——— ОБЗОР ——

АЛЛОСТЕРИЧЕСКИЕ САЙТЫ И АЛЛОСТЕРИЧЕСКИЕ РЕГУЛЯТОРЫ G-БЕЛОК-СОПРЯЖЕННЫХ РЕЦЕПТОРОВ — СЕРЫЕ КАРДИНАЛЫ СИГНАЛЬНОЙ ТРАНСДУКЦИИ

© 2023 г. А. О. Шпаков

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН, Санкт-Петербург, Россия e-mail: alex_shpakov@list.ru Поступила в редакцию 01.10.2023 г.

После доработки 11.10.2023 г.

Принята к публикации 11.10.2023 г.

Мембранные рецепторы, сопряженные с G-белками (GPCR), являются ключевыми компонентами большинства эукариотических сигнальных систем, осуществляя передачу внешних сигналов к внутриклеточным эффекторным белкам. Активация GPCR осуществляется посредством специфического связывания различных по природе лигандов с их ортостерическим сайтом. Однако регуляция сродства ортостерического агониста к рецептору, контроль эффективности ответа, а также выбор предпочтительно активируемого внутриклеточного сигнального каскада осуществляются с помощью аллостерических механизмов. Это обусловлено присутствием в GPCR множества аллостерических сайтов, которые различаются по структурно-функциональной организации и топологии в молекуле рецептора, располагаясь во всех его функциональных субдоменах. Эндогенными регуляторами этих сайтов являются простые ионы (Na⁺, Zn²⁺, Mg²⁺, Ca²⁺, Cl⁻ и другие), липиды (холестерин, фосфолипиды, стероиды), аминокислоты и их производные, полипептиды, а также сигнальные белки, образующие с GPCR функционально активные комплексы (G-белки, β-аррестины, RAMP), и аутоантитела к внеклеточным участкам GPCR. По фармакологической активности лиганды аллостерических сайтов GPCR подразделяют на позитивные, негативные или нейтральные модуляторы эффектов ортостерических агонистов, а также на полные и инверсионные агонисты или нейтральные антагонисты, которые влияют на базальную активность рецептора в отсутствие ортостерического агониста, хотя возможно совмещение свойств модулятора и агониста. Множественность аллостерических сайтов и аллостерических регуляторов, сложные взаимодействия между ними, вовлечение аллостерических механизмов в формирование рецепторных комплексов играют ключевую роль в тонкой настройке функциональной активности сигнальных каскадов, в предвзятом агонизме, предопределяют процессы десенситизации рецепторов и судьбу рецепторного комплекса после передачи гормонального сигнала. В обзоре суммированы и проанализированы современные представления и новые тенденции в области изучения аллостерической регуляции GPCR, локализации и функциональной роли аллостерических сайтов, их эндогенных и синтетических лигандов. В качестве примера подробно рассмотрены синтетические аллостерические регуляторы рецепторов тиреотропного и лютеинизирующего гормонов как потенциальных лекарственных препаратов для коррекции эндокринных расстройств.

Ключевые слова: аллостерический регулятор, G-белок-сопряженный рецептор, аллостерический сайт, ортостерический агонист, сигнальная трансдукция, гетеротримерный G-белок, β-аррестин, рецепторный комплекс

DOI: 10.31857/S0044452923070021, EDN: GTNRON

введение

Передача сигналов различной природы в клетку осуществляется посредством специфичного связывания сигнальных молекул (гормоны, ростовые факторы, нейротрансмиттеры, нутриенты и др.) с мембранными рецепторными белками, среди которых наиболее распространены рецепторы, сопряженные с гетеротримерными G-белками (G protein-coupled receptors, GPCR). Их структурными особенностями является наличие семи трансмембранных участков (TM) – гидрофобных α-спиралей, пронизывающих плазматическую мембрану и образующих трансмембранный домен (7TM-пучок). С внешней стороны мембраны эти участки соединены тремя внеклеточными петлями (ECL1–ECL3), в то время как с внутренней стороны – тремя цитоплазматическими петлями (ICL1– ICL3), из которых ICL1, соединяющая TM1 и TM2, обычно достаточно короткая, в то время как ICL3, соединяющая TM5 и TM6, может включать до 120 аминокислотных остатков (AKO) и даже более. N-концевая часть GPCR обращена во внеклеточ-

ное пространство, и в некоторых рецепторах имеет значительную длину и сложную структурную организацию, формируя внеклеточный домен, ответственный за высокоаффинное связывание лиганда и стабилизацию ди- и олигомерных рецепторных комплексов. С-концевая часть GPCR расположена в цитоплазматическом пространстве, содержит сайты-мишени для GPCR-специфичных протеинкиназ (GRK-киназ). Фосфорилирование этих сайтов играет определяющую роль в контроле взаимодействия GPCR с различными регуляторными белками, в том числе с β-аррестинами, что вносит существенный вклад в сигнальную трансдукцию, в процессы десенситизации, эндоцитоза и рециклизации рецепторной молекулы. В некоторых GPCR N-концевом сегменте цитоплазматического В С-концевого домена локализована амфипатическая спираль (Н8), которая хотя и не пронизывает плазматическую мембрану, но тесно с ней ассоциирована, образуя дополнительную четвертую ICL, вовлеченную в процессы сигнальной трансдукции.

Единственный сайт в молекуле GPCR, с которым связывается его эндогенный лиганд, называется ортостерическим сайтом. Как правило, такое связывание характеризуется высокой специфичностью и является высокоаффинным. Ортостерический сайт может быть локализован в различных локусах рецептора, что в значительной степени определяется природой эндогенного лиганда. В рецепторах, активируемых значительными по размеру лигандами (гликопротеиновые и полипептидные гормоны), ортостерический сайт образован N-концевым участком и ECLs или локализован в значительном по размеру эктодомене, в то время как в рецепторах, активируемых небольшими лигандами (производные аминокислот и липидов, небольшие пептиды, нутриенты, и др.), он располагается во внешнем преддверии или внутри трансмембранного тоннеля, образованного семью гидрофобными TMs. Связывание рецептора с лигандом ортостерического сайта, наделенным агонистической активностью, приводит к конформационным перестройкам в молекуле GPCR, результатом чего является активация различных типов G-белков, взаимодействующих с внутриклеточными участками рецептора и цитоплазматическиориентированным вестибюлем его трансмембранного тоннеля. Следствием этого являются запуск внутриклеточных сигнальных путей, включающих ферменты-генераторы вторичных посредников, G-белок-регулируемые ионные каналы, многочисленные протеинкиназы, фосфатазы и транскрипционные факторы, которые вовлечены в регуляцию фундаментальных клеточных процессов. Связывание агониста с ортостерическим сайтом рецептора также становится триггером фосфорилирования его цитоплазматических участков с помощью киназ, специфичных к GPCR (GRК-киназ), что обеспечивает образование комплекса фосфорилированного рецептора с β-аррестинами и приводит к различным событиям, в том числе к прерыванию G-белок-опосредуемого сигналинга, эндоцитозу лиганд-рецепторного комплекса с его дальнейшей деградацией или рециклизацией, а также к запуску β-аррестин-опосредуемого сигналинга.

Длительное время считали, что лиганды ортостерического сайта играют главенствующую роль в регуляции активности GPCR и реализуемых через них сигнальных каскадов. Это выражалось в том, что большинство известных и широко применяемых в настоящее время для регуляции GPCR прямых агонистов (активируют рецептор), нейтральных антагонистов (блокируют активирующий эффект ортостерического агониста) и инверсионных агонистов (ингибируют базальную и стимулированную активность рецептора) представлены эндогенными или синтетическими лигандами ортостерических сайтов. Эти соединения составляют большую часть от всех известных регуляторов GPCR и включают не менее трети используемых в медицине фармакологических препаратов [1, 2]. Однако в последние годы получены многочисленные свидетельства того, что не менее важную роль в контроле активности GPCR играют их аллостерические регуляторы, которые взаимодействуют с аллостерическими сайтами, расположенными в различных локусах GPCR, и число которых в молекуле рецептора, как правило, составляет от 3-4 до десяти и более. В дальнейших разделах будут подробно проанализированы как общие принципы аллостерической регуляции GPCR, так и различные типы аллостерических регуляторов, в том числе применительно к некоторым типам GPCR. Перед этим дается краткое описание эволюции, структурнофункциональной организации и механизмов действия GPCR.

І. СТРУКТУРА И КЛАССИФИКАЦИЯ GPCR

Как отмечалось выше, основу структуры GPCR составляет 7ТМ-пучок, включающий семь спиральных гидрофобных участков, которые имеют длину от 17 до 24 АКО и соединены тремя ECLs и тремя ICLs. Эти петли гидрофильны и даже в близкородственных рецепторах могут в значительной степени варьировать по длине и первичной структуре. Наряду с ECLs внеклеточная часть GPCR, ответственная за узнавание и связывание эндогенных лигандов, включает N-концевой субдомен. В родопсин-подобных (rhodopsin-like) GPCR N-концевой субдомен редуцирован и представлен сравнительно небольшим участком, в то время как в рецепторах, относящихся к другим классам GPCR, например, к рецепторам клеточной адгезии, он может быть представлен значительным по размеру внеклеточным доменом, имеющим сложную пространственную организацию и множество функциональных

модулей. Вариабельными по длине являются ECL2, ICL3 и цитоплазматический С-концевой домен. Вследствие этого длина молекул GPCR варьирует в широких пределах – от 289 AKO у Masподобного рецептора (Q86SM5) до 3312 AKO у ЭФР-подобного рецепторного белка-1 (Q9NYQ7), хотя в большинстве случаев она составляет 320– 470 AKO [3].

В центральной части некоторых α-спиралей, образующих 7ТМ-пучок, локализованы изгибы, которые, как правило, включают высококонсервативные остатки пролина, имеющего ограниченную конформационную подвижность. Наличие в этих изгибах остатков пролина, с одной стороны, обеспечивает их жесткость и стабилизирует пространственную структуру внутренних полостей 7ТМпучка и, с другой, является одним из ключевых элементов механизма сигнальной трансдукции, осуществляемой через GPCR. Определяющую роль в передаче сигнала с активированного гормоном рецептора к трансдукторным и эффекторным белкам играют интерфейсы, образованные цитоплазматическими окончаниями TMs и проксимальными к мембране сегментами цитоплазматических петель рецептора и его С-концевого домена, которые содержат большое количество положительно заряженных АКО и, тем самым, являются поликатионными структурами, тесно ассоциированными с мембраной. Эти интерфейсы участвуют в формировании сайтов, ответственных за специфичное взаимодействие с G-белками, в первую очередь с их Gα-субъединицами, а также с β-аррестинами. Мутации в этих интерфейсах, в том числе замены положительно заряженных аминокислот в проксимальных к мембране участках ICL2 и ICL3 и в высококонсервативном DRY-мотиве, локализованном в TM3/ICL2-интерфейсе, приводят к потере способности мутантного рецептора осуществлять передачу сигнала в клетку и(или) меняют его эффекторную специфичность.

Основываясь на сравнительном анализе аминокислотных и нуклеотидных последовательностей GPCR, а также на изучении их структурно-функциональной организации были выделены семь основных семейств GPCR, пять из которых имеются у позвоночных и многоклеточных беспозвоночных животных и еще два семейства только у грибов и представителей одноклеточных эукариот [4, 5]. Согласно общепринятой классификации Robert Fredriksson и соавторов у млекопитающих выделяют следующие семейства GPCR: родопсин-подобные рецепторы (семейство А), секретиновые рецепторы (часть семейства В), рецепторы клеточной адгезии (часть семейства В), метаботропные глутаматные и структурно родственные им рецепторы (семейство С), рецепторы Frizzled/Taste2 (семейство F) [4-7]. Семейство родопсин-подобных рецепторов, в свою очередь, подразделяется на четыре подсемейства – α , β , γ и δ . Наиболее обширным

и самым исследованным является подсемейство α , которое включает рецепторы биогенных аминов и простагландинов, мелатониновые и аденозиновые рецепторы, опсины. Другая классификация родопсин-подобных GPCR выделяет четыре их подсемейства: G0 – рецепторы пептидных гормонов и мелатонина, опсины, G1 – соматостатиновые, опиоидные и хемокиновые рецепторы, G2 – рецепторы биогенных аминов и аденозина, G3 – меланокортиновые и каннабиноидные рецепторы, рецепторы релаксина, простагландинов, гипофизарных гликопротеиновых гормонов и сфингозин-1-фосфата [8]. Длительное время, а в ряде случаев и сейчас, дополнительно используют классификацию GPCR, основанную на типе G-белков, которые они преимущественно активируют. Однако, согласно множеству полученных в последние годы доказательств, один и тот же GPCR после активации ортостерическим агонистом способен сопрягаться последовательно с несколькими типами G-белков, соответственно активируя не один, а несколько внутриклеточных каскадов. Поэтому такая классификация является весьма условной, хотя в практическом отношении остается удобной. Наряду с этим некоторые GPCR способны независимо от G-белков активировать β-аррестиновые пути, что вовсе не укладывается в парадигму классификации GPCR по типу сопряженных с ними G-белков.

Для понимания тонких механизмов активации GPCR и разработки фармакологических препаратов со свойствами их селективных регуляторов необходимо установление пространственной организации этих рецепторов, а также построение наиболее приближенных к реальности 3D-моделей их ортостерических и аллостерических сайтов. Исследования 3D-структур GPCR стартовали после расшифровки с помощью рентгеноструктурного анализа пространственной структуры светочувствительного рецепторного белка родопсина, наиболее просто устроенного GPCR [9]. После этого 3D-модели других GPCR строились на основе идентифицированной структуры родопсина с учетом данных сайт-направленного мутагенеза, результатов биофизических и биохимических исследований [10, 11]. Однако предсказательная способность "родопсиновых" моделей для большинства рецепторов была низкой, что требовало получения данных рентгеноструктурного анализа других GPCR. Здесь возникли значительные трудности, обусловленные низким содержанием других типов GPCR в плазматической мембране, значительной длиной и высокой подвижностью ECLs и ICLs в большинстве рецепторов, низкой стабильностью их трансмембранного домена в условиях отсутствия лиганда и взаимодействия с мембранными липидами, в первую очередь с мембранным холестерином. В определенной степени эти трудности были преодолены только в 2007 г., когда под руководством будущего Нобелевского лауреата Брайана Кобилки

была разработана новая технология получения кристаллических структур, отличных от родопсина GPCR. Это позволило с помощью рентгеноструктурного анализа установить 3D-структуру β_2 -адренергического рецептора (β_2 -AR) [12, 13], а в дальнейшем в короткие сроки с использованием широкого спектра современных физико-химических подходов детально охарактеризовать пространственную структуру большого числа других GPCR [7], включая такие "неклассические" формы GPCR, как рецептор кальцитонина, относящийся к семейству В [14], и рецептор Frizzled 4 (FZD4), относящийся к семейству F [15]. В настоящее время известны 3D-структуры более чем для 150 GPCR [16]. Это позволило совершить настоящую революцию в области дизайна новых лигандов ортостерического сайта GPCR, а также разработать подходы для создания таких лигандов, которые характеризуются селективностью не только по отношению к определенному типу рецептора, но и к определенному внутриклеточному эффектору, т.е. наделенные предвзятым агонизмом [17, 18].

II. СИГНАЛЬНЫЕ ПУТИ GPCR, ВКЛЮЧАЮЩИЕ G-БЕЛКИ И β-АРРЕСТИНЫ

Основными трансдукторами сигнала, передаваемого с активированного гормоном GPCR к внутриклеточным эффекторам, являются гетеротримерные G-белки, состоящие из Gα-субъединицы и Gβγ-димера, причем Gα-субъединица определяет типовую принадлежность G-белка. Она включает гуаниннуклеотидсвязывающий сайт, который в неактивном состоянии связан с гуанозиндифосфатом (ГД Φ), а при активации гормоном – с гуанозинтрифосфатом (ГТФ). Gα-субъединица также проявляет ГТФазную активность, что обеспечивает возвращение G-белка из активного, ГТФ-связанного, в неактивное ГДФ-связанное состояние. Gβγ-димер, представляющий собой достаточно прочный комплекс (за исключением димера, в состав которого входит β_5 -субъединица), отвечает за фиксацию αβγ-гетеротримерного G-белка в плазматической мембране, а также, как и Gα-субъединица, вовлечен в регуляцию активности множества эффекторных белков, определяя, тем самым, физиологический ответ клетки на гормональный стимул. G-белки, исходя из структурных и функхарактеристик Gα-субъединиц, циональных подразделяют на четыре основных класса: 1) G_{s} белки, через которые осуществляется стимуляция активности мембранно-связанных изоформ аденилатциклазы (АЦ), катализирующих образование цАМФ, и далее цАМФ-зависимых эффекторных белков; 2) G_{і/о}-белки, через которые осуществляется ингибирование некоторых мембранно-связанных изоформ АЦ в условиях их стимуляции гормональными или негормональными агентами; 3) G_{q/11}-белки, через которые сти-

мулируется активность фосфоинозитид-специфичной фосфолипазы СВ (PLCВ) и регулируется внутриклеточный кальциевый сигналинг; 4) G_{12/13}-белки (наименее представленный класс), через которые регулируется активность Rap1-специфичного ГТФазу активирующего белка, обменного фактора Rho-ceмейства, кадгеринов, радиксина и ряда других белков. У млекопитающих имеются 16 генов, кодирующих Gα-субъединицы, а также 5 генов для Gβ-субъединиц и 12 генов для Gγ-субъединиц [19]. У человека, с учетом альтернативного сплайсинга, идентифицированы 23 функционально активных Gα-субъединицы [20]. Gβγ-димеры, донаторами которых в основном являются G_{і/о}-белки, могут разнонаправленно влиять на активность цАМФзависимых путей, стимулируя АЦ 1-го типа и ингибируя АЦ 2-го, 4-го и 7-го типов, стимулировать активность PLC_β и γ-изоформы фосфатидилинозитол-3-киназы, а также регулировать активность калиевых (Kir3.1-Kir3.4) и кальциевых (P/Q, N) каналов.

