборки, статистический анализ полученных данных проводился с использованием непараметрических методов. Достоверным уровнем отличий считали вероятность не менее 95% (p < 0.05).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

В ответ на воздействие раствора NaHS у 4-месячных крыс преимущественной реакцией пиальных артерий была дилатация (58.26 ± 4.09% из всех исследованных артерий), 15.8 ± 2.11% сужалось, часть сосудов не изменяла диаметра (рис. 1). Наибольшее число дилатаций наблюдалось у артерий диаметром менее 20 мкм (75.63 ± 4.28%). С увеличением диаметра артерий число дилатаций в ответ на воздействие NaHS достоверно уменьшалось (p < 0.0001, KW = 56.05, критерий Краскела–Уоллиса) и у артерий диаметром более 40 мкм составляло только 53.79 ± 4.09% (рис. 2). Степень дилататорной реакции с увеличением диаметра артерий также достоверно снижалась (p < 0.0001, KW = 51.35, критерий Краскела–Уоллиса, табл. 1): с 38.65 ± 4.84% у мелких артерий до 19.93 ± 3.84% у артерий крупных диаметров.

Аппликация глибенкламида у 4-месячных крыс вызывала сужение в среднем около 50% артерий всех исследованных диаметров (рис. 3а). Число H₂S-опосредо-

Рис. 2. Дилататорная реакция пиальных артерий различных диаметров на воздействие раствора NaHS, число дилатаций (% от общего числа реакций в группе сосудов). *Темная заливка* — крысы в возрасте 4 мес.; *белая заливка* — крысы в возрасте 18 мес. Различия значимы по сравнению с соответствующими значениями у крыс в возрасте 4 мес. (* *p* < 0.05, ** *p* < 0.01, *U*-критерий Манна–Уитни).

ванных дилатаций на фоне предварительного введения глибенкламида изменялось только у мелких и средних артерий — уменьшалось в среднем на 20% (рис. 4а) без достоверного изменения степени реакции. Воздействие ТЭА у крыс в возрасте 4 месянев приводило к констрикции в среднем 35–40% всех исследованных артерий (рис. 3b).

Число H₂S-опосредованных дилатаций на фоне введения ТЭА у 4-месячных животных уменьшалось. Наибольшее уменьшение числа дилатаций (на 72.29 ± 4.16%) наблюдалось у мелких артерий (p < 0.0001, непарный *t*-тест). Число дилатаций артерий других диаметров уменьшалось примерно на 55% (рис. 4а). Степень H₂S-опосредованной дилатации артерий всех диаметров на фоне применения ТЭА снижалась (на 48.59 ± 5.12%, 33.37 ± 7.22% и 47.52 ± 4.07% соответственно у мелких, средних и крупных артерий (*U*-критерий Манна–Уитни)).

У крыс в возрасте 18 мес., по сравнению с более молодыми животными, воздействие раствора NaHS вызывало дилатацию достоверно меньшего числа пиальных

Группы артерий	4-месячные крысы (<i>n</i> = 15)		18-месячные крысы (<i>n</i> = 12)	
	Исходный диаметр, мкм	Диаметр после воз- действия раствора NaHS, мкм	Исходный диаметр, мкм	Диаметр после воз- действия раствора NaHS, мкм
Менее 20 мкм	15.14 ± 0.57	21.18 ± 1.07 ***	14.32 ± 0.96	19.98 ± 0.68 ***
20-40 мкм	29.61 ± 1.47	36.91 ± 1.36***	27.99 ± 2.01	$34.22 \pm 2.06 **$
Более 40 мкм	53.03 ± 1.11	63.79 ± 1.27 ***	48.69 ± 2.68	$57.01 \pm 2.95*$

Таблица 1. Дилататорная реакция пиальных артерий различных диаметров на воздействие раствора NaHS, изменение диаметра

Различия значимы по сравнению с соответствующими значениями исходного диаметра (*p < 0.05, **p < 0.01, ***p < 0.001, непарный *t*-тест).

Рис. 3. Констрикторная реакция на воздействие блокаторов калиевых каналов, число констрикций (% от общего числа реакций на воздействие блокатора в группе сосудов): (а) — реакция на воздействие глибенкламида; (b) — реакция на воздействие ТЭА. *Темная заливка* — крысы в возрасте 4 мес.; *белая заливка* — крысы в возрасте 18 мес. Различия значимы по сравнению с соответствующими значениями у крыс в возрасте 4 мес. в (* p < 0.05, *** p < 0.001, непарный *t*-тест).

артерий (p = 0.027, U = 18, U -критерий Манна–Уитни) – $41.9 \pm 4.26\%$ из всех исследованных артерий. $34.07 \pm 3.06\%$ артерий сужалось, $26.33 \pm 2.99\%$ не изменяло диаметра (рис. 1). Дилатация преимущественно наблюдалась на мелких артериях (диаметром менее 20 мкм). Число H₂S-индуцированных дилатаций этих артерий составляло $69.4 \pm 4.46\%$ и достоверно не отличалось от соответствующих значений у 4-месячных крыс (рис. 2). Число дилатаций артерий диаметром более 20 мкм у 18-месячных крыс было в среднем на 40% меньше, чем у крыс в возрасте 4 мес. (рис. 2). Различий в степени H₂S-опосредованной дилатации у крыс разных возрастов обнаружено не было (табл.1).

Аппликация глибенкламида у 18-месячных крыс приводила к сужению в среднем около 30% артерий всех исследованных диаметров (рис. 3а). Число дилатаций на воздействие раствора NaHS на фоне введения глибенкламида изменялось у мелких и средних артерий — уменьшалось в среднем на 40% (рис. 4b). Степень дилатации достоверно не изменялась. Воздействие ТЭА вызывало сужение 35–40% артерий всех исследованных диаметров (рис. 3b). Число и степень H₂S-опосредованных дилатаций при применении ТЭА изменялись только у мелких артерий. Число дилатаций уменьшилось на 42.9 ± 3.37% (p = 0.005, непарный *t*-тест, рис. 4b), степень дилататорной реакции снижалась с 26.16 ± 1.15% до 21.98 ± 0.86%.

Рис. 4. Изменение дилататорной реакции пиальных артерий различных диаметров на воздействие раствора NaHS на фоне блокады калиевых каналов (число дилатаций, % от общего числа реакций в группе сосудов): (а) – крысы в возрасте 4 мес.; (b) – крысы в возрасте 18 мес. *Линия* – дилататорная реакция сосудов в группе на воздействие раствора NaHS без применения блокатора, принятая за 100%. *Белая заливка* – реакция на воздействие NaHS на фоне глибенкламида; *темная заливка* – реакция на воздействие NaHS на фоне соответствующими значениями при применении раствора NaHS без блокаторов (* p < 0.05, ** p < 0.01, *** p < 0.001, непарный *t*-тест).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Орошение поверхности головного мозга раствором NaHS в концентрации 30 мкМ у молодых крыс приводило к расширению в среднем 60% и сужению около 16% сосудов. У крыс в возрасте 18 мес. воздействие раствора NaHS в наших экспериментах вызывало дилатацию только 41% исследованных пиальных артерий. Число H₂S-опосредованных констрикций превышало аналогичный показатель у более молодых животных (34.07 ± 3.06% из всех исследованных артерий, по сравнению с $15.8 \pm 2.11\%$ у крыс в возрасте 4 мес.). При этом число сосудов, не изменявших своего диаметра в ответ на воздействие NaHS, у крыс в возрасте 4-х и 18-ти месяцев достоверно не отличалось. Следует отметить, что разнонаправленная реакция артерий на любое воздействие характерно для функционирующей мозговой сосудистой сети [22]. Но в то же время возникновение констрикторной реакции в ответ на воздействие NaHS в достаточно низкой концентрации, наблюдаемое как у 4-, так и у 18-месячных крыс, может быть связано с разными уровнями напряжения кислорода на сосудистой стенке [12, 23]. В физиологическом диапазоне напряжения кислорода NaHS в концентрациях менее 100 мкМ вызывает расслабление сосудов, а в условиях более высоких уровней PO2 могут возникать вазоконстрикторные реакции [12]. Механизмы, которые зависят от уровня О2, включают взаимодействие