Механизм активации G-белков после связывания GPCR с ортостерическим агонистом включает снижение аффинности Gα-субъединицы к ГДФ и его замену на ГТФ, снижение сродства ГТФ-связанной Gα-субъединицы к Gβγ-димеру и диссоциацию αβγ-гетеротримерного комплекса с высвобождением свободных $G\alpha$ -ГТФ и $G\beta\gamma$, которые в дальнейшем регулируют активность внутриклеточных эффекторов [21]. После этого, благодаря присущей Gα-субъединице ГТФазной активности, ГТФ в гуаниннуклеотидсвязывающем сайте гидролизуется до ГД Φ , что индуцирует реассоциацию $G\alpha$ -ГДФ и $G\beta\gamma$ и возвращает G-белок в исходное, неактивное, состояние. В ряде случаев может не происходить полной диссоциации Gα-ГТФ и Gβγ-димера, а лишь ослабляется взаимодействие между ними, что позволяет высвободиться отдельным сегментам G-белка, которые необходимы для взаимодействия с нижележащими в сигнальном каскаде эффекторными белками [21]. Важную роль здесь играют белки цитоскелета, в том числе тубулин, которые могут выполнять функции донаторов ГТФ для G-белков в процессе ГДФ/ГТФ-обмена [22].

За взаимодействие с G-белками в большинстве рецепторов отвечают проксимальные к мембране участки ICL2 и ICL3 и их интерфейсы с TMs, а в некоторых рецепторах семейства A в такое взаимодействие вовлечен проксимальный участок C-концевого домена. В области этого участка, как отмечалось выше, может формироваться четвертая, дополнительная цитоплазматическая петля либо путем заякоривания в мембране жирнокислотного пальмитата, модифицирующего остатки цистеина, локализованные в этом участке, либо вследствие присутствия в C-концевом домене небольшой гидрофобной спирали (H8), которая тесно ассоцииро-

вана с внутренней поверхностью плазматической мембраны. Участки взаимодействия с G-белками обычно обогащены положительно заряженными аминокислотами, образующими BBXXB и родственные ему мотивы, где В – положительно заряженные остатки лизина, аргинина или гистидина [23]. Важную роль в активации GPCR и во взаимодействии с G-белками играют ряд высококонсервативных мотивов, в том числе мотив (D/E/N)RY, расположенный на границе TM3 и ICL2, и мотив NPXXY, расположенный в цитоплазматической части ТМ7 [24-26]. В неактивном рецепторе они взаимодействуют с цитоплазматическим окончанием TM6, но после активации GPCR гормоном, вызывающей значительные изменения конформации его ТМ6, эти мотивы приобретают способность взаимодействовать между собой, что вносит определяющий вклад в активацию G-белков [27, 28]. Мотив NPXXY также вовлечен в активацию независимых от G-белков сигнальных каскадов, в том числе путем взаимодействия с белками Rho1семейства [26, 29]. Поскольку большинство GPCR функционально сопряжены с несколькими типами G-белков, то и их цитоплазматические участки способны формировать несколько G-белок-связывающих поверхностей, которые могут быть изолированы друг от друга или частично перекрываться. Эти поверхности имеют различную доступность для G-белков в различных лиганд-активированных состояниях рецептора, что и является одним из механизмов предвзятого агонизма.

Наряду с G-белками, GPCR взаимодействуют с различными адаптерными и регуляторными белками, которые влияют на эффективность и селективность передачи гормонального сигнала, контролируют процессы эндоцитоза лиганд-рецепторных комплексов, а в ряде случаев сами являются полноценными участниками сигнальной трансдукции. Наиболее важными их представителями являются β-аррестины, достаточно древнее семейство регуляторных белков, которые после GRK-опосредуемого фосфорилирования GPCR не только прерывают передачу сигнала через G-белки и опосредуют транспорт рецепторного комплекса в составе эндосомы внутрь клетки, но и сами способны осуществлять передачу сигнала к внутриклеточным эффекторам [30-35]. В ряде случаев показано, что для передачи β-аррестин-специфичных сигналов не требуется обмена гуаниновых нуклеотидов, что может указывать на независимость такого сигналинга от G-белков [36].

У млекопитающих выявлено 4 формы аррестинов, две из которых – аррестин-2 (βагг1) и аррестин-3 (βагг2), называемые также незрительными аррестинами, представлены практически во всех типах тканей и имеют исключительную важность для GPCR-опосредуемой сигнальной трансдукции [34, 37, 38]. Процесс β-аррестин-опосредуемого эндоцитоза лиганд-связанных GPCR-комплексов

индуцируется путем сайт-специфичного фосфорилирования цитоплазматических участков рецептора (в первую очередь, сайтов в его С-концевом домене) с помощью киназ GRK-семейства по остаткам серина и треонина. Это повышает аффинность GPCR к β-аррестинам, результатом чего является вытеснение этими регуляторными белками Gαсубъединицы из цитоплазматического вестибюля трансмембранного тоннеля GPCR, что приводит к прекращению передачи гормонального сигнала через G-белок [34]. Взаимодействие β-аррестина с рецептором сопровождается образованием многокомпонентного комплекса, включающего клатрин, адаптерный белок-2 и ряд других компонентов, и это запускает процесс клатрин-опосредуемого эндоцитоза GPCR с дальнейшим включением его в раннюю эндосому [39, 40]. После этого GPCR либо подвергается рециклизации, возвращаясь в плазматическую мембрану в свободном от лиганда состоянии, будучи способным воспринимать следующий гормональный сигнал, либо подвергается лизосомальной деградации. В последнем случае рецепторы сначала сортируются внутри эндоцитарного пути и упаковываются во внутрипросветные везикулы, образующие мультивезикулярные тельца, после чего эти тельца сливаются с лизосомами, где осуществляется протеолитическая деградация лиганд-рецепторного комплекса [39, 40].

В зависимости от паттерна фосфорилирования рецептора киназами GRK-семейства, образование комплекса β-аррестина с лиганд-активированным GPCR может привести к формированию сигналосомы, что обеспечивает β-аррестин-опосредуемую стимуляцию большого числа внутриклеточных путей и эффекторных белков. Основной мишенью β-аррестинов являются компоненты каскада митогенактивируемых протеинкиназ (МАРКѕ), таких как протеинкиназы ERK1/2, p38-MAPK, JNK3, которые контролируют процессы роста, дифференцировки и выживания клеток [31, 35, 41-49]. Наряду с этим, β-аррестины могут быть вовлечены в активацию 3-фосфоинозитидного пути и его основного эффекторного звена – протеинкиназы В (Akt), в регуляцию активности цАМФ-специфичной фосфодиэстеразы 4-го типа, контролирующей активность цАМФ-зависимых сигнальных путей [50], а также участвовать в сопряжении GPCR с тирозинкиназами Src-семейства, в том числе с Fgrкиназой, регулирующими иммунный ответ, процессы воспаления, клеточной миграции и дифференцировки [51–54]. Мишенями β-аррестинов, сопряженных с GPCR, являются микроPHK, регулирующие множество биохимических процессов в клетке, включая активность транскрипционных факторов и экспрессию генов [55-57].

Если участие β-аррестинов в GPCR-опосредуемой сигнальной трансдукции не вызывает сомнений, то вопрос о том, способны ли β-аррестины осуществлять свои сигнальные функции самостоя-

тельно, независимо от G-белков, остается дискуссионным. Так в последнее десятилетие получены доказательства, что для активации компонентов каскада MAPKs необходимо согласованное участие β-аррестинов и G-белков, поскольку в отсутствие G-белков β-аррестины могут утратить способность активировать MAPKs [58-61]. Так, в культурах НЕК293-клеток, в которых была полностью блокирована экспрессия G_s -, $G_{q/11}$ - и $G_{12/13}$ белков и с помощью коклюшного токсина инактивированы G_{i/o}-белки, способность β-аррестинов опосредовать стимуляцию ERK1/2-киназ, компонентов каскада MAPKs, была подавлена [61]. При этом рекрутирование β-аррестинов к рецептору, а также β-аррестин-зависимая интернализация GP-CR полностью сохранялись, и это указывает на то, что для этих процессов присутствие G-белков не является обязательным. В пользу согласованных эффектов β-аррестинов и G-белков свидетельствуют данные о взаимодействии β-аррестинов и αсубъединиц G_{і/о}-белков и об участии включающего их многокомпонентного рецепторного комплекса в процессе сигнальной трансдукции [36]. Показано, что β-аррестины могут быть вовлечены в модуляцию активации GPCR различными типами Gбелков, как это продемонстрировано для рецептора паратиреоидного гормона 1 типа (PTH1R), функционально сопряженного с G_s- и G_{g/11}-белками [62].

III. ЭВОЛЮЦИЯ GPCR

Прототипы GPCR обнаружены у бактерий, но вопрос о том, какие из них могут являться непосредственными предшественниками GPCR у эукариотических организмов в настоящее время, остается дискуссионным. В качестве наиболее подходящих кандидатов рассматривают обнаруженные у различных видов бактерий светочувствительные и родственные им родопсины (протео-, бактерио- и галородопсины), которые, подобно GPCR эукариот, имеют трансмембранный домен с семиспиральной структурой [63-66]. Геномный анализ показал значительную гомологию трансмембранных доменов бактериальных родопсинов с таковыми метаботропных глутаматных рецепторов и некоторых других GPCR класса С, представляющих собой наиболее древнюю группу эукариотических GPCR [67]. Установлено, что внеклеточный домен GPCR класса С характеризуется значительной гомологией по отношению к бактериальным периплазматическим связывающим белкам (periplasmic binding proteins, PBP) [68], причем наиболее высокая степень гомологии с этими белками продемонстрирована для N-концевого эктодомена метаботропного рецептора γ -аминомасляной кислоты (GABA_BR) [67]. На основании этого было выдвинуто предположение, что на ранних этапах эволюции произошло объединение бактериального родопсина и

PBP через образование между ними дисульфидной связи с последующим слиянием их генов и образованием древней формы метаботропного глутаматного рецептора [67]. В отношении других GPCR, в том числе рецепторов наиболее обширного класса А, имеются две гипотезы, в соответствии с которыми они либо эволюционировали от GPCR класса С, либо произошли независимо от бактериальных родопсинов. Однако в настоящее время доминирует точка зрения о том, что бактериальные родопсины и родопсины эукариотических организмов эволюционировали от различных предшественников и их структурное сходство обусловлено конвергентной эволюцией [69-72]. Так на основе филогенетического анализа и изучения структурно-функциональной организации различных родопсинов было показано, что бактериородопсины могли произойти от лизосомальных переносчиков цистеина, имеющих 7ТМ-структуру [71, 73], в то время как эукариотические родопсины эволюционировали от цАМФ-рецепторов, имеющих классическую семиспиральную структуру [74, 75]. Имеются основания считать, что GPCR могли возникнуть от рецепторных гистидинкиназ, широко представленных у бактерий, и имеющих от 6 до 8 трансмембранных участков, которые способны образовывать трансмембранный домен, имеющий значительное сходство с таковым в GPCR эукариот [76].

GPCR имеются у эукариотических организмов различного филогенетического уровня, включая одноклеточных эукариот [76-78]. Значительное разнообразие GPCR характерно для грибов, у представителей которых выделяют от 5 до 9 классов этих рецепторов [77, 79]. При этом в геноме дрожжей Saccharomyces cerevisiae, Schizosaccharomyces pombe и Candida albicans локализовано только три гена для GPCR, кодирующих феромональные рецепторы Ste2 и Ste3 для α- и а-факторов, соответственно, а также глюкозный рецептор Gpr1, являющийся сенсором глюкозы в окружающей среде [80]. В геноме Neurospora crassa имеются 10 генов, кодирующих феромональные рецепторы Pre-1 и Pre-2, трансмембранные белки, подобные цАМФрецепторам (Gpr-1, Gpr-2, Gpr-3), сенсоры углерода (Gpr-4) и азота (Gpr-5 и Gpr-6), а также аналоги микробных опсинов (Nop-1 и Orp-1) [79, 81]. В геноме Aspergillus nidulans представлены 16 генов для GPCR [82], в геноме слизевика Dictyostelium discoideum число таких генов достигает уже 55 [83], а в геноме патогенного для злаковых растений гриба Fusarium graminearum насчитывается 123 гена для GPCR, которые подразделяют на 10 классов, один из которых (класс X) объединяет необычные формы рецепторов, имеющих специализированный внеклеточный CFEM-домен, ответственный за вирулентность гриба [84]. Сходные неканонические GPCR, имеющие CFEM-домен, обнаружены и у другого патогенного гриба Magnaporthe oryzae [85].

Необычную группу GPCR, которая широко представлена у оомицетов, составляют так называемые GPCR-bigrams [86]. Они включают N-концевой домен, являющийся по топологии и структурно-функциональной организации сходным с GPCR, и расположенный в цитоплазме С-концевой домен, который наделен каталитическими свойствами [87]. В качестве С-концевого каталитического домена могут выступать ферменты фосфатидилинозитол-4-фосфат-5-киназа (phosphatidylinositol-4-phosphate 5-kinase, PIPK) и инозитолполифосфатфосфатаза, вовлеченные в фосфолипидные сигнальные пути, АЦ и цАМФ-специфичная фосфодиэстераза, ответственные за синтез и деградацию вторичного посредника цАМФ, а также различные формы тирозинкиназ и родственные им белки. В геноме различных видов оомицетов имеется от нескольких до 20 и более GPCR-bigrams, причем наиболее хорошо охарактеризованы конструкты GPCR-PIPK [86]. Нокаут гена RpkA, кодирующего GPCR-PIPK, у Dictyostelium discoideum вызывает дефекты в восприятии плотности клеток, снижает защиту от бактерий, нарушает фагоцитарную активность [88], в то время как нокаут даже одного из 12 генов, кодирующих GPCR-PIPK, у патогенного гриба Phytophthora infestans приводит к нарушению бесполого размножения и в значительной степени снижает патогенность [89]. Выключение одного из генов для GPCR-PIPK у Phytophthora so*јае* снижает как хемотаксис, так и вирулентность [90]. Все эти данные свидетельствуют об исключительной важности GPCR-bigrams для нормального функционирования оомицетов. GPCR-bigrams грибов имеют структурное сходство с сенсорными системами бактерий, которые также включают трансмембранный компонент, выполняющий функцию сенсора внешнего сигнала, и локализованный в цитоплазме эффекторный белок, который чаще всего представлен различными протеинкиназами, циклазами, фосфодиэстеразами и метилтрансферазами [91, 92].

У растений количество GPCR сильно ограничено, а сами системы GPCR-G-белок по структурно-функциональной организации существенно отличаются от таковых у животных, что обусловлено особенностями структуры как рецепторов, так и G-белков [93]. В наибольшей степени паттерн GPCR исследован у растения Arabidopsis thaliana, в геноме которого выявлено, по крайней мере, 3 гена, кодирующих семиспиральные GPCR, которые взаимодействуют с GPA1, α-субъединицей G-белка, в основном через посредство цитоплазматического С-концевого домена [93-97]. Два рецептора GCR1 и GCR2, структурно близкие цАМФ-рецепторам Dictyostelium discoideum, опосредуют регуляторные эффекты абсцизовой кислоты на физиологические процессы у Arabidopsis, причем GCR2 является позитивным [95], в то время как GCR1 их негативным регулятором [94, 97]. Кроме того, GCR1 опосредует эффекты брассиностероидов и гибберелинов на прорастание семян, хотя участие G-белка в этом процессе не доказано и не исключено вовлечение в него G-белок-независимого механизма [98]. Рецептор CAND2 у *Arabidopsis* опосредует эффекты фитомелатонина, опосредуя мелатонин-чувствительное закрытие устьиц [96]. Необычный рецептор GPCR–COLD1, включающий 9 TM, обнаружен у риса [99]. В ответ на снижение температуры он взаимодействует с G α -субъединицей, повышая ее ГТФазную активность, результатом чего является активация кальциевых каналов, причем точечные мутации в гене COLD1 приводят к устойчивости риса к холоду [99].

У беспозвоночных животных паттерн GPCR имеет значительное сходство с таковым у позвоночных животных, что обусловлено высокой консервативностью большинства классов GPCR в эволюции эукариот [100–103]. Так, GPCR обнаружены у представителей кораллов [104], нематод [100, 101, 105–108], членистоногих [100, 102, 109–111], моллюсков [107, 112, 113], актиний [114]. В настоящее время у беспозвоночных в полной мере охарактеризованы GPCR к биогенным аминам и пептидным гормонам, в то время как остальные классы GPCR менее изучены или пока пребывают в статусе "рецепторов-сирот".