H₂S с гемовыми белками, такими как циклооксигеназа, и образование продуктов окисления сульфидов, таких как сульфит, тиосульфат и сульфат [24]. В литературе имеются сведения о существовании отличий показателей PO₂ в толще сосудистой стенки на разных уровнях мозговой сосудистой сети [25], это может быть одной из причин возникновения разнонаправленных реакций сосудов на воздействие H₂S. У 18-месячных крыс в наших экспериментах число констрикций на воздействие NaHS практически в 2 раза превышало аналогичный показатель у крыс в возрасте 4 мес., что может быть связано с возрастным изменением уровня NO [26]. Ранее нами было установлено, что у 18-месячных крыс повышается роль индуцибельной NOS (iNOS) в дилатации [27]. NO, в больших количествах высвобождаемый при участии iNOS, может напрямую взаимодействовать с H_2S . Кроме того, в условиях развития возрастного окислительного стресса H₂S в присутствии АФК может взаимодействовать с окисленными формами NO или активными формами азота с образованием молекул нитрозотиола, HNO и др., что также может способствовать снижению дилататорной реакции сосудов и развитию вазоконстрикции в ответ на воздействие H₂S [11].

При анализе дилататорной реакции пиальных артерий различных диаметров на воздействие NaHS нами было обнаружено, что число и степень дилатации зависят от диаметра сосудов. В возрасте 4 мес. наибольшее число и степень H_2S -опосредованных дилатаций отмечались на мелких пиальных артериях диаметром менее 20 мкм. При увеличении диаметра артерий число и степень дилатаций снижались. Такая картина ответной реакции сосудов различных диаметров на действие NaHS может быть связана с доминированием отдельных внутриклеточных сигнальных систем на разных уровнях пиальной сосудистой сети. В более ранних наших работах было обнаружено различное участие NO и калиевых каналов в осуществлении дилатации пиальных артерий разных диаметров [21, 27, 28]. Проведенное нами сравнение H_2S -опосредованных дилатаций у 4-и 18-месячных крыс показало, что с возрастом уменьшается число дилатаций артерий диаметром больше 20 мкм (в среднем на 40%) без изменения степени реакции. При этом старение достоверно не влияет на дилатацию более мелких артерий.

Одним из основных механизмов реализации вазодилататорного ответа на воздействие H_2S является активация калиевых каналов мембран гладкомышечных клеток. Действие H_2S преимущественно связывают с открытием $K_{AT\Phi}$ -каналов [2, 6, 14]. Также показана H_2S -опосредованная активация кальций-чувствительных калиевых каналов различной проводимости, потенциал-зависимых калиевых каналов и TRP-каналов [2, 15–17]. В литературе имеются сведения о том, что у старых животных открыто больше калиевых каналов [20]. Сверхактивация каналов может снижать вазодилататорную реакцию за счет уменьшения миоэндотелиальной электрической проводимости [14, 29]. В предыдущих наших исследованиях было показано возрастное снижение вклада АТФ-зависимых калиевых каналов и кальций-чувствительных калиевых каналов большой проводимости в осуществление ацетилхолин-индуцированной дилатации пиальных артерий [21, 28]. Поэтому в данной работе мы провели сравнение вклада этих каналов в осуществление H_2S -опосредованной дилатации.

Применение глибенкламида, являющегося селективным ингибитором $K_{AT\Phi}$ -каналов [30], у 4-месячных крыс приводило к констрикции около 50% артерий всех диаметров. ТЭА — блокатор BK_{Ca} -каналов вызывал констрикцию 35—40% артерий. Блокаторы также изменяли число H_2S -опосредованных дилатаций. Глибенкламид уменьшал число дилатаций артерий диаметром менее 40 мкм в среднем на 20%. А блокада BK_{Ca} -каналов приводила к уменьшению числа и степени дилататорных реакций артерий всех исследованных диаметров в 2 и более раз. Эти данные свидетельствуют о том, что у крыс в возрасте 4 мес. и К_{АТФ}- и ВК_{Са}-каналы участвуют в поддержании базального тонуса и осуществлении H₂S-индуцированных дилататорных реакций пиальных артерий.

У крыс в возрасте 18 мес. число констрикций артерий всех исследованных диаметров на воздействие глибенкламида было значительно меньше (30%, по сравнению с 50% у 4-месячных крыс). Уменьшение участия К_{АТФ}-каналов в поддержании базального тонуса сосудов может быть обусловлено снижением их плотности в стенке пиальных артерий. Косвенным подтверждением этого предположения могут служить полученные нами ранее результаты [21], свидетельствующие об уменьшении у 18-месячных крыс числа дилатаций пиальных артерий на пинацидил, являющийся открывателем К_{АТФ}-каналов [30]. Число H₂S-опосредованных дилатаций на фоне применения глибенкламида так же, как и у 4-месячных крыс уменьшалось только у артерий диаметром менее 40 мкм. Но в 18-месячном возрасте блокада КАТФ-каналов привела к снижению числа дилатаций в среднем на 40%, тогда как в 4-месячном – только на 20%. Следовательно, несмотря на возрастное снижение вклада КАТФ-каналов в поддержание базального тонуса пиальных артерий, вклад этих каналов в осуществление H₂S-опосредованных дилатаций при старении возрастает. Старение сопровождается развитием окислительного стресса и выработкой активных форм кислорода (АФК) [31]. Возрастное увеличение вклада АТФ-чувствительных калиевых каналов в H₂S-опосредованную дилатацию может быть связано с развитием окислительного стресса и выработкой большого количества АФК. В настоящее время получены фармакологические доказательства того, что активация КАТФ-каналов мозговых сосудов может происходить под влиянием перекиси водорода и пероксинитрита [32]. Также причиной активации КАТФ-каналов при старении может быть метаболическое активирование канала в результате развития возрастной митохондриальной дисфункции [33]. Это, в свою очередь, приводит к уменьшению продукции АТФ, снижению уровня АТФ и повышению уровня АДФ в клетке. Такие изменения соотношения АТФ/АДФ являются ключевым моментом в процессе активации К АТФ-каналов [34]. Однако, как указывалось выше, ранее нами было обнаружено, что вклад КАТФ-каналов в дилатацию пиальных артерий с возрастом снижается. Это может быть связано с отличиями в механизмах реализации дилататорных ответов, обусловленных активацией КАТФ-каналов. В более ранней нашей работе исследовалось возрастное изменение ацетилхолин-индуцированной дилатации. Предполагается, что ацетилхолин воздействует на сосудистую стенку, модулируя сигнальный каскад, включающий в себя протеинкиназы А и/или G, с последующей активацией К_{АТФ}-каналов, расположенных в эндотелии и гладкомышечных клетках сосудов [33, 34], в то время как H₂S непосредственно активирует К_{АТФ}-каналы путем регулирования экспрессии субъединиц канала [16], или сульфгидратирования Kir 6.1 субъединицы [35] и усиления ее связывания с фосфолипидом фосфотидилинозитол-(4,5)-бифосфатом (PIP_2) и снижения связывания Kir 6.1 с АТФ [4, 16].

Блокада ВК_{Са}-каналов у крыс в возрасте и 4-х и 18-ти месяцев в наших экспериментах вызывала констрикцию 35–40% артерий всех диаметров. Число и амплитуда H₂Sопосредованных дилатаций на фоне применения ТЭА у крыс обоих возрастов уменьшались только на мелких артериях (диаметром менее 20 мкм), но у молодых животных число дилатаций уменьшалось в среднем на 73%, а у 18-месячных – на 43%. Следовательно, вклад ВК_{Са}-каналов в поддержание базального тонуса пиальных артерий с возрастом не меняется, а их участие в H₂S-индуцированной дилатации