IV. КЛАССИФИКАЦИЯ АЛЛОСТЕРИЧЕСКИХ РЕГУЛЯТОРОВ GPCR

Различные сценарии сигнальной трансдукции, обусловленные сопряжением GPCR с различными типами G-белков и β-аррестинов, предполагает существование молекулярных механизмов, ответственных за стабилизацию вполне определенных лиганд-активированных конформаций, в которых рецептор селективно активирует определенный внутриклеточный сигнальный каскад. Наряду с этим должны быть механизмы, обеспечивающие тесную взаимосвязь между стабильностью определенных активных конформаций GPCR и такими факторами, как физико-химические свойства и липидный состав плазматической мембраны, кислотность внутренней и внешней среды, ионная сила и осмолярность, концентрация простых ионов, аминокислот, липидов, полипептидов, нутриентов, структурная организация цитоскелета. Имеются данные о том, что эти факторы значимо влияют на клеточный ответ, вызываемый ортостерическим агонистом при его связывании с GPCR. Механизмы, определяющие конформационное равновесие лиганд-активированных GPCR, должны обеспечивать не только предвзятость сигнальной трансдукции, но и определять эффективность передачи сигнала через GPCR, и это в значительной степени обусловлено аффинностью агониста к ортостерическому сайту рецептора и его максимальным стимулирующим (реже, ингибирующим)

ШПАКОВ

558

Таблица 1. Классификация лигандов аллостерических сайтов GPCR по их фармакологической активности (по [116])

Тип аллостерического регулятора	Регуляторные эффекты	α	β	τ
Полный агонист	Стимуляция GPCR в отсутствие агониста орто- стерического сайта или другого аллостериче- ского агониста, отсутствие влияния на сродство ортостерического агониста к рецептору и на его эффективность	1	1	Более 1
Инверсионный агонист	Снижение базальной или конституитивно повышенной активности GPCR в отсутствие ортостерического агониста, а также ингибиро- вание стимулированной ортостерическими или аллостерическими агонистами активности рецептора	1	1	Менее 1
Нейтральный антагонист	Ингибирование стимулированной ортостериче- ским агонистом активности GPCR без влияния на базальную или конституитивно повышенную активность рецептора	1	1	Менее 1
РАМ	Повышение сродства ортостерического агони- ста к GPCR и(или) эффективности его действия без влияния на базальную или конституитивно повышенную активность рецептора	Более 1	Более 1	1
NAM	Снижение сродства ортостерического агониста к GPCR и(или) эффективности его действия без влияния на базальную или конституитивно повышенную активность рецептора	Менее 1	Менее 1	1
SAM	Отсутствие влияния на сродство ортостериче- ского агониста к GPCR и(или) на эффектив- ность его действия, но при этом изменение некоторых характеристик регуляторного влия- ния ортостерического или аллостерических аго- нистов на активность рецептора (предвзятый агонизм, специфичность взаимодействия с определенными типами G-белков и β-аррести- нов, комплексообразование, доступность GPCR для других аллостерических регуляторов), отсут- ствие влияния на базальную или конституи- тивно повышенную активность рецептора	1	1	1
Aro-PAM	Повышение сродства ортостерического агониста к GPCR и(или) эффективности его действия, а также стимуляция базальной активности GPCR в отсутствие ортостерического агониста, воз- можно потенцирование (усиление) стимулирую- щего эффекта ортостерического агониста	Более 1	Более 1	Более 1
Aro-NAM	Снижение сродства ортостерического агониста к GPCR и(или) эффективности его действия, но при этом стимуляция базальной активности GPCR в отсутствие ортостерического агониста	Менее 1	Менее 1	Более 1
Антагонист/РАМ	Снижение эффективности действия ортостери- ческого агониста (антагонистический эффект) на GPCR, но при этом повышение его сродства к рецептору	Более 1	Менее 1	1

Таблица 1. Окончание

Тип аллостерического регулятора	Регуляторные эффекты	α	β	τ
Предвзятый аллостерический регулятор	Изменение сродства к GPCR и(или) эффектив- ности действия ортостерического агониста, при- водящее к преимущественной активации (PAM), ингибированию (NAM) или модификации (SAM) определенного сигнального каскада, а также активация (полный агонист, аго-PAM, аго-NAM) или подавление (инверсионный аго- нист, антагонист) определенного сигнального каскада вне зависимости от действия ортостери- ческого агониста	ND	ND	ND

Примечание. α — фактор кооперативности связывания между ортостерическим агонистом и аллостерическим модулятором; β — операционный фактор кооперативности для количественной оценки влияния аллостерического модулятора на операционную эффективность ортостерического агониста; τ — операционная эффективность комплекса рецептора с лигандом аллостерического сайта. Значения связывающей кооперативности α и операционной кооперативности β больше 1 означают положительную кооперативность, в то время как соответствующие значения α и β ниже 1 обозначают отрицательную кооперативности τ представляет собой нормализованное значение, поскольку абсолютное значение τ может меняться в зависимости от используемых расчетных параметров. ND — возможны различные варианты (1, менее или более 1), поскольку для предвзятого аллостерического регулятора необходимо дифференцированно оценивать описываемые факторы для каждого отдельного внутриклеточного каскада, регулируемого через конкретный рецептор.

эффектом на целевой внутриклеточный эффектор. Исследования, проведенные на рубеже ХХ и XXI веков, показали, что ключевую роль в тонкой регуляции и настройке сигналов, генерируемых ортостерическими агонистами, играют аллостерические регуляторы и модуляторы GPCR, представленные различными по химической природе и сложности ионами и биоактивными молекулами, среди которых простые и органические ионы, липиды и их производные, аминокислоты, олигопептиды, белки, сложные белковые комплексы. Тем самым парадигма, в рамках которой ведущую роль в регуляции GPCR отводили лигандам ортостерического сайта, в последние годы уступила место новой системе представлений, в соответствии с которой определяющая роль в GPCR-опосредуемой сигнальной трансдукции теперь отводится аллостерической регуляции, включающей согласованное взаимодействие множества аллостерических сайтов и их лигандов [115].

В отличие от лигандов ортостерического сайта, лиганды аллостерических сайтов, как правило, связываются с рецептором с существенно более низкой аффинностью, хотя это не является общим правилом. Другим отличием является более мягкое воздействие на базальную активность рецептора в сравнении с ортостерическим агонистом или, в случае отсутствия собственной активности у аллостерического лиганда, модуляция регуляторных эффектов ортостерического агониста. Возможно совмещение собственной активности и способности модулировать активность ортостерического агониста или другого аллостерического регулятора. Все эти особенности положены в основу современной классификации лигандов аллостерических сайтов GPCR.

Лиганды аллостерических сайтов, которые не имеют собственной активности, но влияют на активность аллостерических агонистов, относят к группе аллостерических модуляторов GPCR (табл. 1). При этом в зависимости от характера влияния на эффект ортостерического агониста аллостерические модуляторы классифицируют на положительные (positive allosteric modulator, PAM) и отрицательные (negative allosteric modulator, NAM) аллостерические модуляторы, а также на "молчащие" аллостерические модуляторы (silent allosteric modulator, SAM), называемые также нейтральными аллостерическими лигандами (neutral allosteric ligand, NAL) [117]. К группе РАМ относят лиганды аллостерических сайтов GPCR, которые повышают аффинность и(или) эффективность, оцениваемую по величине максимального стимулирующего эффекта ортостерического агониста на целевой внутриклеточный каскад, в то время как к группе NAM относят лиганды аллостерических сайтов GPCR, которые снижают аффинность и(или) эффективность ортостерического агониста к рецептору (рис. 1). К группе SAMs (NALs) относят лиганды аллостерических сайтов, которые непосредственно не влияют на аффинность и эффективность ортостерического агониста, но способны влиять на селективность взаимодействия агонист-активированного рецептора с трандукторными белками, на предвзятость внутриклеточного сигналинга, на функциональное взаимодействие рецептора с лигандами других аллостерических сайтов.

ШПАКОВ PAM PAM Ago-PAM Ago-PAM Ago-NAM Ago-NAM

Рис. 1. Эффекты аллостерических модуляторов на аффинность ортостерического агониста к GPCR и на величину его целевого регуляторного эффекта (эффективность действия). РАМ – положительный аллостерический модулятор; NAM – негативный аллостерический модулятор; NAL/SAM – нейтральный аллостерический лиганд или "молчащий" аллостерический модулятор; Ago-PAM – аллостерический агонист с активностью положительного аллостерического модулятора; Ago-NAM – аллостерический агонист с активностью положительного аллостерического модулятора; Ago-NAM – аллостерический агонист с активностью положительного аллостерического модулятора; Ago-NAM – аллостерический модулятор, повышающий аффинность ортостерического агониста к GPCR, но снижающий эффективность его действия (антагонистический эффект). Показаны значения α и β, являющиеся фактором кооперативности связывания между ортостерическим агонистом и аллостерического модулятора на операционным фактором кооперативности для количественной оценки влияния аллостерического агониста, по оси ординат – эффективность ортостерического агониста (β). По оси абсцисс – концентрация ортостерического агониста, по оси ординат – эффективность ответа на ортостерический или аллостерический агонист.

[OA]

Лиганды аллостерических сайтов GPCR, наделенные собственной активностью, подразделяют, как и лиганды ортостерического сайта, на аллостерические полные агонисты, стимулирующие активность рецептора, аллостерические нейтральные антагонисты, которые препятствуют связыванию GPCR с гормоном, но при этом сами не влияют на сигнальную трансдукцию, и аллостерические инверсионные агонисты, которые подавляют как гормон-стимулированную активность рецептора, так и его базальную активность, делая ее значимо ниже таковой для нелигандированного рецептора (апоформы) (табл. 1, рис. 1). Можно полагать также наличие, по аналогии с ортостерическими лигандами, аллостерических регуляторов с активностью частичных агонистов, которые, в отличие от полных агонистов, не способны максимально стимулировать рецептор даже при насыщающих концентрациях. Однако для аллостерических агонистов, эффекты которых весьма умеренные, сложно раздельно классифицировать полные и частичные агонисты.

Наконец, еще одну группу составляют лиганды аллостерических сайтов GPCR, которые наделены как собственной активностью, так и способностью модулировать сигналы ортостерических агонистов [117, 118]. Их подразделяют на три класса: ago-PAM, адо-NAM и PAM-антагонисты (табл. 1). Лиганды аллостерических сайтов с активностью ago-PAM усиливают аффинность и(или) эффективность ортостерического агониста, но при этом способны и сами активировать рецептор (в отсутствие ортостерического агониста). Адо-NAM наделены активностью агонистов GPCR, но при этом снижают аффинность и(или) эффективность ортостерического агониста (рис. 1). В свою очередь, РАМантагонисты, с одной стороны, снижают эффективность ортостерического агониста, действуя как его антагонисты, и, с другой, повышают аффинность ортостерического агониста к GPCR, действуя как РАМ [118].

Однако во многих случаях отнесение лиганда аллостерического сайта к той или иной группе регуляторов или модуляторов является весьма относительным, и это обусловлено целым рядом при-

чин [116, 117]. Основной из них является то, что конформационные изменения, обусловленные связыванием лигандов с ортостерическим и аллостерическими сайтами GPCR, являются реципрокными. С одной стороны, связывание лиганда с аллостерическим сайтом способно изменить связывающие характеристики лиганда ортостерического сайта и паттерн активации им внутриклеточных каскадов. С другой стороны, связывание эндогенного гормона или его аналогов с ортостерическим сайтом может существенно влиять на доступность для лигандов и регуляторные свойства аллостерических сайтов. Более того, отмечается реципрокное взаимодействие между аллостерическими сайтами, которых может быть достаточно много в молекуле рецептора. Тем самым, общее количество взаимодействий между свободными и лиганд-связанными ортостерическими и аллостерическими сайтами может быть очень значительным, а сами взаимосвязи могут быть весьма сложными [116]. Это предопределяет то, что в зависимости от природы и связывающих характеристик ортостерических и аллостерических лигандов, один и тот же аллостерический регулятор может функционировать, как РАМ, NAM или SAM [116, 117, 119, 120]. Ситуация усложняется еще и тем, что некоторые аллостерические сайты могут соседствовать или даже частично перекрываться с ортостерическими сайтами, влияя как на их доступность для агониста, так и на вызываемые этим агонистом конформационные перестройки, необходимые для передачи сигнала к трансдукторным белкам.

В каждом конкретном случае фармакологический профиль аллостерического лиганда зависит от большого числа факторов, которые не всегда удается идентифицировать и надежно контролировать в условиях организма, что тормозит внедрение аллостерических регуляторов в клиническую практику. Среди таких факторов природа и связывающие характеристики ортостерического агониста, присутствие других аллостерических регуляторов и модуляторов, посттрансляционные модификации молекулы рецептора (N-гликозилирование, фосфорилирование, сайт-специфичный протеолиз, и другие), образование ди- и олигомерных рецепторных комплексов, которые могут включать протомеры как одного (гомоолигомеры), так и разных (гетероолигомеры) типов GPCR, образование многокомпонентных комплексов с различными трансдукторными и адаптерными белками, ассоциация с белками цитоскелета, липидный состав и вязкость плазматической мембраны, ионный состав и рН внеклеточной и внутриклеточной среды. Все эти факторы во многом определяются функциональным состоянием клетки и, более широко, физиологическим состоянием организма, включая возможные патологические изменения в нем. Вследствие этого необходимы комплексные исследования специфической биологической активности и фармакологического профиля лигандов аллостерических сайтов как в условиях *in vitro*, так и *in vivo*, причем как в норме, так и при патологических состояниях. При этом необходимо учитывать то, что фармакологический профиль аллостерического лиганда GPCR может зависеть от типа клеток и тканей, а также варьировать у различных видов животных.

В связи с вышесказанным, для описания фармакологического профиля лиганда аллостерического сайта GPCR в каждом конкретном случае применяется специально разработанная для этого математическая модель, которая базируется на описании функциональной активности трехкомпонентного комплекса, включающего GPCR, лиганд ортостерического сайта и лиганд целевого аллостерического сайта [117, 121]. В том случае, когда рецептор сначала образует комплекс с ортостерическим агонистом А, формирование тройного комплекса будет описываться уравнением $A + R + B \leftrightarrow$ \leftrightarrow AR + B (K_A) \leftrightarrow ARB (K_B/ α), где K_A и K_B представляют собой равновесные константы диссоциации для комплексов GPCR с ортостерическим и аллостерическим лигандами соответственно. В том случае, когда рецептор сначала образует комплекс с аллостерическим агонистом В, образование тройного комплекса будет описываться уравнением $A + R + B \leftrightarrow A + RB(K_B) \leftrightarrow ARB(K_A/\alpha)$ [121]. В обоих уравнениях константа α представляет собой фактор кооперативности связывания между лигандами ортостерического и аллостерического сайтов. Фактор α описывает влияние аллостерического лиганда на аффинность ортостерического агониста к рецептору. Если значение α больше единицы, то аллостерический агонист повышает аффинность ортостерического агониста (РАМ), если значение α меньше единицы, то его эффект является противоположным (NAM), в то время как в случае, когда значение α равно единице, аллостерический агонист не влияет на сродство ортостерического лиганда к рецептору (SAM) (табл. 1). Для описания влияния аллостерического лиганда на эффективность ортостерического агониста используют фактор β. В том случае, когда аллостерический лиганд повышает эффективность ортостерического агониста, оцениваемую по величине его полумаксимального эффекта, значение фактора β выше единицы (РАМ). Если аллостерический лиганд снижает эффективность ортостерического агониста, то значение фактора β ниже единицы (NAM). Для SAM, которые не влияют на эффективность ортостерического агониста в отношении целевого внутриклеточного каскада, значение β принимается за единицу (табл. 1). Поскольку GPCR способен одновременно взаимодействовать с различными трансдукторными белками и потому регулировать различные внутриклеточные каскады, то один и тот же аллостерический модулятор (РАМ, NAM, или SAM) может по-разному влиять на каждый из

этих каскадов, вследствие чего фактор β, строго говоря, описывает его фармакологический профиль только по отношению к определенному сигнальному каскаду.

Как отмечалось выше, существенная часть лигандов аллостерических сайтов имеет собственную активность, не зависящую от присутствия ортостерического агониста. Для характеристики их активности вводится фактор τ, который для аллостерических лигандов с активностью агониста имеет значения выше единицы (аллостерический полный агонист, аго-РАМ, аго-NAM), а для аллостерических лигандов с активностью инверсионного агониста или нейтрального антагониста имеет значения ниже единицы (табл. 1). Для аллостерических модуляторов, не имеющих собственной активности (РАМ, NAM, SAM, РАМ-антагонист) значение фактора τ равно единице [116, 117]. При этом необходимо отметить, что значение единица, как граница для дифференцирования полных и инверсионных агонистов, является весьма условным, поскольку в некоторых случаях отсчет ведут относительно нуля, используя положительные значения τ для описания эффектов полных агонистов, и отрицательные значения этого параметра для описания эффектов инверсионных агонистов. Как и в случае фактора β , при оценке значения фактора τ для аллостерического лиганда необходимо принимать во внимание его регуляторное влияние на конкретный внутриклеточный каскад, поскольку предвзятость сигнальной трансдукции может привести к тому, что для одного и того же аллостерического лиганда значения т для различных внутриклеточных каскадов могут сильно варьировать.

Наряду с лигандами, специфичными по отношению к определенному сайту GPCR, имеется группа соединений, так называемых битопных (двойственных) лигандов, способных одновременно взаимодействовать как с ортостерическим, так и с аллостерическим сайтами [120, 122-128]. В структуре битопных лигандов имеются два фармакофора, один из которых связывается с ортостерическим сайтом (обычно с высокой аффинностью), в то время как другой с аллостерическим сайтом (как правило, с более низкой аффинностью). Поскольку аллостерический и ортостерический сайты топографически различаются и могут находиться друг от друга на определенном расстоянии, то для эффективного связывания с рецептором фармакофоры в битопном лиганде должны быть соединены гибким, подвижным линкером. Длина такого линкера должна соответствовать расстоянию между ортостерическим и аллостерическим сайтами в рецепторе, а сам линкер не должен затруднять конформационные перестройки, индуцированные битопным лигандом и необходимые для реализации его эффекта [120, 126]. При этом крайне важно знать точную локализацию в GPCR как ортостерического, так и целевого аллостерического сайтов, и адекватно выбрать необходимые гибкость и физико-химические характеристики используемого линкера, что в случае GPCR, для которых не установлена 3D-структура, находится только эмпирическим путем [129].