снижается. Активация ВК_{Са}-каналов H₂S в основном опосредована следующими механизмами. H₂S увеличивает вероятность открытия ВК_{Са}-каналов, и этот эффект связан с его восстанавливающим действием на сульфгидрильные группы субъединиц канала [36]. Кроме того, ВК_{Са}-каналы могут быть активированы увеличением притока Ca²⁺, вызванным H₂S-опосредованной сульфгидратацией TRPV-каналов [16, 18]. В качестве одной из причин возникновения возрастной сосудистой дисфункции рассматривается изменение в гомеостазе Ca²⁺, связанное с повреждением и нарушением функционирования митохондрий [37]. При этом могут быть затронуты несколько аспектов гомеостаза Ca^{2+} , таких как приток Ca^{2+} через открытые TRP-каналы, высвобождение Ca²⁺ из внутриклеточных запасов и процессы поглощения Ca²⁺ митохондриями. Это может приводить к накоплению Са²⁺ в цитоплазме, изменению в буферизации Са²⁺ митохондриями, образованию АФК [38, 39] и служить альтернативным источником Ca²⁺ для открытия ВК_{Са}-каналов [40]. Повышенная активность каналов может приводить к уменьшению миоэндотелиальной электрической проводимости и вазодилататорной реакции [18]. Возможно, это является одной из причин обнаруженного нами угнетения ВК_{Са}-индуцируемой H₂S-опосредованной вазодилатации у стареющих крыс. Одновременно с этим активность BK_{Ca}-каналов может снижать повышенный уровень АФК. В литературе имеются сведения о том, что усиление выработки активных форм кислорода ингибирует ВК_{Са}-каналы, снижая их чувствительность к Ca²⁺ и уменьшая вероятность и среднее время открытия канала [32, 41].

Таким образом, нами установлено, что у крыс с возрастом происходит угнетение H_2S -индуцированной дилатации пиальных артерий и увеличение констрикторных ответов на воздействие экзогенного H_2S . Уменьшается число H_2S -опосредованных дилатаций артерий диаметром больше 20 мкм. При этом старение не влияет на дилатацию более мелких артерий. В основе этих нарушений могут лежать изменения процессов, обусловленных активацией калиевых каналов. К 18 месяцам у крыс увеличивается вклад $K_{AT\Phi}$ -каналов в осуществление H_2S -опосредованной дилатации пиальных артерий диаметров менее 40 мкм. Одновременно с этим вклад BK_{Ca} -каналов в дилатацию снижается — у 18-месячных крыс эти каналы практически не участвуют в H_2S -опосредованной дилатации артерий диаметром более 20 мкм. Выявленные нами нарушения функциональной активности калиевых каналов могут служить терапевтическими мишенями для создания новых технологий, используемых при лечении возрастных сосудистых поражений головного мозга.

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНАДАРТОВ

Все процедуры, выполненные на животных, соответствовали этическим стандартам, утвержденным правовыми актами РФ, принципам Базельской декларации и рекомендациям Комиссии по контролю над содержанием и использованием лабораторных животных при Институте физиологии им. И.П. Павлова РАН (протокол № 12/26 от 26.12.2022 г.).

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Источник финансирования – госбюджет. Работа выполнена при поддержке Госпрограммы 47 ГП "Научно-технологическое развитие Российской Федерации" (2019–2030), тема 0134-2019-0001.

КОНФЛИКТ ИНТЕРЕСОВ

Конфликта интересов относительно публикации этой статьи не существует.

ВКЛАД АВТОРОВ

Планирование эксперимента – О.П.Г., сбор и обработка данных – О.П.Г., И.Б.С, написание и редактирование текста – О.П.Г., И.Б.С.

СПИСОК ЛИТЕРАТУРЫ

1. *Predmore BL, Alendy MJ, Ahmed KI, Leeuwenburgh C, Julian D* (2010) The hydrogen sulfide signaling system: changes during aging and the benefits of caloric restriction. Age (Dordr) 32(4): 467–481.

https://doi.org/10.1007/s11357-010-9150-z

- Kolluru GK, Shackelford RE, Shen X, Dominic P, Kevil CG (2023) Sulfide regulation of cardiovascular function in health and disease. Nat Rev Cardiol 20(2): 109–125. https://doi.org/10.1038/c41569.022.00741-6
- https://doi.org/10.1038/s41569-022-00741-6
 3. Wilkie SE, Borland G, Carter RN, Morton NM, Selman C (2021) Hydrogen sulfide in ageing, longevity and disease. Biochem J 478(19): 3485–3504. https://doi.org/10.1042/BCJ20210517
- 4. Гусакова СВ, Смаглий ЛВ, Бирулина ЮГ, Ковалев ИВ, Носарев АВ, Петрова ИВ, Реутов ВП (2017) Молекулярные механизмы действия газотрансмиттеров NO, CO и H2S в гладкомышечных клетках и влияние NO-генерирующих соединений (нитратов и нитритов) на среднюю продолжительность жизни. Успехи физиол наук 48(1): 24–52. [Gusakova SV, Smagliy LV, Birulina YG, Kovalev IV, Nosarev AV, Petrov IV, Reutov VP (2017) Molecular mechanisms of action of gas transmitters NO, CO and H₂S in smooth muscle cells and effect of NO-generating compounds (nitrates and nitrites) on average life expectancy. Uspekhi Fisiol Nauk 48(1): 24–52. (In Russ)].
- Коцюба AE (2011) Распределение НАДФН-диафоразы и ферментов синтеза сероводорода в стенке артерий головного мозга. Вестн новых мед технол 18(2): 255–256. [Kotsyuba AE (2011) Distribution of NADPH-diaphorase and enzyme synthesis of hydrogen sulfide in the walls of brain arterias. Vestn novykh med tekhnol 18(2): 255–256. [In Russ)].
- Dongó E, Kiss L (2020) The potential role of hydrogen sulfide in the regulation of cerebrovascular tone. Biomolecules 10(12): 1685. https://doi.org/10.3390/biom10121685
- Gheibi S, Jeddi S, Kashfi K, Ghasemi A (2018) Regulation of vascular tone homeostasis by NO and H₂S: Implications in hypertension. Biochem Pharmacol 149: 42–59. https://doi.org/10.1016/j.bcp.2018.01.017
- 8. Perridon BW, Leuvenink HG, Hillebrands JL, van Goor H, Bos EM (2016) The role of hydrogen sulfide in aging and age-related pathologies. Aging (Albany NY) 8(10): 2264–2289. https://doi.org/10.18632/aging.101026
- Calabrese V, Scuto M, Salinaro AT, Dionisio G, Modafferi S, Ontario ML, Greco V, Sciuto S, Schmitt CP, Calabrese EJ, Peters V (2020) Hydrogen sulfide and carnosine: modulation of oxidative stress and inflammation in kidney and brain axis. Antioxidants (Basel) 9(12): 1303. https://doi.org/10.3390/antiox9121303
- Hine C, Zhu Y, Hollenberg AN, Mitchell JR (2018) Dietary and endocrine regulation of endogenous hydrogen sulfide production: implications for longevity. Antioxid Redox Signal 28(16): 1483–1502.

https://doi.org/10.1089/ars.2017.7434

- 11. Liu Y-H, Lu M, Hu L-F, Wong PT-H, Webb G, Bian J-S (2012) Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 17(1): 141–185. https://doi.org/10.1089/ars.2011.4005
- 12. *Yuan S, Shen X, Kevil CG* (2017) Beyond a gasotransmitter: hydrogen sulfide and polysulfide in cardiovascular health and immune response. Antioxid Redox Signal (27): 634–653. https://doi.org/10.1089/ars.2017.7096
- Sindler AL, Delp MD, Reyes R, Wu G, Muller-Delp JM (2009) Effects of ageing and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles. J Physiol 587(15): 3885–3897. https://doi.org/10.1113/jphysiol.2009.172221
- Parfenova H, Liu J, Hoover DT, Fedinec AL (2020) Vasodilator effects of sulforaphane in cerebral circulation: A critical role of endogenously produced hydrogen sulfide and arteriolar smooth muscle K_{ATP} and BK-channels in the brain. J Cereb Blood Flow Metab 40(10): 1987–1996. https://doi.org/10.1177/0271678X19878284
- 15. Sun HJ, Wu ZY, Nie XW, Bian JS (2020) Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol 10: 1568. https://doi.org/10.3389/fphar.2019.01568
- Liu XY, Qian LL, Wang RX (2022) Hydrogen sulfide-induced vasodilation: the involvement of vascular potassium channels. Front Pharmacol 13: 911704. https://doi.org/10.3389/fphar.2022.911704