Преимуществами битопных лигандов является более выраженная предвзятость их действия и повышение аффинности связывания с рецептором, которая обеспечивается сочетанием в них ортостерического и аллостерического "компонентов" [120, 125, 128, 130]. Уникальность профиля сигнальной трансдукции определяется благодаря нацеливанию битопного лиганда на аллостерический сайт рецептора, в то время как более высокая аффинность обусловлена его связыванием с ортостерическим сайтом. Показано, что особенности фармакологического профиля битопного лиганда могут приводить к уникальной кинетике его связывания. Следует, однако, отметить, что повышение аффинности битопного лиганда к GPCR происходит только тогда, когда оба фармакофора идеально связываются с соответствующими сайтами, и каждый из них имеет свою собственную кинетику связывания, которая способна обеспечивать синергичный эффект обоих фармакофоров на активность рецептора. Это было продемонстрировано на примере THRX-160209, битопного лиганда т2-мускаринового ацетилхолинового рецептора (mACh₂R) [131], и R64a, битопного лиганда каннабиноидного рецептора 2-го типа (CB_2R), совмещаюшего в себе в качестве фармакофоров аллостерический модулятор ЕС21а (РАМ) и ортостерический агонист LV62 [128]. В то же время неблагоприятное воздействие одного фармакофора на конформационные перестройки, вызываемые другим фармакофором, негативное влияние линкера на связывающие характеристики фармакофоров в битопном лиганде, а также индивидуальные предпочтения взаимодействия фармакофора с различными состояниями GPCR могут повлечь за собой значительное снижение аффинности битопного лиганда к рецептору [132].

V. ОСОБЕННОСТИ СТРУКТУРНО-ФУНКЦИОНАЛЬНОЙ ОРГАНИЗАЦИИ, ЧИСЛО И ЛОКАЛИЗАЦИЯ АЛЛОСТЕРИЧЕСКИХ САЙТОВ В GPCR

В молекуле GPCR имеется только один ортостерический сайт, который является местом специфичного связывания с эндогенным лигандом (агонистом или, крайне редко, антагонистом этого сайта), в то время как число аллостерических сайтов обычно составляет от 3–4 до 10 и более, и они различаются по топологии, структурно-функциональной организации, сродству к лигандам, молекулярным механизмам активации, а также обеспечивают различную предвзятость агонистов к внутриклеточным эффекторам. Среди параметров,

характеризующих аллостерические сайты, наиболее важными являются их локализация и топология в GPCR, конфигурация и физико-химические свойства связывающего кармана, конформационная подвижность аллостерического сайта, зависимость от ионного состава, ионной силы, осмолярности и рН внешней среды, особенности взаимодействия образующих аллостерический сайт молекулярных детерминант с трансдукторными и адаптерными белками, включая G-белки, β-аррестины, модифицирующие активность GPCR белки (receptor-activity-modifying proteins, RAMP), a также с липидной фазой мембраны. Исключительно важное значение имеет участие аллостерических сайтов в формировании и стабилизации гомо- и гетероолигомерных рецепторных комплексов и многокомпонентных GPCR-содержащих комплексов [115–117, 133–136].

Аллостерические сайты могут быть топологически изолированными от ортостерического и других аллостерических сайтов или частично с ними перекрываться, что предполагает существование мнореципрокных взаимоотношений говекторных между ними. Ортостерический сайт в большинстве GPCR высоко консервативен, что позволяет классифицировать рецепторы, в том числе, по структурной организации их ортостерических сайтов и в соответствии с химической природой лигандов этих сайтов. Так, например, ортостерический сайт во всех пяти типах мускариновых ацетилхолиновых рецепторах ($mACh_1R-mACh_5R$) имеет высокую степень гомологии аминокислотной последовательности, сходство пространственной структуры и субдоменной организации [137]. Это, с одной стороны, обеспечивает стимуляцию mACh₁R $mACh_5R$ одним и тем же лигандом, и, с другой, создает трудности в поиске ортостерических агонистов, способных дифференцировать один тип mAChR от другого [138].

В свою очередь, аллостерические сайты существенно варьируют по структуре, даже среди близкородственных рецепторов, хотя это и не является общим правилом [139–142]. Важно отметить, что аллостерические сайты, с которыми связываются идентичные или структурно сходные лиганды, в разных GPCR могут быть консервативными, в то время как аллостерические сайты, лигандами которых являются структурно различающиеся соединения, как правило, вариабельны и определяют предвзятость активации внутриклеточных каскадов, специфичность образования рецепторных комплексов и ряд других характеристик даже среди близкородственных GPCR, позволяя их функционально различать между собой.

Однако специфичность аллостерических сайтов в GPCR тоже имеет ограничения, которые необходимо принимать во внимание. Это продемонстрировано для некоторых аллостерических сайтов, локализованных в интерфейсах между трансмембранным доменом и ICLs рецептора. Изучение связывания β -AR с соединением 15 (Cmpd-15) с активностью аллостерического модулятора показало высокое сходство внутриклеточных аллостерических сайтов, мишеней Cmpd-15, в молекулах β 1- и β 2-AR [143, 144]. В ходе изучения связывания NAM PF-06372222 и NNC0640 с рецепторами глюкагона (GCGR) и глюкагон-подобного пептида-1 (GLP-1R) было обнаружено сходство структурно-функциональной организации аллостерических сайтов этих рецепторов, образованных цитоплазматическими окончаниями TM5, TM6 и TM7 и проксимальными участками ICL3 [145].

При создании лекарственных препаратов необходимо учитывать тот факт, что кажущийся специфичным в отношении одного рецептора препарат способен связываться с гомологичным аллостерическим сайтом, локализованным в близкородственном ему GPCR, и, тем самым, влиять на его функциональную активность, что может привести к непредсказуемым побочным эффектам при применении таких аллостерических регуляторов в клинике. Так, веркирнон (vercirnon), аллостерический антагонист СС-хемокинового рецептора 9 типа (CCR9), связываясь с внутриклеточным аллостерическим сайтом, подавляет не только стимуляцию рецептора селективным CCR9-агонистом CCL25, но и нарушает сопряжение с G-белками других типов хемокиновых рецепторов [146]. Аллостерический CCR2-антагонист CCR2-RA-[R], взаимодействуя с аллостерическим сайтом, расположенным в интерфейсе, образованном цитоплазматическими окончаниями TMs и проксимальными к мембране участками ICLs, ингибирует передачу генерируемого CCR2-агонистами сигнала к внутриклеточным эффекторам, нарушая функциональное взаимодействие рецептора с G-белками, и наряду с этим негативно влияет на передачу сигнала через другие хемокиновые рецепторы, родственные CCR2 [147].

Совокупность полученных в настоящее время данных указывает на то, что аллостерические сайты в GPCR могут располагаться во всех структурных доменах и субдоменах рецептора [116, 136]. Так, они могут быть локализованы в N-концевом участке и во внеклеточных петлях (ECL1, ECL2, ECL3), а также в области их интерфейсов с TMs, формирующих внешний вестибюль при входе в трансмембранный тоннель. В рецепторах, имеющих значительный по размеру N-концевой домен, в формирование аллостерических сайтов могут быть вовлечены участки этого домена. В качестве таких участков могут выступать линкерные последовательности, которые в рецепторах гипофизарных гликопротеиновых гормонов связывают богатый остатками лейцина эктодомен с цитоплазматическим окончанием ТМ1. Эти последовательности, как и некоторые участки эктодомена, могут

являться мишенями для аутоантител, которые вырабатываются к внеклеточным участкам GPCR и влияют на их активность. Такое влияние ауто-GPCR-антител обусловлено тем, что в богатом остатками лейцина эктодомене располагается высокоаффинный ортостерический сайт для связывания В-субъединиц гипофизарных гликопротеиновых гормонов, конформация и доступность которого высоко чувствительны даже к небольшим индукционным влияниям, исходящим от соседних с ним аллостерических сайтов, мишеней аутоантител. В других GPCR внеклеточные аллостерические сайты способны контролировать доступность ортостерического сайта, расположенного в трансмембранном домене, для эндогенных или синтетических лигандов, а также влиять на образование гомо- и гетеродимерных GPCR-комплексов и на их взаимодействие с RAMP, которые связываются с ECLs рецептора. Поскольку важную роль в функционировании рецепторов играет присутствие в их внеклеточных участках N-гликанов, то внеклеточные аллостерические сайты способны значимо влиять на процесс N-гликозилирования, тем самым, опосредованно модулируя связывающие характеристики и функциональную активность GPCR.

Другой локализацией аллостерических сайтов является внутренняя полость трансмембранного домена, в которой во многих рецепторах располагается ортостерический сайт. Аллостерические сайты могут быть расположены в верхней, ориентированной вовне, и в средней частях трансмембранного тоннеля, а также в нижней (ориентированной в цитоплазму) его части, которая во всех GPCR вовлечена в передачу волны конформационных перестроек от ортостерического сайта к Gбелкам. Функциональная значимость аллостерических сайтов, расположенных внутри трансмембранного домена, определяется тем, что в трансмембранном тоннеле расположены основные структурные элементы, ответственные как за стабилизацию и активной, и неактивной конформаций GPCR, так и за образование функционально активного комплекса, в том числе предактивационного, с трансдукторными белками. Большую роль здесь играет взаимное расположение TMs, в первую очередь ТМ5, ТМ6 и ТМ7, формирующих внутреннюю полость трансмембранного домена. Лигандами аллостерических сайтов, локализованных в трансмембранном домене, могут быть простые ионы, способные легко проникать через устье трансмембранного тоннеля, а также относительно небольшие органические молекулы, сравнимые по размеру и физико-химическим свойствам с лигандами трансмембранного ортостерического сайта.

Аллостерические сайты могут быть локализованы в ICLs, С-концевом домене и в их интерфейсах с TMs, ответственными за взаимодействие с G-бел-

ками, β-аррестинами и киназами GRK-семейства. Тем самым лиганды этих сайтов контролируют сигнальную трансдукцию на этапе GPCR-опосредуемой активации трансдукторных белков, а также во многом предопределяют дальнейшую судьбу рецептора в клетке, зависящую от паттерна GRKопосредуемого фосфорилирования и образования его комплексов с β-аррестинами. Кроме того, эти сайты могут быть вовлечены в систему реципрокных взаимодействий между G-белками и ортостерическими сайтами GPCR, опосредованно влияя на аффинность рецептора к ортостерическому лиганду. Согласно современным представлениям, GPCR взаимодействуют с большим числом scaffold-белков, образуя значительные по размеру многокомпонентные комплексы, включающие ферменты-генераторы вторичных посредников, протеинкиназы, фосфатазы, ионные каналы. Роль цитоплазматических участков GPCR, а следовательно, и локализованных в них аллостерических сайтов здесь может быть весьма существенной, хотя это требует дополнительного изучения.

Возможна также локализация аллостерических сайтов на боковой поверхности трансмембранного домена, где гидрофобные стороны TMs контактируют с липидным матриксом плазматической мембраны. Эти сайты не только "наводят мосты" между изменениями физико-химических свойств и химического состава мембран и активностью GPCR, но и индуцируют изменения конформации внутренней полости трансмембранного домена, влияя на суперпозицию TMs и пространственную структуру, и на доступность трансмембранных ортостерического и аллостерических сайтов для лигандов. Кроме того, они могут участвовать в стабилизации ди- и олигомерных рецепторных комплексов, влиять на перемещение рецептора между субклеточными компартментами и на транслокацию рецептора в плазматическую мембрану.

Потенциально аллостерические сайты могут формироваться при образовании гомо- и гетероолигомерных комплексов GPCR и включать сегменты различных протомеров в месте их контакта, но данных в отношении реального существования таких сайтов в настоящее время нет.

Необходимо отметить, что идентификация аллостерических сайтов, установление их количества и локализации в молекуле рецептора в каждом конкретном случае представляют собой весьма сложную задачу, хотя уже в настоящее время в этом отношении достигнут значимый прогресс, что стало возможным во многом благодаря разработке новых подходов для идентификации аллостерических сайтов в GPCR [135, 136, 148, 149].

VI. ПОДХОДЫ ДЛЯ ИДЕНТИФИКАЦИИ АЛЛОСТЕРИЧЕСКИХ САЙТОВ В GPCR

До начала эпохи установления 3D-структур GPCR с помощью рентгеноструктурного анализа и других современных физико-химических подходов данные о локализации, функциональной активности и структурной организации аллостерических сайтов были неточными, спекулятивными, и базировались в основном на результатах исследований соединений с уже доказанной активностью. Так, например, выявление у синтетических пептидов, производных различных участков GPCR (ICLs, ECLs, их интерфейсы с TMs), активности аллостерических регуляторов этих рецепторов позволило создать модели потенциальных аллостерических сайтов, с которыми эти пептиды могут взаимодействовать [150-153]. Было показано, что функциональной активностью обладали в основном те пептиды, производные ICLs, которые были модифигидрофобными жирнокислотными иированы остатками и(или) содержали определенным образом расположенные кластеры положительно заряженных АКО, что позволяло им проникать через липидный бислой мембраны [152, 153]. Это соответствовало тому, что их связывание осуществлялось с внутриклеточными аллостерическими сайтами, комплементарными этим пептидам. Таким образом, были потенциально идентифицированы некоторые внутриклеточные аллостерические сайты, а также установлены механизмы функционального сопряжения GPCR с трансдукторными белками. В свою очередь, изучение взаимоотношений структура-активность среди низкомолекулярных аллостерических регуляторов рецептора лютеинизирующего гормона (ЛГ) и хорионического гонадотропина человека (ХГЧ), а также рецепторов фолликулостимулирующего (ФСГ) и тиреотропного гормонов (ТТГ) позволило идентифицировать их мишени - расположенные в трансмембранном тоннеле аллостерические сайты, а также сконструировать приемлемую пространственную модель этих сайтов [154-158].

После того, как появились структурные данные для GPCR, поиск аллостерических сайтов стал целенаправленным и эффективным. В 2010 г. Ivetac и McCammon с использованием методов моделирования на основе молекулярной динамики и алгоритма FTMAP (fragment-based mapping), предназначенного для выявления в рецепторе "горячих точек", имеющих высокое сродство к целевым органическим молекулам, исследовали β1- и β2-AR [159]. В структуре каждого из этих рецепторов было выявлено по пять потенциальных аллостерических сайтов, которые располагались как в областях β1/β2-AR, доступных для растворителя, так и в участках, экспонированных в липидную фазу. В дальнейшем, с помощью метода ускоренного моделирования на основе молекулярной динамики и алгоритма FTMAP, с использованием 16 органических зондов, как фрагментов потенциальных лекарств, в рецепторе mACh₂R были идентифицированы семь потенциальных аллостерических сайтов, одни из которых были локализованы во внеклеточных и внутриклеточных преддвериях трансмембранного тоннеля и были доступны для воды, в то время как другие располагались внутри трансмембранного тоннеля, будучи образованы гидрофобными интерфейсами TM3-TM4, TM5-TM6 и TM7-TM1/TM2, и были доступны только для липофильных органических молекул [160].

В 2018 г. с помощью алгоритма FTMAP была осуществлена идентификация аллостерических сайтов в А_{2А}-аденозиновом рецепторе, причем отдельно рассматривались активная, две промежуточные (1 и 2) (intermediate 1, intermediate 2) и неактивная конформации рецептора [161]. В неактивной конформации присутствовали пять потенциальных аллостерических сайтов, которые формировались цитоплазматическими окончаниями ТМ1 и TM7 и внеклеточными окончаниями TM3 и TM4. В активной конформации были выявлены только два аллостерических сайта, один в вестибюле, образованном цитоплазматическими окончаниями TM3 и TM4, и другой внутри G-белок-связывающей поверхности в интерфейсе, образованном цитоплазматическими окончаниями TM2, TM3, TM6 и ТМ7. В промежуточных конформациях 1 и 2 были идентифицированы три аллостерических сайта, где в дополнение к двум сайтам, присутствующим в активной конформации А2А-аденозинового рецептора, имелся сайт в гидрофобной полости, образованной TM5 и TM6 [161]. Это исследование продемонстрировало, что паттерн идентифицируемых с помощью молекулярного моделирования аллостерических сайтов сильно зависит от той конформации GPCR, которая анализируется, а также от природы лиганда, который связан с ортостерическим или аллостерическим сайтами рецептора.

В 2019 г. Wakefield и соавт. с помощью алгоритма FTMap и его модифицированной версии FTSite исследовали локализацию аллостерических сайтов в 17 рецепторах, относящихся к четырем основным классам GPCR, используя для этого 29 кристаллических структур [148]. Поскольку для всех изученных рецепторов имелись экспериментальные данные по их аллостерической регуляции, то полученные с помощью FTMap результаты были сопоставлены с ними, и это позволило в определенной степени оценить их предсказательную способность. Для алгоритмов FTMap и FTSite при идентификации всех аллостерических сайтов в изученных рецепторах общая предсказательная способность составила 69 (FTMap) и 76% (FTSite). При этом для аллостерических сайтов, локализованных во внутренней полости трансмембранного домена и вблизи входа в трансмембранный тон-

нель, предсказательная способность алгоритмов FTМар и FTSite была существенно выше и достигала 80 и 88%, соответственно, что является очень хорошим показателем. Значительно хуже дело обстояло с предсказанием аллостерических сайтов на границе между трансмембранным доменом и гидрофильными петлями, где предсказательная способность, как правило, не превышала 50%. Это обусловлено тем, что используемые в алгоритмах FTMap и FTSite инструменты картирования разработаны для предсказания "горячих точек" связывания с органическими молекулами для глобулярных белков, без учета их взаимодействия с поверхностью мембраны или встраивания в липидный матрикс мембраны. Кроме того, данные рентгеноструктурного анализа GPCR для подвижных гидрофильных петель очень ненадежны, что также создает ограничения для идентификации в них аллостерических сайтов с помощью алгоритмов FTMap и FTSite [148].

Проблемы, возникшие при идентификации аллостерических сайтов, расположенных на границе трансмембранного домена и гидрофильных петель GPCR, с помощью различных версий алгоритма FTMap (https://ftmap.bu.edu/), по крайней мере, частично могут быть решены путем анализа данных, полученных для кристаллических структур свободных от лиганда рецепторов и таковых, кристаллизованных в комплексе с аллостерическим лигандом [162]. В 2022 г. Wakefield и соавт. проанализировали рентгеновские структуры для 394 GPCR и сопоставили их с результатами анализа 39 рентгеновских структур рецепторов, кристаллизованных в комплексе с ингибиторами аллостерического сайта. В 21 из 39 таких структур были установлены локализация и пространственная организация аллостерических сайтов, что позволило исследовать топологически сходные локусы в других GPCR, свободных от аллостерического лиганда. В результате были идентифицированы девять топологически сходных локусов в различных классах GPCR, которые с высокой вероятностью содержат аллостерические сайты. При этом эти локусы могут не иметь значимой гомологии на уровне первичной структуры и являться мишенями для химически различных органических молекул [162].