- Wang YZ, Ngowi EE, Wang D, Qi HW, Jing MR, Zhang YX, Cai CB, He QL, Khattak S, Khan NH, Jiang QY, Ji XY, Wu DD (2021) The potential of hydrogen sulfide donors in treating cardiovas-cular diseases. Int J Mol Sci 22(4): 2194. https://doi.org/10.3390/ijms22042194
- Behringer EJ, Hakim MA (2019) Functional interaction among K_{Ca} and TRP-channels for car-diovascular physiology: Modern perspectives on aging and chronic disease. Int J Mol Sci 20(6): 1380. https://doi.org/10.3390/ijms20061380
- Hakim MA, Chum PP, Buchholz JN, Behringer EJ (2020) Aging alters cerebrovascular endothe-lial GPCR and K⁺ channel function: divergent role of biological sex. J Gerontol A Biol Sci Med Sci 75(11): 2064-2073.
 - https://doi.org/10.1093/gerona/glz275
- 20. Tykocki NR, Boerman EM, Jackson WF (2017) Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Compr Physiol 7(2): 485–581. https://doi.org/10.1002/cphy.c160011
- 21. Gorshkova OP (2022) Age-related changes in the functional activity of ATP-sensitive potassium channels in rat pial arteries. J Evol Biochem Phys 58(2): 345-352. https://doi.org/10.1134/S0022093022020041
- 22. Pourcyrous M, Chilakala S, Elabiad MT, Parfenova H, Leffler CW (2018) Does prolonged severe hypercapnia interfere with normal cerebrovascular function in piglets? Pediatr Res 84(2): 290–295. https://doi.org/10.1038/s41390-018-0061-5
- 23. Gheibi S, Jeddi S, Kashfi K, Ghasemi A (2018) Regulation of vascular tone homeostasis by NO and H₂S: Implications in hypertension. Biochem Pharmacol 149: 42–59. https://doi.org/10.1016/j.bcp.2018.01.01
- 24. Koenitzer JR, Isbell TS, Patel HD, Benavides GA, Dickinson DA, Patel RP, Darley-Usmar VM, Lancaster JR Jr, Doeller JÉ, Kraus DW (2007) Hydrogen sulfide mediates vasoactivity in an O2-dependent manner. Am J Physiol Heart Circ Physiol 292(4): H1953-H1960. https://doi.org/10.1152/ajpheart.01193.2006
- 25. Wilson DF, Matschinsky FM (2020) Cerebrovascular Blood Flow Design and Regulation; Vulnerability in Aging Brain. Front Physiol 11: 584891. https://doi.org/10.3389/fphys.2020.584891
- 26. Szijártó IA, Markó L, Filipovic MR, Miljkovic JL, Tabeling C, Tsvetkov D, Wang N, Rabelo LA, Witzenrath M, Diedrich A, Tank J, Akahoshi N, Kamata S, Ishii I, Gollasch M (2018) Cystathionine γ -lyase-produced hydrogen sulfide controls endothelial NO bioavailability and blood pressure. Hypertension 71: 1210–1217. https://doi.org/10.1161/HYPERTENSIONAHA.117.10562
- 27. Горшкова ОП (2022) Особенности механизмов NO-опосредованной дилатации пиальных артерий на воздействие ацетилхолина у стареющих крыс. Интеграт физиол 3(3): 373–383. [Gorshkova OP (2022) Features of mechanisms of NO-mediated dilation of pial arteries to acetylcholine in aging rats. Integrat Fiziol 3(3): 373–383. (In Russ)]. https://doi.org/10.33910/2687-1270-2022-3-3-367-377
- 28. Gorshkova OP (2021) Age-related changes in the role of potassium channels in acetylcholineinduced dilation of pial arteries in normotensive and spontaneously hypertensive rats. J Evol Biochem Phys 57(1): 55–65. https://doi.org/10.1134/S0022093021010051
- 29. Beleznai TZ, Yarova PL, Yuill KH, Dora KA (2011) Smooth muscle Ca2+-activated and voltagegated K^+ channels modulate conducted dilation in rat isolated small mesenteric arteries. Microcirculation 18: 487–500.
 - https://doi.org/10.1111/j.1549-8719.2011.00109.x
- Driggers CM, Shyng SL (2023) Mechanistic insights on K_{ATP}-channel regulation from cryo-EM structures. J Gen Physiol 155(1): e202113046. https://doi.org/10.1085/jgp.202113046
- 31. Strickland M, Yacoubi-Loueslati B, Bouhaouala-Zahar B, Pender SLF, Larbi A (2019) Relationships between ion channels, mitochondrial functions and inflammation in human aging. Front Physiol 10: 158.
 - https://doi.org/10.3389/fphys.2019.00158
- 32. Tracy EP, Hughes W, Beare JE, Rowe G, Beyer A, LeBlanc AJ (2021) Aging-induced impairment of vascular function: mitochondrial redox contributions and physiological/clinical implica-tions. Antioxid Redox Signal 35(12): 974–1015. https://doi.org/10.1089/ars.2021.0031
- 33. Pourbagher-Shahri AM, Farkhondeh T, Talebi M, Kopustinskiene DM, Samarghandian S, Bernatoniene J (2021) An overview of NO signaling pathways in aging. Molecules 26(15): 4533. https://doi.org/10.3390/molecules26154533
- Li Y, Aziz Q, Tinker A (2021) The pharmacology of ATP-sensitive K⁺-channels (K_{ATP}). Handb Exp Pharmacol 267: 357–378. https://doi.org/10.1007/164 2021 466

- 35. Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011). Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulf hydrates potassium channels. Circ Res 109: 1259–1268. https://doi.org/10.1161/CIRCRESAHA.111.240242
- 36. Sitdikova GF, Fuchs R, Kainz V, Weiger TM, Hermann A (2014) Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H₂S). Front Physiol 431. https://doi.org/10.3389/fphys.2014.00431
- Kirkham DL, Robinson AT, Rossman MJ, Seals DR, Edwards DG (2021) Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. Am J Physiol Heart Circ Physiol 320(5): H2080–H2100. https://doi.org/10.1152/ajpheart.00917.2020
- Venkatachalam K (2022) Regulation of aging and longevity by ion channels and transporters. Cells 11(7): 1180. https://doi.org/10.3390/cells11071180
- Wilson C, Lee MD, Buckley C, Zhang X, McCarron JG (2022) Mitochondrial ATP production is required for endothelial cell control of vascular tone. Function (Oxf). https://doi.org/10.1093/function/zqac063
- Busija DW, Katakam PV (2014) Mitochondrial mechanisms in cerebral vascular control: shared signaling pathways with preconditioning. J Vasc Res 51(3): 175–189. https://doi.org/10.1159/000360765
- Sancho M, Kyle BD (2021) The large-conductance, calcium-activated potassium channel: A big key regulator of cell physiology. Front Physiol 12: 750615. https://doi.org/10.3389/fphys.2021.750615

H_2S -Mediated Dilation of Pial Arteries in Rats of Different Ages: Contribution of K_{ATP} and BK_{Ca} -Channels

O. P. Gorshkova^{*a*}, * and I. B. Sokolova^{*a*}

^a Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia *e-mail: o gorshkova@inbox.ru

Reactions of pial arteries to exogenous hydrogen sulfide exposure and assessment of the contribution of KATP and BKCa-channels to H2S-mediated dilation was studied in rats of different ages. Intravital microphotography in Sprague-Dawley rats aged 4 and 18 months was used to study the reactions of pial arteries of various diameters to the exposure of exogenous hydrogen sulfide donor solution – sodium hydrosulfide (NaHS, $30 \,\mu\text{M}$), as well as their change with the preliminary use of potassium channel blockers: K_{ATP} (glibenclamide, 10 $\mu M)$ and BK_{Ca} (tetraethyl ammonium, 2 mM). It was found that inhibition of H2S-mediated dilation of pial arteries and increase in constrictor responses to exogenous hydrogen sulfide exposure are taking place in rats with age. Age-related changes in H₂S-induced dilatory response of the pial arteries in rats depend on the size of the vessels. With age, there is a decrease in the number of dilations of pial arteries with a diameter of more than 20 μ m. At the same time, aging does not affect the dilatation of smaller arteries. These disorders are probably associated with changes in the processes caused by the activation of potassium channels. It was found that aging is accompanied by the increasing of KATP-channels contribution to the implementation of H2S-mediated dilation in pial arteries with diameters less than 40 μ m. BK_{Ca}-channels contribution to the dilatation decreases with age. In 18 months, rats, these channels barely participate in H_2S -mediated dilation in arteries with diameters more than 20 μ m.

 $\mathit{Keywords:}\ H_2S\text{-mediated vasodilation},\ K_{ATP}\text{-channels},\ BK_{Ca}\text{-channels},\ aging,\ pial arterial vessels}$