Для поиска аллостерических сайтов в GPCR также широко используют методы молекулярной динамики. Значительный интерес здесь представляют поиск и изучение аллостерических сайтов, которые локализованы на боковой поверхности трансмембранного домена (ТМ7-пучка) и доступны для функционального взаимодействия с липидами плазматической мембраны. Это обусловлено тем, что молекулярная динамика в наибольшей степени подходит для изучения конформационных изменений в GPCR, находящихся в мембранном окружении. Аллостерические сайты, способные контактировать с мембранными липидами, в настоящее время идентифицированы для целого ряда GPCR [149, 163–172].

При изучении рецептора свободных жирных кислот 1 типа (Free Fatty Acid Receptor 1, FFAR1) с помощью молекулярной динамики были обнаружены два реципрокно взаимодействующих аллостерических сайта, один из которых расположен во внеклеточном преддверии трансмембранного тоннеля, а другой на боковой стороне ТМ7-пучка, в пространстве между ТМЗ и ТМ4 [169, 171]. Агонист второго сайта, АР-8, ослаблял взаимодействия АКО в трансмембранном домене, опосредуемые через локализованный в ТМЗ высококонсервативный остаток тирозина ($Y^{91(3,37)}$), в то время как антагонист, напротив, стабилизировал эти взаимодействия, затрудняя конформационные перестройки трансмембранного домена, необходимые для открытия тоннеля и активации рецептора [171]. Jiménez-Rosés и соавт. с применением той же методологии молекулярного моделирования было показано, что связывание аллостерического сайта, локализованного на боковой поверхности ТМ7пучка mACh₂R, с соединением LY2119620, наделенным активностью РАМ, приводит к ограничению конформационной подвижности остатка триптофана в ТМ7 (Trp^{422(7.35)}), к изменению конформации остатка тирозина в ТМ7 (Туг^{426(7.39)}), формирующего ортостерический сайт, и к усилению активирующего действия на рецептор ортостерического агониста ипероксо (iperoxo) [167].

С помощью молекулярно-динамического моделирования в GLP-1R и P2Y₁-пуринергическом рецепторе обнаружены аллостерические сайты, локализованные на границе ТМ7-пучка с липидным бислоем мембраны, которые образованы гидрофобными поверхностями ТМ1, ТМ2 и ТМ3 [163, 170]. В случае GLP-1R, как и в рецепторе глюкагона (GCGR), в формировании таких сайтов также принимают участие ТМ6 и ТМ7 [145, 173]. В протеиназа-активируемом рецепторе 2-го типа (PAR2) и каннабиноидном рецепторе 1-го типа (CB₁R) в формировании таких сайтов принимают участие ТМ2, ТМ3 и ТМ4 [164, 168]. В β2-AR, хемотактическом рецепторе 1-го типа для С5а анафилотоксина (C5aR1), рецепторе свободных жирных кислот GPR40 и дофаминовом рецепторе 1-го типа этот сайт формируют ТМ3, ТМ4 и ТМ5 [174-178], а в аденозиновом рецепторе 1-го типа – ТМ1, ТМ6 и ТМ7 [179]. Это указывает на то, что в различных GPCR паттерн гидрофобных поверхностей TMs, участвующих в аллостерической регуляции в интерфейсе рецептор-мембрана, сильно различается. Однако это не означает, что число таких сайтов ограничивается теми, которые обнаружены с помощью молекулярно-динамического моделирования, и дополнительные, еще неидентифицированные, сайты могут быть образованы другими TMs.

Для исследования молекулярных механизмов взаимодействия лигандов с аллостерическими сайтами, локализованными на боковой поверхности трансмембранного домена GPCR и находящимися в контакте с липидами, были использованы как квантово-химические расчеты с использованием адаптированной к симметрии теории возмущений (symmetry-adapted perturbation theory, SAPT), так и анализ естественной популяции для количественной оценки силы межмолекулярных взаимодействий [172]. В результате было установлено, что связывание лиганда с такими сайтами опосредуется как классическими водородными связями, так и взаимодействиями между слабополярными и заряженными группами. Кроме того, важную роль в обеспечении подходящей позы аллостерического лиганда и конформации сайта связывания играют гидрофобные хвосты липидов плазматической мембраны [172]. Как отмечалось выше, аллостерические сайты на стыке ТМ7-пучка и мембранных липидов способны также взаимодействовать с TMs других интегральных белков, в том числе с протомерами GPCR, участвуя в формировании и стабилизации рецепторных комплексов и опосредуя аллостерические влияния ди- и олигомеризации на активность GPCR. Наряду с этим, эти сайты являются подходящими мишенями для регуляции GPCR липидами плазматической мембраны, как это показано для холестерина, фосфолипидов и некоторых мембранно-ассоциированных стероидов [180-182].

В отличие от ортостерических сайтов, которые для большинства известных GPCR обстоятельно охарактеризованы, значительная часть множественных аллостерических сайтов, локализация и структурная организация которых сильно варьируют, даже в случае хорошо изученных рецепторов остается неисследованной. Такие сайты называют "сиротскими" аллостерическими сайтами (по аналогии с GPCR, для которых не известен ортостерический агонист). В 2022 г. Коlb и соавт. с целью верификации уже известных аллостерических сайтов и поиска "сиротских" аллостерических сайтов с помощью метода докинга низкомолекулярных зондов in silico исследовали 557 кристаллических структур для 113 различных GPCR [135]. Это позволило создать "пакетом" для аллостерических сайтов, локализованных в GPCR, относящихся к различным классам (A, B1, B2, C, D1, и F). В рецепторах класса А, наиболее обширного и разнообразного по природе ортостерических лигандов, в области 7ТМ-пучка была определена локализация до 11 аллостерических сайтов, для существования которых имелись экспериментальные доказательства, в том числе данные по эндогенным или синтетическим аллостерическим регуляторам и результаты сайт-направленного мутагенеза. Кроме того, в этих рецепторах были идентифицированы еще до 8 сайтов, которые могут быть мишенями для аллостерических регуляторов и отнесены к "сиротским" аллостерическим сайтам [135].

В полости, занимающей центральную часть трансмембранного тоннеля, немного выше его середины, во всех классах GPCR располагается межспиральный связывающий сайт-1 (Interhelical Binding Site 1, IBS1), однако его функции в различных GPCR могут существенно различаться. Так в GPCR класса А он, как правило, является ортостерическим сайтом и с высокой аффинностью связывается с эндогенными лигандами. Однако имеются исключения, например, в случае рецепторов подкласса А10 (рецепторы гипофизарных гликопротеиновых гормонов), в которых ортостерический сайт локализован в эктодомене, сайт IBS1 не является мишенью для ортостерического лиганда и функционирует как аллостерический сайт. Для GPCR класса А, которые являются мишенями для пептидных и полипептидных гормонов, не способных целиком погрузиться в трансмембранный тоннель, высокоаффинный сайт IBS1 включает не только центральную полость трансмембранного тоннеля, но и его внешний вестибюль и интерфейсы между внешними окончаниями TMs и проксимальными к мембране участками ECLs. Сходная ситуация наблюдается для GPCR класса B, также активируемых полипептидными гормонами. В GPCR класса С, к которым относятся метаботропные глутаматные рецепторы, рецепторы ү-аминомасляной кислоты (GABA_BR) и вкусовые рецепторы, имеющие ортостерический сайт в значительном по размеру внеклеточном Venus flytrap (VFT) домене, как и в рецепторах подкласса А10, сайт IBS1 выполняет функции аллостерического сайта.

Необходимо отметить, что в трансмембранном тоннеле большинства рецепторов класса А сайт IBS1 находится немного выше, чем таковой в GPCR классов В и С. В случае GPCR класса В это может быть обусловлено большей протяженностью сайта IBS1, который как бы вытянут вглубь трансмембранного тоннеля, в то время как в GPCR класса С этот сайт функционирует как аллостерический, что, возможно, снимает определенные ограничения на его "утапливание" вглубь трансмембранного тоннеля. Сверху к сайту IBS1 примыкают два вторичных связывающих сайта, IBS2 и IBS3, которые могут частично перекрываться с ним и являются аллостерическими потенциальными сайтами. влияя как на связывающие характеристики рецептора, так и на стабильность его активной конформации и передачу волны конформационных перестроек с ортостерического сайта к трансдукторным белкам. При этом сайт IBS2, который идентифицирован в рецепторах классов А, В2 и С, формируется внутренней поверхностью ТМ4, ТМ5 и ТМ6, в то время как сайт IBS3, обнаруженный в GPCR классов А, В1, С и D1, образован ТМ1, ТМ2, ТМ3 и TM7 [135].

Среди большого числа аллостерических сайтов, идентифицированных в 2022 г. международным научным коллективом под руководством Peter Kolb, наибольший интерес представляет подробное изучение структурных и функциональных характеристик двух "сиротских" аллостерических сайтов, обозначаемых как OS5 и OS9, локализованных в нижней части 7TM-пучка [135]. Сайт OS5 локализован в полости, образуемой ТМ5 и ТМ6, которые меняют свою конформацию и взаимное расположение при связывании рецептора с ортостерическим агонистом и модулируют взаимодействие лиганд-активированного рецептора с G-белками, поскольку интерфейсы ICL3 с TM5 и TM6 являются ключевыми молекулярными детерминантами, ответственными за формирование G-белок-связывающей поверхности рецептора [23]. Сегменты аминокислотной последовательности, формирующие сайт OS5, являются высококонсервативными среди большинства GPCR классов A и В1, и мутации в них приводят к нарушению функциональной активности рецепторов. При этом сайт OS5 отчетливо детектируется во всех классах GPCR – A, B1, B2, C, D1 и F. Этот сайт локализован в нижней части пучка, образованного ТМ5 и ТМ6, в определенной степени уравновешивается сайтом KS12, который расположен в верхней части этого пучка, вовлеченной в формирование внешнего вестибюля трансмембранного тоннеля. Более того, в некоторых рецепторах имеется дополнительный аллостерический сайт OS4, локализованный между сайтами OS5 и KS12, в средней части ТМ5/ТМ6-пучка [135].

Сайт OS9 располагается в полости, образуемой внутриклеточными окончаниями TM1 и TM7 и псевдотрансмембранной спиралью Н8, и образующие этот сайт сегменты высоко консервативны среди большинства GPCR, включая филогенетически удаленный класс F. Как и в случае сайта OS5, мутации АКО, формирующих сайт OS9, в β_2 -AR и mACh₃R критическим образом влияют на стимуляцию активности G-белков, рекрутирование и активацию β-аррестинов. При этом замены АКО в сайте OS9 влияют на селективность передачи гормонального сигнала через определенные типы G-белков, что вносит существенный вклад в предвзятость сигнальной трансдукции [135]. Так, мутации в локусе, соответствующем сайту OS9, в AT₁-ангиотензиновом рецепторе предвзято влияют на активность сигнальных путей, осуществляемых через $G_{a/11}$ -белки и β-аррестины [183]. Согласно данным докинга малых органических молекул, сайт OS9 наиболее важен для аллостерической регуляции GPCR классов A, B1, C и F, в структуре которых присутствует Н8-псевдоспираль, в то время как для рецепторов классов В2 и D, где такая спираль отсутствует, значимость этого сайта не столь существенна. Наряду с сайтами OS5 и OS9, важную роль в регуляции взаимодействия с трансдукторными белками играют еще два сайта, расположенные в области ориентированного в цитоплазму вестибюля — сайт GPROT, образованный цитоплазматическими окончаниями спиралей TM2, TM3, TM5 и TM6, и сайт KS11, образованный спиралями TM1, TM2, TM7 и H8.

Недавно было сообщено об успешной апробации для идентификации аллостерических сайтов метода молекулярной динамики со смешанным растворителем (mixed-solvent molecular dynamics (MixMD)-based method), который учитывает взаимодействие с сайтами рецептора как воды, так и тестируемого органического соединения [184]. Сначала этот метод был успешно апробирован для рецепторов с известным набором аллостерических сайтов, таких как CB₁R, CC-хемокиновый рецептор 2-го типа, mACh₂R, P2Y₁-пуринергический рецептор и PAR2, а затем с его помощью удалось идентифицировать аллостерические сайты в µопиоидном рецепторе, по которому имелись весьма скудные сведения о количестве и локализации аллостерических сайтов, причем полученные данные хорошо коррелировали с имеющимися экспериментальными результатами по аллостерической регуляции µ-опиоидного рецептора [184].

Применение арсенала современных методов теоретического анализа GPCR, включая методы молекулярной динамики, алгоритм FTMAP, докинг низкомолекулярных соединений в потенциальные сайты связывания, в сочетании с экспериментальными данными по фармакологии рецепторов и их структурно-функциональной организации позволяет разработать новые инструменты для поиска и верификации аллостерических сайтов в молекулах GPCR, что исключительно важно для дизайна и дальнейшего продвижения в клинику лекарств на основе аллостерических лигандов [116, 135, 136, 172, 184, 185].

Однако в настоящее время основные успехи достигнуты в отношении аллостерических сайтов, локализованных в области 7ТМ-пучка и его интерфейсов с ECLs и ICLs, в то время как проблема идентификации аллостерических сайтов в гидрофильных петлях и эктодоменах пока далека от своего решения. Здесь важную роль может иметь исследование специфического связывания циркулирующих в крови и искусственно полученных аутоантител к GPCR, мишенями которых являются внеклеточные домены рецепторов, а также изучение специфической активности пептидов, структурно соответствующих участкам ICLs и ECLs, и фрагментов трансдукторных и адаптерных белков, вовлеченных в функциональное взаимодействие с GPCR.

VII. ЭНДОГЕННЫЕ АЛЛОСТЕРИЧЕСКИЕ РЕГУЛЯТОРЫ GPCR

Все эндогенные аллостерические регуляторы GPCR условно могут быть разделены на четыре группы. Первую составляют трансдукторные и адаптерные белки, компоненты GPCR-опосредуемой сигнальной трансдукции, вторую – ионы, аминокислоты, липиды и полипептиды, не наделенные собственной гормональной активностью, третью, относительно немногочисленную – гормональные агенты (стероидные гормоны, полипептидные гормоны), которые действуют на сайты GPCR, отличные от их ортостерического сайта, и четвертую – аутоантитела к GPCR. Ниже мы рассмотрим основных представителей этих групп аллостерических регуляторов.

7.1. Гетеротримерные G-белки

Гетеротримерные G-белки и β-аррестины специфически взаимодействуют с различными по локализации участками ICLs и цитоплазматического С-концевого домена, в первую очередь с проксимальными к мембране сегментами ICL2 и ICL3, а также с интерфейсами между ICLs и TMs. Ключевую роль в сопряжении GPCR с G-белками и β-аррестинами играет полость, расположенная в цитоплазматическом преддверии трансмембранного тоннеля и сформированная цитоплазматическим окончанием ТМ6 (в некоторых рецепторах также ТМ5) и гидрофобной спиралью Н8. Эта полость доступна для взаимодействия как с α5-спиралью, расположенной в С-концевой области Gα-субъединицы, так и с "пальцеобразным" участком β-аррестина, который отвечает за образование комплекса с GPCR [186]. После активации рецептора гормоном или аллостерическим агонистом α5-спираль Gα-субъединицы приобретает способность проникать в полость ТМ6/(ТМ5)/Н8, что приводит к ГДФ/ГТФ-обмену в ее гуаниннуклеотидсвязывающем сайте, диссоциации αβγ-гетеротримерного комплекса и запуску соответствующего внутриклеточного каскада. В то же время сразу вслед за этим GPCR фосфорилируется киназами GRK-семейства, что вызывает рекрутирование β-аррестинов, которые конкурентно вытесняют Gα-субъединицу из полости TM6/(TM5)/H8, тем самым прерывая передачу сигнала через G-белки. В дальнейшем либо осуществляется β-аррестин-опосредуемый эндоцитоз лиганд-рецепторного комплекса внутрь клетки, либо запускается механизм β-аррестинового сигналинга [186].

Неактивный G-белок, который представляет собой G $\alpha\beta\gamma$ -комплекс и включает G α -субъединицу, связанную с ГД Φ , при взаимодействии с GPCR индуцирует его "закрытую" конформацию. Ее особенностью является то, что, находясь в этой конформации, GPCR имеет повышенное сродство к

ортостерическому агонисту, что обеспечивает более высокую чувствительность рецептора к гормональной активации. Это обусловлено тем, что в "закрытой" конформации диссоциация лиганда из ортостерического сайта затруднена, и он как бы попадает в "ловушку". Как следствие, число лиганд-рецепторных комплексов резко повышается [187]. Образование комплекса между неактивным αβγ-гетеротримерным G-белком и конституитивно активным GPCR, например, вследствие активирующих мутаций, также приводит к стабилизации рецептора в "закрытой" конформации, причем в этом случае ортостерический сайт оказывается свободным от лиганда. Более того, особенностью "закрытой" конформации в конституитивно активных рецепторах является воспрепятствование проникновению в ортостерический сайт лигандов с различным профилем фармакологической активности [187]. В то же время, несмотря на различные эффекты "закрытых" конформаций GPCR на связывание ортостерических лигандов, они представляют собой результат аллостерического влияния неактивного G-белка на связывающие характеристики рецептора. После активации G-белка и его диссоциации на мономерную, ГТФсвязанную, Gα-субъединицу и Gβγ-димер, с одной стороны, осуществляется активация различных эффекторных белков, таких как АЦ, PLCβ, фосфатидилинозитол-3-киназа, G-белок-регулируемые кальциевые и калиевые каналы, и, с другой, дестабилизируется "закрытая" конформация и снижается сродство лиганда к ортостерическому сайту.

Аллостерические механизмы, лежащие в основе влияния тройного комплекса ортостерический лиганд-GPCR-G-белок на сродство лиганда к рецептору и на сигнальную трансдукцию в целом, остаются до конца не выясненными. Еще меньше информации о механизмах, которые могут быть вовлечены в предпочтительность включения в такой комплекс в качестве трансдукторного компонента определенного типа G-белка или β-аррестина, а также о возможном аллостерическом влиянии тройного комплекса ортостерический лиганд-GPCR-β-аррестин на связывающие характеристики рецептора. При этом совершенно очевидно, что состав и структурная организация такого комплекса должны во многом определять предвзятый агонизм, обеспечивая избирательную активацию определенного типа трансдукторных белков ортостерическим агонистом [115]. Для обеспечения предвзятости сигнальной трансдукции с помощью аллостерических механизмов предложены две основные модели [57, 188, 189]. В одной из них триггером предвзятого агонизма является смещенный ортостерический агонист, который обеспечивает рекрутирование в тройной комплекс определенного типа G-белка или β-аррестина. Во второй модели сначала образуется предактивационный двойной комплекс между свободным от

агониста рецептором и определенным типом G-белка (в неактивном ГДФ-связанном состоянии) или β -аррестина, после чего они уже предопределяют связывание определенного лиганда, стабилизируя только одну "закрытую" конформацию.

Первая модель, в основе которой лежит "лигандный" механизм, была предложена в 1997 г. американским биохимиком Henry Bourne и опиралась на результаты многочисленных исследований 1980-1990-х годов, свидетельствующих о том, что связывание GPCR с ортостерическим агонистом приводит к рекрутированию G-белков с образованием тройного комплекса, и это является триггером предвзятого внутриклеточного сигналинга [190]. Поначалу эта модель казалась безальтернативной [191-194], но постепенно стали накапливаться данные, которые не укладывались в парадигму "лигандного" механизма. Этому механизму противоречили результаты исследований, указывающие на то, что конституитивно активный рецептор, в отсутствие ортостерического агониста, сохранял способность рекрутировать и активировать G-белки [195, 196], и даже избирательно активировал определенные типы G-белков и β-аррестинов [197, 198]. Тем самым был сделан вывод о том, что ортостерический агонист не способен детерминировать формирование комплекса GPCR с определенным типом трансдукторного белка. К тому же "лигандный" механизм не поддерживался кинетическими данными, которые свидетельствовали о высокой скорости и высокой эффективности образования тройного комплекса, что недостижимо в случае выбора в качестве начальной стадии процесса связывания ортостерического агониста. К тому же не понятно, как в таком случае осуществляется сортинг G-белков или β-аррестинов, учитывая низкую доступность требуемого для предвзятой передачи сигнала определенного их типа в примембранном пространстве.

Ограничения и противоречия, имеющиеся в отношении "лигандного" механизма, в значительной степени преодолеваются в рамках второй модели. В ней на первом этапе образуется двойной предактивационный комплекс, включающий лиганд-свободную форму GPCR и определенный тип трансдукторного белка. Аллостерические влияния, осуществляемые трансдукторным белком на конформацию ортостерического сайта, предопределяют высокоаффинное связывание с ним определенного ортостерического агониста, что и лежит в основе предвзятого сигналинга [189]. Важно, что существование таких предактивационных комплексов показано для различных семейств GPCR и различных типов G-белков [199–204]. При этом в состав таких комплексов входят те типы G-белков, которые преимущественно сопряжены с определенным типом GPCR. Так, например, G₀-белоксопряженный α_2 -AR образует предактивационный комплекс преимущественно с G_o -белками, G_s -белок-сопряженные простациклиновый рецептор и 5-HT₇-серотониновый рецептор – с G_s -белками [199, 203, 205], G_i -белок-сопряженный PAR1 – с G_{i1} -белками [200], и $G_{q/11}$ -белок-сопряженный mACh₃R – с $G_{q/11}$ -белками [201].

Молекулярный механизм, опосредующий изменение связывающих характеристик рецептора в составе комплекса с неактивным G-белком, включает ослабление взаимодействия между ТМЗ и ТМ6, что приводит к большей доступности ортостерического сайта для связывания агониста. В случае конституитивно активного рецептора смещение ТМ6 наружу, обусловленное повышением подвижности этой ТМ, оказывается достаточным для активации G-белка, в то время как в рецепторах с базальной активностью для эффективного смещения необходим ортостерический агонист. В то же время образование комплекса GPCR-неактивный G-белок существенно снижает энергетический порог для такого смещения, снимая, тем самым, термодинамические препятствия для агонист-индуцированной активации G-белка. Смещение ТМ6 наружу из трансмембранного тоннеля приводит к изменению локализации α5-спирали Gα-субъединицы, что способствует замене в ней ГД Φ на ГТ Φ , диссоциации гетеротримерного комплекса и запуску сигнальной трансдукции [189].

Для доказательства аллостерических влияний, вызываемых G-белками, успешно применяются антитела или их фрагменты (нанотела), имитирующие неактивные ГДФ-связанные G-белки. Они также обладают способностью стабилизировать "закрытую" конформацию ортостерического сайта GPCR [206-208]. В 2011 г. Rasmussen и соавт. выработали антитела Nb80 (14 кДа) на агонист-активированный β₂-AR, и эти антитела обладали свойствами G-белка при связывании с этим рецептором [206]. Антитела Nb80 не опознавали свободную от ортостерического лиганда, неактивную конформацию рецептора, но при этом с высокой эффективностью связывались с агонист-активированной формой рецептора и вызывали в ней конформационные изменения, сходные с таковыми при связывании β_2 -AR с G_s-белком и β_2 -агонистом изопротеренолом. В дальнейшем были разработаны антитела Nb60, которые действовали противоположным образом, стабилизируя неактивную конформацию GPCR, характеризующуюся низким сродством к лиганду [208]. Изопротеренол при связывании с β₂-AR в присутствии антител Nb80 имел сродство к рецептору в 15 тысяч раз выше, чем в присутствии антител Nb60. При этом различия в аффинности связывания других лигандов с β₂-AR в присутствии антител Nb80 и Nb60 сильно варьировали, что указывает на отчетливо выраженный их аллостерический эффект на связывающие характеристики ортостерического сайта [208]. В совокупности эти данные свидетельствуют в пользу аллостерической природы регуляторного влияния G-белка на сродство GPCR к ортостерическим лигандам. С помощью антител и других подходов было показано, что аллостерические сайты рецептора, являющиеся мишенями для G-белка, расположены на границе между цитоплазматическими окончаниями TMs и проксимальными к мембране участками ICL2 и ICL3, в цитоплазматическом преддверии трансмембранного тоннеля [207]. Однако в отдельных случаях в формировании таких сайтов могут принимать участие и более дистальные участки ICLs и цитоплазматического С-хвостового домена. Необходимо принимать во внимание тот факт, что если Gα-субъединица в основном взаимодействует с преддверием трансмембранного канала, то G_βγдимер использует для связывания другие молекулярные детерминанты, расположенные в том числе в дистальных участках ICLs.

7.2. β-Аррестины

Компонентами предактивационного комплекса, включающего GPCR, наряду с G-белками, могут быть β-аррестины, которые также облегчают связывание ортостерических агонистов, в том числе предвзятых по отношению к β-аррестин-специфичным каскадам [57, 209]. Существование тройного комплекса ортостерический агонист-GPCR–β-аррестин было предсказано еще в 1997 г. Gurevich и соавт. на основе изучения комплексов β -аррестинов с β_2 -AR и mACh₂R [210]. Было показано, что в комплексе с β-аррестинами эти рецепторы имеют существенно более высокое сродство к агонистам, но не к антагонистам ортостерического сайта, причем мутации в β-аррестинах, препятствующие эффективному связыванию с рецептором, полностью предотвращали повышение аффинности GPCR к агонисту [210, 211]. В дальнейшем было показано, что повышение сродства рецептора к ортостерическим агонистам было наиболее отчетливо выражено в случае агонистов, предвзятых в отношении активации В-аррестинспецифичных сигнальных путей, что, как можно полагать, лежит в основе предпочтительного связывания комплекса GPCR-*β*-аррестин с *β*-аррестин-предвзятым агонистом и соответствует рассмотренной выше второй модели, основанной на образовании двойного предактивационного комплекса, только теперь в приложении к β-аррестинам [59].

С помощью криоэлектронной микроскопии была установлена структура комплекса, включающего β_1 -AR, β_{arr1} и β -аррестин-предвзятый агонист формотерол (formoterol), и показано, что конформационные изменения, которые индуцирует β_{arr1} в структуре трансмембранного домена β_1 -AR, существенно отличаются от таковых в случае ком-

плекса β_1 -AR с G_s-белком и затрагивают в основном TM7. Это обусловлено тем, что, в сравнении с α 5-спиралью G α -субъединицы, пальцевая петля (finger loop) β arr1 занимает более узкую щель во внутриклеточном вестибюле трансмембранного тоннеля [209]. В этой связи необходимо отметить, что β -аррестины способны опосредовать сигнальную трансдукцию независимо от G-белков, осуществляя регуляции каскада MAPKs [212, 213]. Тем самым модель предактивационного комплекса GPCR- β -аррестин является функционально значимой и может указывать на универсальность механизма образования предактивационного комплекса между рецептором и трансдукторным белком.

Еще одна, сравнительно недавно развиваемая модель, авторами которой являются выдающиеся специалисты в области сигнальной трансдукции Anthony Nguyen и лауреат Нобелевской премии 2012 г. Robert Lefkowitz, описывает в качестве ключевого этапа предвзятого GPCR-опосредуемого сигналинга формирование комплексов с "мегаплексной" (megaplex) структурой, включающих лиганд-связанный GPCR и оба трансдуктора -G-белок и β-аррестин [214]. Предпосылкой для этой модели стали наблюдения, что после интернализации комплекса лиганд-GPCR, индуцируемой β-аррестинами, в ряде случаев рецепторы сохраняют способность устойчиво передавать сигналы через посредство G-белков. При этом рассматриваются различные механизмы для реализации такого необычного эффекта. В их основе лежит представление о том, что β-аррестины не только обеспечивают везикулярный транспорт рецепторного комплекса, но, обеспечивая его удерживание в подходящей конформации внутри сигнальной эндосомы, способствуют длительной активации G-белков. Имеются данные о том, что β-аррестины могут поддерживать и даже усиливать G-белокопосредуемый сигналинг, препятствуя реассоциации Gα-субъединицы и Gβγ-димера путем образования комплекса, включающего GPCR, G_βγ-димер и β-аррестин [215]. Способность β-аррестинов в составе комплекса с GPCR функционально взаимодействовать с Сбру-димером была продемонстрирована на примере химерного рецептора $\beta_2 V_2 R$, в котором C-концевой домен β_2 -AR заменен на таковой V₂-вазопрессинового рецептора [216]. Важно отметить, что взаимодействие Gβγ-димера с комплексом β₂V₂R-βarr1 было отчетливо выражено только в том случае, когда гетеротримерный комплекс G_s-белка подвергался диссоциации на Gα -субъединицу и Gβγ-димер в присутствии негидролизуемого аналога ГТФ.

В настоящее время аллостерические влияния, которые могут реализовываться при формировании "мегаплексной" структуры лиганд–GPCR– Gβγ-димер–β-аррестин, остаются не изученными, но их роль, особенно на стадии "позднего", эндо-

сомального, сигналинга может быть определяющей. Известно, что одним из механизмов прекращения передачи сигнала через интернализованный GPCR является снижение pH в просвете эндосом, что приводит к снижению сродства лиганда к рецептору, как это показано для рецептора паратиреоидного гормона [217]. Вследствие этого для поддержания эндосомального сигналинга необходимы механизмы для сохранения высокого сродства GPCR к лиганду в условиях закисления просвета эндосом, что, возможно, и обеспечивает "мегаплексная" структура. При этом в основе таких стабилизирующих влияний может быть повышение устойчивости "закрытой" конформации ортостерического сайта, что затрудняет диссоциацию связанного с ним лиганда в условиях закисления. Следует отметить и тот факт, что конформационные изменения в GPCR, индуцируемые образованием "мегаплексной" структуры лиганд-GPCR-Gβγдимер-β-аррестин, влияют на предвзятость внутриклеточного сигналинга и на интенсивность продукции, распределения и транспорта вторичных посредников внутри эндосомы [214].

Поскольку β-аррестины могут выступать в качестве аллостерических регуляторов GPCR, то стратегии, направленные на регуляцию их активности, способны влиять на аллостерические взаимодействия между GPCR и β-аррестинами, а следовательно, контролировать GPCR-опосредуемый сигналинг. В качестве примера можно привести недавнее исследование по разработке высокоспецифичных внутриклеточных антител к βarr1, которые аллостерически модулировали эндосомальный сигналинг мутантного $V_2\mbox{-} вазопрессинового рецеп$ тора [218]. Замена в этом рецепторе остатка Thr³⁶⁰, мишени для фосфорилирования GRK-киназами и компонента одного из двух сайтов для связывания с βarr1, на аланин сохраняла способность βarr1 транслоцироваться в мембрану и образовывать комплекс с агонист-активированным мутантным рецептором, но предотвращала эндосомальную локализацию комплекса рецептора с βarr1 и блокировала βarr1-опосредуемую активацию ERK1/2, нижележащего компонентов каскада MAPKs, наблюдаемую в случае V₂-вазопрессинового рецептора дикого типа [219]. В присутствии антител Ib30, которые специфически связываются с βarr1, находящимся в комплексе с мутантным V₂-вазопрессиновым рецептором, агонист-индуцированный эндосомальный транспорт лиганд-рецепторного комплекса восстанавливался и одновременно с этим нормализовалась активация ERK1/2-сигнальных путей. Возможными механизмами здесь являются стабилизация активной конформации βarr1 в комплексе с рецептором и аллостерически индуцированное усиление взаимодействия βarr1 с белком β2-адаптином, роль которого в эндосомальном GPCR-сигналинге в последние годы интенсивно изучается [220].

В предвзятости сигналинга большую роль играет соотношение молекул GPCR и β-аррестинов, поскольку в случае гиперэкспрессии рецепторов количества экспрессируемых β-аррестинов, необходимого для нормального обеспечения β-аррестин-специфичного сигналинга, начинает не хватать, и тогда даже при связывании GPCR с β-аррестин-предвзятым агонистом парадоксальным образом начинает запускаться G-белок-специфичные сигнальные каскады [221-223]. При этом чем больше дисбаланс между GPCR и β-аррестинами в пользу рецепторов, тем выше вероятность передачи сигнала через G-белок-опосредуемые пути. Показано, что при физиологических, сравнительно низких, уровнях экспрессии ангиотензинового рецептора 1 типа (angiotensin II type 1 receptor, AT1R) при действии β-аррестин-предвзятого лиганда TRV026 активируются преимущественно β-аррестин-специфичные пути. В то же время в условиях гиперэкспрессии AT1R соединение TRV026 приобретает способность активировать G_i- и G_{g/11}-белки, вызывая, тем самым, мощную стимуляцию кальциевых каскадов, что указывает на потерю этим соединением функциональной селективности [223]. Одной из причин потери селективности β-аррестин-предвзятых лигандов при гиперэкспрессии GPCR является то, что даже при стехиометрическом соотношении GPCR и β-аррестинов небольшая часть рецепторов все же остается в конформации, способствующей их эффективному взаимодействию с G-белками. При повышении количества рецепторов доля их молекул, не связанных с В-аррестинами, возрастает, и это неизбежно приводит к значительному увеличению доли GPCR в G-белок-адаптированной конформации. Сходная ситуация наблюдается и при нокауте генов, кодирующих β-аррестины, или вследствие экспрессии мутантных их форм, неспособных к связыванию с GPCR [222, 223]. Все эти закономерности хорошо укладываются в представленную выше парадигму "мегаплексной" структуры, включающей GPCR, G-белок и β-аррестин.

7.3. GPCR-акцессорные белки

Отдельную группу белков, влияющих на функциональную активность GPCR, составляют GPCR-акцессорные белки (GPCR Accessory Proteins), среди которых наиболее значимы белки RAMP-семейства.

Семейство RAMP включает три представителя, RAMP1, RAMP2 и RAMP3, которые взаимодействуют, по крайней мере, с 46 типами GPCR [224]. Все RAMP один раз пронизывают плазматическую мембрану, имеют значительный по размеру внеклеточный N-концевой домен и небольшой цитоплазматический С-хвостовой домен, причем во

взаимодействии с GPCR участвуют внеклеточный домен и, в меньшей степени, ТМ [225, 226]. Образуя комплексы с GPCR, RAMP модулируют селективность рецептора к ортостерическому агонисту, влияют на предвзятость активации внутриклеточных эффекторов, регулируют везикулярный транспорт агонист-активированного GPCR и его рециклизацию. Наряду с этим RAMP могут функционировать как шапероны, обеспечивая нормальное протекание посттрансляционного процессинга GPCR и способствуя надлежащему их встраиванию в плазматическую мембрану, а также опосредованно регулируют генную экспрессию GPCR, как это продемонстрировано на примере рецептора, подобного рецептору кальцитонина (calcitonin receptor-like receptor, CALCRL) и чувствительного к внеклеточному кальцию рецептора CaSR [224, 225, 227, 228].

В настоящее время установлена локализация аллостерических сайтов, которые потенциально способны взаимодействовать с RAMP, одни из которых локализованы в ECLs, в то время как другие на боковой поверхности трансмембранного домена, в месте его контакта с липидной фазой мембраны. Ключевым результатом взаимодействия RAMP с GPCR является изменение конформации ТМ6 и ICL2, которые участвуют в формировании карманов ортостерического сайта, играют важную роль в стабилизации его "закрытой" конформации, тем самым, определяя сродство рецептора к агонисту. ТМ6, как отмечалось выше, непосредственно вовлечена во взаимодействие рецептора с G-белком и β-аррестинами [224]. В зависимости от того, с каким RAMP рецептор образует комплекс, он способен взаимодействовать с вполне определенным типом ортостерического агониста, как это показано для рецептора CALCRL [224]. В случае образования комплекса CALCRL с RAMP1, рецептор активируется кальцитонин-ген-родственным пептидом (CGRP), при образовании комплекса с RAMP2 он активируется адреномедуллином, в то время как при образовании комплекса с RAMP3 – адреномедуллином и адреномедуллином-2 (интермедином). Более того, кальшитониновый рецептор, находясь в комплексе с определенным типом RAMP, приобретает способность связывать не свойственный для этого рецептора лиганд – гормон амилин [229– 231]. RAMP также определяют специфичность и эффективность активации гормонами внутриклеточных сигнальных каскадов. Они усиливают взаимодействие кортиколиберинового рецептора 1-го типа с G-белками [232], а также обеспечивают селективность активации G-белков и β-аррестинов при связывании рецептора 2-го типа вазоактивного интестинального пептида (VPAC₂R) и кальцитонинового рецептора с ортостерическими агонистами [233, 234].

При детальном рассмотрении влияния различных RAMP на активность рецептора глюкагона

(GCGR), GLP-1R и GLP-2R были получены свидетельства в пользу рецепторной специфичности RAMP-опосредуемой модуляции зависимых и независимых от G-белков сигнальных путей для глюкагонового семейства GPCR [235]. Показано, что RAMP1 модулирует стимулирующие эффекты агонист-связанных рецепторов GCGR и GLP-1R как на G_s- и G_{q/11}-белок-зависимые каскады, так и на рекрутирование β-аррестинов к лиганд-рецепторному комплексу, в то время как аллостерические эффекты RAMP2 были специфичны только в отношении β-аррестинов для всех трех изученных рецепторов. В свою очередь, RAMP3 негативно влиял на все сигнальные пути, осуществляемые через GCGR, GLP-1R и GLP-2R [235]. Позднее другими авторами было установлено, что RAMP2 является негативным аллостерическим модулятором для рецептора глюкагона, повышая подвижность его внеклеточного домена и, тем самым, снижая стабильность агонист-активированной конформации и препятствуя активации рецептором G_s-белка и цАМФ-зависимых сигнальных путей [236].

Важность изучения RAMP, как аллостерических регуляторов GPCR, обусловлена их ключевой ролью в функционировании сердечно-сосудистой, выделительной и дыхательной систем, в регуляции воспалительных процессов [237–242]. Интерфейс, который определяет взаимодействие между GPCR и RAMP, является одной из мишеней для создания фармакологических регуляторов GPCR-опосредуемого сигналинга [226, 228, 243, 244]. Одним из таких регуляторов является препарат Olcegepant для лечения мигрени, который встраивается в карман, образуемый RAMP1 и N-концевым участком CALCRL, обеспечивая негативную регуляцию сигнальных путей, активируемых CGRP [245–248].

Наряду с RAMP, в аллостерическую регуляцию отдельных типов GPCR могут быть вовлечены другие GPCR-акцессорные белки, в том числе рецептор-транспортирующие белки (receptor-transporting proteins, RTP), белки, повышающие экспрессию рецепторов (receptor expression-enhancing proteins, REEP), белки, являющиеся компонентами рецепторных комплексов (receptor-component protein, RCP), а также специфичные для меланокортиновых рецепторов дополнительные белки (melanocortin receptor-accessory proteins, MRAP) [249–251].

Рецептор-транспортирующие белки RTP1S и RTP2, представляющие собой интегральные белки, имеющие значительный цитоплазматический N-концевой домен, выполняют функции шаперонов для одорантных рецепторов, играя важную роль в регуляции их экспрессии и комплексообразования, участвуют в интернализации их лигандрецепторных комплексов [252, 253]. Белки RTP3 и RTP4 вовлечены в модуляцию внутриклеточного

GPCR-транспорта и функциональной активности вкусового рецептора человека TAS2R [254], а RTP4 также опосредует повышение количества μ - и δ -опиоидных рецепторов на поверхности мембраны и усиление ответа клетки-мишени на агонисты этих рецепторов [255]. Имеются основания считать, что шаперон-подобная функция RTP осуществляется вследствие их взаимодействия с микродоменами липидных рафтов, поскольку нарушение такого взаимодействия предотвращает образование функционально активного комплекса RTP с GPCR [256].

Семейство белков REEP включает два подсемейства, REEP1-REEP4 и REEP5-REEP6, представители которых участвуют не только в регуляции морфогенеза, ремоделировании эндоплазмаретикулума и в тического формировании цитоскелета, но посредством образования комплексов с GPCR, контролируют внутриклеточный транспорт рецепторов, их экспрессию, посттрансляционные модификации и функциональную активность [257, 258]. REEP локализованы преимушественно во внутриклеточных компартментах и практически отсутствуют в плазматической мембране. Вследствие этого отмечаемое в их присутствии повышение плотности рецепторов на клеточной поверхности обусловлено способностью **REEP** облегчать транслокацию GPCR из внутриклеточных депо к плазматической мембране. Тем самым они функционируют как транспортные белки для рецепторов, которые в дальнейшем диссоциируют от рецепторного комплекса [257]. Взаимодействие REEP даже с близкородственными GPCR сильно варьирует, поскольку они способны образовывать комплексы и транспортировать α_{2C}-AR, контролируя процесс их гликозилирования, но не влияют на внутриклеточный транспорт и посттрансляционный процессинг α_{2A} -AR. Продемонстрирована предпочтительность взаимодействия REEP с негликозилированными и слабо гликозилированными формами α_{2C}-AR [257].

Семейство RCP представлено внутриклеточными примембранными белками, сравнительно небольшими по размеру (в среднем около 148 АКО), которые являются компонентами комплекса РНКполимеразы III и необходимы для функционирования GPCR класса В [259]. Продемонстрировано участие RCP в контроле экспрессии CALCRL и его сродства к лигандам ортостерического сайта, причем этот белок влияет на активность рецептора совместно с белками RAMP-семейства [260]. Основным сайтом для связывания с RCP является ICL2, имеющая критическое значение для передачи сигнала с лиганд-активированного рецептора на G-белки и β-аррестины, как это показано для комплекса CALCRL-RAMP1-RCP [261]. Изменение конформации ICL2 рецептора вследствие его взаимодействия с RCP является молекулярным механизмом, контролирующим взаимное расположение TM3 и TM6, вовлеченных в формирование ортостерического сайта.

Семейство белков MRAP включает MRAP1 и имеющий с ним 40%-гомологию MRAP2, каждый из которых пронизывает мембрану один раз и имеет по две сплайсинговых формы [262]. MRAP1 был идентифицирован с помощью генетического скрининга у пациентов с наследственной формой дефицита глюкокортикоидных гормонов. Этот белок с высокой интенсивностью экспрессируется в надпочечниках, где усиливает экспрессию меланокортинового рецептора 2 типа (MC_2R) на поверхности клеток и повышает его чувствительность к адренокортикотропному гормону (АСТН) [263]. MRAP2 характеризуется высокой консервативностью у различных представителей позвоночных животных и экспрессируется в мозге, надпочечниках и в ряде других тканей [264]. Достаточно необычен тот факт, что в гликозилированном состоянии MRAP образуют антипараллельные гомодимеры, вследствие чего у этих белков, как с внешней, так и с внутренней стороны мембраны располагаются и N-концевой (от одного протомера), и C-концевой (от другого протомера) участки [265]. В негликозилированном состоянии они образуют параллельные гомодимеры, в которых оба N-концевых участка с близкой вероятностью расположены либо во внеклеточном, либо в цитоплазматическом пространстве.

Длительное время считали, что MRAP функционально взаимодействуют почти исключительно с MC₂R [262], но в последние годы было показано, что MRAP образуют комплексы и с другими типами меланокортиновых рецепторов MC_3R и MC_4R , которые специфично связываются с пептидами меланокортинового семейства – α-, β- и γ-меланоцитстимулирующими гормонами (α-, β- и γ-MSH) [266]. Важно, что воздействие различных форм MRAP, в том числе разных их сплайсинговых вариантов, на связывающие характеристики, транслокацию и встраивание в мембрану меланокортиновых рецепторов сильно варьирует. Так MRAP1 в значительной степени повышает число MC₃R на поверхности клетки, в то время как MRAP2a и MRAP2b его снижают. В присутствии MRAP1 и MRAP2a снижается эффективность ответа MC_3R на α-MSH и ACTH, в то время как в присутствии MRAP2b ослабляется ответ только на α-MSH. В случае MC_4R число рецепторов повышается в присутствии MRAP1 и MRAP2a, а сродство рецептора к α-MSH и ACTH повышается в присутствии всех трех MRAP. При этом MRAP2a повышает реализуемый через MC₄R стимулирующий активность АЦ эффект АСТН, в то время как MRAP2b снижает соответствующий эффект как АСТН, так и α-MSH. Тем самым MRAP, в зависимости от изоформы, а также типа рецептора и ор-

тостерического агониста, реализуют широкий спектр аллостерических влияний на аффинность связывания лиганда с ортостерическим сайтом и на величину гормонального ответа, в первую очередь, на активацию цАМФ-зависимых сигнальных путей [266].

7.4. Простые ионы

Универсальными аллостерическими модуляторами GPCR являются некоторые простые ионы, в первую очередь катионы натрия, цинка, магния, кальция и марганца и анионы хлора. При этом однозарядные ионы натрия снижают связывание рецепторов с агонистами, стабилизируя их неактивное состояние, и при этом потенцируют связывание рецепторов с антагонистами. Двухзарядные ионы кальция и магния, как правило, действуют противоположным образом, стабилизируя активные конформации GPCR и повышая их ответ на стимуляцию ортостерическими агонистами [267-269]. В то же время эффекты ионов цинка на активность рецепторов являются разнонаправленными, и характер их аллостерических влияний в значительной степени зависит от концентрации ионов Zn²⁺, типа рецептора, а также химической природы и связывающих характеристик ортостерического лиганда [270-272].

Ионы натрия

Еще в 1970-1980-е годы было обнаружено, что ионы натрия могут негативно влиять на связывание опиоидных рецепторов с агонистами [273], усиливать их связывание с антагонистами [274], а также влиять на паттерн конформационных состояний этих рецепторов [275]. В то же время молекулярные механизмы этого оставались невыясненными, а эффекты ионов Na⁺ рассматривались как специфичные только для опиоидных рецепторов. На рубеже 1980-1990-х годов были получены данные о влиянии ионов Na⁺ на связывающие характеристики и функциональный ответ на действие агонистов для ряда других GPCR, что свидетельствует о присущих этому иону свойствах аллостерического модулятора [276-279]. При изучении D₂-дофаминового рецептора было установлено, что в присутствии ионов Na⁺ аффинность рецептора к селективному D₂-агонисту квинпиролу снижается, в то время как его сродство к неселективному D₂/D₃-антагонисту эпидеприду повышается [278]. Это свидетельствует о стабилизации в присутствии ионов натрия неактивной конформации рецептора. Были обнаружены потенциальные мишени для связывания ионов Na⁺ – боковые карбоксилаты высококонсервативных остатков аспарагиновой кислоты, локализованных внутри трансмембранного домена, что указывало на расположение Na^+ -связывающего аллостерического сайта в трансмембранном тоннеле, вблизи локализованного там в большинстве GPCR класса A ортостерического сайта. Замены остатка Asp⁷⁹ в α_2 -AR и двух остатков Asp⁷¹ и Asp¹²² в mACh₁R, расположенных примерно в середине трансмембранного тоннеля и способных связывать моновалентные катионы, на аспарагин, лишенный такой способности, повышали аффинность этих рецепторов к агонистам и предотвращали негативное влияние на них ионов натрия [276, 277].

В дальнейшем исследования по локализации и конфигурации Na⁺-связывающих сайтов в GPCR были продолжены [268, 269, 280-282]. Было показано, что ключевую роль в формировании таких сайтов, наряду с остатком аспарагиновой кислоты, локализованным в TM2 (позиция 2.50), играют и ряд других, пространственно сближенных с ним АКО, также высококонсервативных в структуре большинства GPCR класса А [268, 280]. В А_{2А}-аденозиновом рецепторе, наряду с остатком Asp^{52(2.50)}, ответственным за связывание иона Na⁺, в формировании Na⁺-связывающего сайта принимают участие остатки Ser^{91(3.39)}, Trp^{246(6.48)}, Asn^{280(7.45)} и Asn^{284(7.49)} [268, 281]. Замены остатков Asp⁵² и Asn²⁸⁴ на аланин полностью предотвращают негативный модулирующий эффект ионов Na⁺ на агонист-индуцированную активацию рецептора, в то время как замены остатков Ser⁹¹, Trp²⁴⁶ и Asn²⁸⁰ лишь частично его ослабляют [268]. При этом рецептор с заменами остатков Ser⁹¹ и Asn²⁸⁰ характеризуется повышенной базальной активностью, что является следствием подавления негативного модулирующего влияния ионов Na⁺ на устойчивость его активных конформаций [281]. Несмотря на то что Asp^{52(2.50)} локализован вне ортостерического сайта, он существенно влияет на его доступность для агонистов, а также контролирует перемещение агонистов в этот сайт и подходящее для активации рецептора расположение молекул агонистов в нем [268, 281].

Структурное изучение Na⁺-связывающего сайта в трансмембранном тоннеле δ-опиоидного рецептора показало, что имеются две координационные оболочки, с которыми взаимодействует ион натрия, будучи прочно связанным солевым мостиком отрицательно заряженным карбоксилатом с Asp^(2.50). Первую оболочку формируют пять атомов кислорода, три из которых относятся к боковым цепям Asp^{95(2.50)}, Ser^{135(3.39)} и Asn^{131(3.35)}, а два других атома кислорода к молекулам воды. Вторую координационную оболочку формируют боковые цепи еще трех АКО, Trp^{274(6.48)}, Asn^{310(7.45)} и Asn^{314(7.49)}, и еще две молекулы воды, которые осуществляют контакт с первой оболочкой [283-285]. Все эти остатки являются высококонсервативными среди GPCR класса A и у представителей некоторых дру-

гих классов GPCR, что указывает на раннее происхождение в эволюции Na⁺-опосредуемого механизма аллостерической регуляции GPCR. В частности, они включены в высококонсервативные мотивы F^(6.44)XXW^(6.48)XP в TM6 и N^(7.49)PXXY^(7.53) в TM7, определяющие активацию GPCR и передачу гормонального сигнала к G-белкам и β-аррестинам [268, 280, 283]. При изучении D₂-дофаминового рецептора показано, что, как и в случае б-опиоидного рецептора, ионы натрия опосредованно взаимодействуют с остатком Trp^(6.48), который функционирует как переключатель вращения TMs при переходе от неактивной к активной конформации, и это позволяет стабилизировать неактивную конформацию рецептора в Na⁺-связанном состоянии [286].

При исследовании 3D-структур β_1 -AR [287], A_{2A}-аденозинового рецептора [288], PAR1 [289] и δопиоидного рецептора [283] было установлено, что в Na⁺-связанном состоянии стабилизируется неактивное состояние рецептора, в то время как при потере ионов натрия, в том числе в результате связывания GPCR с ортостерическим агонистом, происходит его переход в активное состояние. Тем самым ионы Na⁺ выполняют функцию сохранения GPCR в неактивной конформации в отсутствие гормональной стимуляции [280].

В пользу этой гипотезы свидетельствуют данные исследования Libin Ye и соавторов, в котором было изучено аллостерическое влияние ионов Na⁺ на различные конформеры А2А-аденозинового рецептора и установлено, что в диапазоне относительно низких концентраций ионы Na⁺ стабилизируют неактивные конформации S-1 и S-2 и повышают долю переходной активной конформации S-3 [269]. Повышение доли конформаций S-1, S-2 и S-3 происходит вследствие снижения стабильности полностью активной конформации S-3*. Важно, что при повышении концентрации ионов Na⁺ доля конформации S-3 повышается, и это может указывать на наличие в молекуле рецептора второго сайта для связывания Na⁺ с более низким сродством к этому иону. Среднее время пребывания ионов Na⁺ в апо-форме А_{2А}-аденозинового рецептора составляет всего 480 миллисекунд. Процесс их выхода из сайта связывания с рецептором является непростым и не до конца понятым процессом. Потеря ионов натрия индуцирует возмущение расположенных по соседству с ним молекул воды, образующих высокоупорядоченную систему внутри трансмембранного тоннеля, в результате чего конформационные изменения охватывают не только центральную часть трансмембранного тоннеля, но и преддверие внеклеточного входа в него. После высвобождения ионов Na⁺ из аллостерического сайта их стабилизирующий эффект на неактивные и промежуточную активную конформации рецептора исчезает, что приводит к повышению доли активной конформации S-3* и эффективному связыванию ортостерического агониста [269]. Таким образом, для успешной активации рецептора ортостерический агонист, воспользовавшись очень узким энергетическим окном, возникающим после диссоциации ионов Na⁺ из связывающего его сайта, должен успеть достичь ортостерического сайта и прочно связаться с ним.

После того, как агонист связался с ортостерическим сайтом, доступ иона натрия к Na⁺-связывающему сайту прекращается. В противоположность полному ортостерическому агонисту, инверсионный агонист стабилизирует Na⁺-связанное состояние А_{2А}-аденозинового рецептора до 630 миллисекунд, что сокращает время существования рецептора в свободном от ионов натрия состоянии и снижает вероятность его активации полным или частичным агонистом [269]. В полном соответствии с этим находятся результаты, полученные с использованием масс-спектрометрии, по изучению конформационных состояний GPCR в среде с высоким содержанием ионов натрия. Показано, что агонисты существенно снижают связывание ионов Na⁺ с трансмембранным Na⁺-связывающим сайтом, в то время как антагонисты способствуют такому связыванию [290]. Имеются данные о том, что агонист способствует выталкиванию ионов натрия из трансмембранного тоннеля не во внеклеточное пространство, как описывает большинство моделей, а в цитоплазматическое пространство, чему способствует изменение протонирования внутренней полости трансмембранного тоннеля [291], и это хорошо соответствует модели "ионного тоннеля" для GPCR, предложенной еще в 1998 г. Zhorov и Ananthanarayanan [292, 293]. Расчеты показывают, что процесс передвижения ионов натрия в цитозоль характеризуется низкими энергетическими барьерами и может управляться физиологическими значениями мембранных потенциалов. Если исходить из такой модели, то транспорт ионов Na⁺ из внеклеточного в цитоплазматическое пространство через трансмембранный тоннель GPCR является одним из ключевых этапов активации рецептора и обеспечивает устойчивость активных его конформаций в процессе сигнальной трансдукции [291].

С использованием методологии молекулярной динамики, на примере $5HT_{2B}$ -серотонинового рецептора установлено, что ионы натрия транспортируются в Na⁺-связывающий сайт вдоль TM3, TM6 и TM7, после чего образуют сильные водородные связи с остатком Asp^(2.50) [294]. Дистанция между карбоксилат-анионом и ионом Na⁺ составляет в среднем 2.4 ангстрема, и колеблется в сравнительно узком диапазоне от 2 до 4 ангстрем, что предполагает высокую вероятность обнаружения ионов натрия на этом расстоянии от карбоксилата [294].

Следует, однако, отметить, что в 2020 г. появились данные о том, что наряду с "классической" локализацией Na⁺-связывающего сайта в центральной части трансмембранного домена, еще один, дополнительный Na⁺-связывающий сайт, может быть локализован во внеклеточном преддверии трансмембранного тоннеля, причем его функции существенно отличаются от таковых трансмембранного сайта [295]. Открытие второго сайта, расположенного в интерфейсе между ECL2 и соседними с ним TM4 и TM5, опиралось на результаты изучения 3D-структуры комплекса D₂-дофаминового рецептора и агониста MLS1547 с помощью молекулярного докинга. Связанный с этим сайтом ион Na⁺ осуществлял координацию взаимодействия между имидазольным кольцом остатка His^{393(6.55)} и отрицательно заряженной группой агониста MLS1547, причем это взаимодействие осуществлялось с участием двух молекул воды [295].

В настоящее время роль ионов Na⁺, как аллостерических модуляторов, продемонстрирована для большого числа GPCR, включая рецепторы биогенных аминов, нуклеотидов, пептидных гормонов и липидов [269, 280, 282, 285, 288, 296, 297]. С учетом структурного анализа трансмембранных доменов, можно с высокой вероятностью предполагать, что все GPCR наиболее обширного класса А регулируются ионами натрия, выполняющими функции NAM, в то время как в отношении других классов GPCR наличие Na⁺-связывающих сайтов показано лишь в некоторых случаях. Только в последние годы способность ионов натрия функционировать как NAM была продемонстрирована и детально изучена для различных типов дофаминовых рецепторов (D2, D3 и D4) [298, 299], 5-HT_{1A}серотонинового рецептора [300], mACh₂R [301], δ- и μ-опиоидных рецепторов [285, 299], гистаминового рецептора 1-го типа [302], окситоцинового рецептора [303], V2-вазопрессинового рецептора [304], грелинового рецептора [305], хемокинового рецептора СХСР4 [306], ЕТ_в-эндотелинового рецептора [307], рецептора лейкотриена В₄ (leukotriene B₄ receptor BLT1) [308], сопряженного с G-белками цистеиниллейкотриенового рецептора 1-го типа (G protein-coupled cysteinyl leukotriene receptor, CysLT₁R) [309]. Исключительно важно, что обнаруженные эффекты ионов натрия реализуются при физиологических или близких к ним концентрациях, что свидетельствует об участии ионов Na⁺ в регуляции GPCR-сигналинга не в модельных (in vitro), а в реальных живых системах.

С учетом активности ионов Na⁺, как аллостерического регулятора GPCR, в экспериментах по оценке активности GPCR необходимо строго контролировать концентрацию ионов натрия во внешней среде, включая наличие в ней Na⁺-содержащих буферов и хелаторов, чтобы стандартизировать условия измерения и не искажать связывающие характеристики рецептора по отношению к агонистам и антагонистам. Следует отметить, что до настоящего времени отсутствуют надежные свидетельства того, что ионы калия могут аллостерически влиять на GPCR, в связи с чем K⁺-содержащие буферы относительно нейтральны по отношению к GPCR-сигнальным путям [267]. Хотя нельзя исключить того факта, что, замещая ионы натрия в среде инкубации, они могут опосредованно влиять на сигнальную трансдукцию, способствуя созданию Na⁺-дефицитных условий.

Ионы цинка

Ионы Zn²⁺ являются регуляторами более 300 ферментов и более тысячи транскрипционных факторов и зависимых от них физиологических процессов [310, 311]. Современные данные указывают на то, что это может быть обусловлено не только непосредственным влиянием ионов цинка на биологическую активность этих белков, но и присущими им свойствами аллостерических регуляторов GPCR. Еще в 1980-1990-годах было показано, что ионы цинка являются негативными регуляторами агонист-стимулированной активности μ-, к- и δ-опиоидных рецепторов [312–314]. В дальнейшем было установлено, что ионы Zn²⁺ избирательно ингибируют связывание лигандов ортостерического сайта с D₁-, D₂- и D₄-дофаминовыми рецепторами, что было обусловлено повышением значения К_d для связывания этих лигандов, причем эффект ионов цинка был дозо-зависимым и полностью блокировался в присутствии хелатора двухвалентных катионов ЭДТА [315-317].

Показано влияние ионов цинка на активность различных типов адренергических рецепторов [318-320]. Так, установлено, что ионы Zn²⁺, как и близкие им по некоторым физико-химическим характеристикам ионы Cu²⁺, подавляют связывание антагониста празозина с α_{1A} -AR, снижая доступность для него ортостерического сайта [320]. В то же время в экспериментах по оценке специфичного связывания α_{1A} -AR с агонистами было продемонстрировано, что ионы Zn²⁺, в отличие от ионов меди, сдвигают влево концентрационную кривую связывания с рецептором агониста адреналина. Между тем, в экспериментах на клеточных культурах было показано, что как ионы цинка, так и ионы меди, сходным образом снижают эффективность ответа α_{1А}-AR на адреналин. На основании этого авторы делают заключение, что эффекты ионов цинка на функционирование предстательной железы, являющейся одной из мишеней агонистов α_{1A} -AR, регулирующих ее тонус, во многом обусловлены модулирующим воздействием ионов

 Zn^{2+} на α_{1A} -AR и зависимые от него сигнальные каскады [320].

В отношении β₂-AR показано, что ионы цинка являются РАМ для связывания с рецептором β-агониста изопротеренола, существенно повышая его аффинность к β_2 -AR, и также потенцируют стимулирующий эффект изопротеренола на активность АЦ и цАМФ-зависимые сигнальные каскады [318]. Для идентификации Zn²⁺-связывающего аллостерического сайта в β_2 -AR была применена стратегия сайт-направленного мутагенеза, предусматривающая замены остатков гистидина, которые являются основными мишенями для ионов цинка. В результате было установлено, что замены His²⁶⁹, а также расположенных вблизи него остатков Cys^{265} и Glu²²⁵ на аланины приводили к полному блокированию (His²⁶⁹) или значительному снижению (Cys²⁶⁵, Glu²²⁵) позитивного аллостерического влияния ионов Zn^{2+} на активность β_2 -AR [319]. Все эти остатки локализованы в цитоплазматических продолжениях ТМ5 и ТМ6. Тем самым Zn²⁺-связывающий сайт в β₂-AR расположен в области внутриклеточного вестибюля трансмембранного тоннеля. Этот сайт предопределяет взаимное расположение TM5 и TM6, которые вовлечены в формирование ортостерического сайта, контролирует его доступность для агониста и играет ключевую роль во взаимодействии рецептора с G-белками и β-аррестинами [319]. Недавно было показано, что усиление притока ионов цинка в кардиомиоциты, обусловленное активацией каналов TRPC6, приводит к повышению активности β₂-AR и усилению продукции цАМФ, что также может быть обусловлено активностью ионов цинка, как PAM для β_2 -AR. Мутации в гене *TRPC6*, нарушающие приток ионов цинка в кардиомиоциты, полностью блокируют потенцирующий эффект этих ионов, способствуют снижению β2-AR-опосредуемого положительного инотропного ответа и способствуют развитию хронической сердечной недостаточности [321].

Достаточно интригующими оказались результаты изучения аллостерических эффектов ионов цинка на меланокортиновые рецепторы, в первую очередь, на MC₄R [271, 322, 323]. Исследование влияния ионов цинка, а также ионов меди на связывающие характеристики MC₄R показало, что оба этих иона выступают в качестве NAM [322–324], в то время как в отношении их влияния на базальную и стимулированную агонистами активность рецептора данные оказались противоречивыми. Так, Holst и соавт. показали, что ионы Zn²⁺ сами способны повышать активность МС₄R и одновременно с этим потенцировать стимулирующие эффекты МС₄R-селективных агонистов на активность АЦ, функционируя, тем самым, как аго-РАМ, причем в присутствии хелаторов стимулирующие эффекты

ионов цинка утрачиваются [322, 324]. В то же время Lagerström и соавт. обнаружили, что ионы цинка сами характеризуются агонистической активностью, но при этом подавляют стимулирующие эффекты MC₄R-селективных агонистов, функционируя, в соответствии с приведенной нами современной классификацией, как аго-NAM [323]. Предпринятое в 2020 г. Link и соавт. более детальное исследование эффектов ионов цинка на MC₄R подтвердило их свойства, как NAM для связывания MC₄R-селективных агонистов, причем для этого необходимо было присутствие ионов кальция, которые сами являются РАМ для такого связывания [271]. При этом ионы Zn²⁺ в низких, микромолярных концентрациях, которые были сопоставимы с их физиологическими концентрациями, проявляли агонистическую активность по отношению к MC₄R, но при этом, в зависимости от степени конституитивной активности рецептора, индуцированной Zn^{2+} , отмечалось потенцирование или, напротив, ослабление стимулирующих эффектов ионов цинка. Другими словами, в отношении эффективности стимуляции MC₄R ионы цинка могли вести себя и как аго-РАМ, и как аго-NAM [271]. Интересно отметить, что ионы меди функционировали как NAM для связывания MC₄R-селективных агонистов, и при этом снижали базальную и агонист-стимулированную активность MC_4R , функционируя как инверсионные агонисты и NAM [271]. Все это указывает на порой весьма сложный профиль фармакологической активности ионов цинка даже в отношении одних и тех же типов GPCR.

Если для β₂-AR Zn²⁺-связывающий сайт был идентифицирован вблизи цитоплазматического входа в трансмембранный тоннель, то в меланокортиновых рецепторах он предположительно локализован во внеклеточном его вестибюле [322, 323]. Так, в MC₁R этот сайт включает остаток Cys²⁷¹ в ECL3 и остаток Asp¹¹⁹ во внеклеточном сегменте ТМЗ, и эти остатки высококонсервативны во всех типах меланокортиновых рецепторов [322]. В MC₄R Zn²⁺-связывающий сайт более утоплен в трансмембранный тоннель, располагаясь между внеклеточно ориентированными окончаниями TM2 и TM3, играющими важную роль в формировании ортостерического сайта, который в MC₄R имеет сложную конфигурацию и включает элементы внеклеточного вестибюля рецептора [323]. внеклеточная Предпочтительная локализация (между проксимальным к мембране сегментом ECL1 и внеклеточно ориентированным окончанием ТМ7) Zn²⁺-связывающего сайта была показана и для молекулы бычьего родопсина, модельной структуры для различных GPCR, включая MC₄R [325].

Сложный фармакологический профиль для ионов цинка был продемонстрирован и в случае 5-НТ_{1А}- и 5-НТ₇-серотониновых рецепторов [270, 326, 327]. При изучении влияния ионов цинка на 5-НТ₁₄-серотониновые рецепторы был обнаружен бифазный эффект, который включал аллостерическое потенцирование связывания агониста при субмикромолярных концентрациях Zn²⁺ (10 мкМ) и ингибирование связывания агониста при субмиллимолярных концентрациях ЭТОГО иона (500 мкМ) [270]. В условиях *in vivo* ионы цинка сами не вызывали эффектов, характерных для селективных 5-HT_{1A}-агонистов, за исключением гипотермического эффекта, но при этом влияли на эффекты 8-OH-DPAT, агониста 5-HT_{1A}-серотониновых рецепторов, причем разнонаправленно. Вызываемое ионами цинка снижение температуры тела у грызунов полностью блокировалось в случае нокаута гена, кодирующего 5-HT_{1A}-серотониновый рецептор, что указывает на непосредственное его участие в этом эффекте ионов Zn^{2+} . Важно, что эти ионы действовали как на пресинаптические, так и на постсинаптические рецепторы, но их эффекты на пресинаптические 5-НТ_{1А}-серотониновые рецепторы были существенно более выраженными [270]. При действии на 5-НТ7-серотониновый рецептор ионы цинка демонстрировали свойства нейтрального антагониста при низких концентрациях (10 мкМ) и свойства мощного NAM и инверсионного агониста при высоких концентрациях (500 мкМ) [327]. В пользу ингибирующего влияния ионов цинка свидетельствуют следующие данные. В концентрации 500 мкМ ионы Zn²⁺ подавляли специфическое связывание с рецептором его агониста 5-карбоксиамидотриптамина и антагонистов SB-269970 и месулергина, а также снижали их сродство к рецептору, на что указывает повышение значений K_d, в наибольшей степени для 5-карбоксиамидотриптамина и месулергина [327].

Нейропептид галанин специфически связывается с тремя типами рецепторов, такими как GALR1, GALR2 и GALR3, два из которых сопряжены с G_{i/o}-белками (GALR1, GALR3), в то время как рецептор 2-го типа – с G_s-белком. Ионы цинка очень избирательно влияют на их активность, что во многом предопределяет селективность активации галанином внутриклеточных каскадов и опосредует физиологический ответ, который для галанина охватывает широкий спектр регуляторных эффектов на энергетический обмен, нейропатическую боль, сон, эпилептическую активность [272, 328]. Так, показано, что ионы Zn²⁺ ингибируют стимулированную галанином активность GALR1, в основе чего лежит снижение подвижности ТМ6 в присутствии ионов цинка [272]. При этом они не влияют на стимуляцию галанином GALR2, отличающегося по своей функциональной активности от GALR1, поскольку этот рецептор не ингибирует, а стимулирует активность АЦ и цАМФ-зависимых сигнальных каскадов [272]. Ингибирующий эффект ионов цинка был продемонстрирован в постсинаптических глутаматергических и GABA-ергических нейронах, в связи с чем интересен тот факт, что ионы цинка, высвобождаемые в синаптическую щель, ингибируют также ионотропные глутаматные рецепторы АМРА- и NMDA-типов [329, 330]. Важно отметить, что чувствительный к ионам цинка рецептор GPR39, вовлеченный в контроль синаптической пластичности [331], также вовлечен в регуляцию передачи сигналов через ионотропные глутаматные и GABA_A-рецепторы, и роль ионов цинка в этом случае может быть определяющей [332].

Еще 10 лет назад было установлено, что ионы Zn²⁺ регулируют активность рецептора GPR83 [333], который обладает уникальными свойствами, поскольку его эндогенными агонистами являются представители двух различных семейств пептидов – нейропептида PEN и холецистокинина, причем в зависимости от паттерна изоформ этих пептидов активируются как G_{i/o}-, так и G_s-сопряженные сигнальные каскады [334]. Установлено, что ионы цинка, взаимодействуя с остатками His¹⁴⁵, His²⁰⁴, Cys²⁰⁷ и Glu²¹⁷, локализованными в ECL2 и ECL3, формирующими внеклеточный вход в трансмембранный тоннель, и меняя подвижность TM6 и TM7, усиливают активацию рецептора агонистами, повышая стабильность активной конформации GPR83 [333]. Сходный эффект оказывает и близкий иону цинка по своим физико-химическим свойствам ион марганца. Мутации в сегментах, ответственных за связывание ионов цинка, существенно влияют как на базовую, так и на агонист-стимулированную активность GPR83 [333].

Все вышесказанное свидетельствует о том, что ионы цинка могут функционировать как аллостерические модуляторы различных типов GPCR, проявляя как положительный, так и отрицательный эффекты в отношении аффинности связывания и функциональной активности ортостерических агонистов, и эти эффекты могут зависеть от уровня конституитивной активности рецептора. Кроме того, ионы цинка действуют селективно на определенные подтипы рецепторов, что определяется структурными особенностями связывающего их аллостерического сайта, а также могут быть связующим звеном между регуляторными свойствами метаботропных и ионотропных рецепторов, как это показано в отношении ионотропных глутаматных и GABA_A-рецепторов, с одной стороны, и рецептором галанина 1-го типа и GPR39, с другой.

Ионы магния

Катионы магния являются регуляторами множества ферментов и сигнальных белков. Они являются важнейшими кофакторами, необходимыми для функционирования G-белков, взаимодействуя с сайтом их Gα-субъединиц, ответственным за связывание и обмен гуаниновых нуклеотидов, а также вовлечены в регуляцию ГТФазной активности, позволяющей Gα-субъединице переходить в ГДФсвязанное состояние и реассоциировать с G_βγ-димером [335]. При снижении концентрации ионов магния существенно ниже ее физиологических значений, в том числе вследствие добавления в инкубационную смесь хелаторов, активность G-белков и сопряженных с ними сигнальных каскадов в значительной степени снижается. Эти ионы совершенно необходимы для большого числа внутриклеточных эффекторов, мишеней GPCR-сигналинга, в том числе для специфической активности мембранно-связанных изоформ АЦ, активируемой через посредство G_s-белков и генерирующей универсальный вторичный посредник цАМФ [336]. Это может быть обусловлено как необходимостью ионов Mg²⁺ для сохранения надлежащего уровня активности компонентов GPCR-сигналинга, так и интенсивно изучаемыми в последние годы аллостерическими свойствами этого иона в отношении GPCR.

В настоящее время имеются свидетельства того, что ионы Mg²⁺ могут аллостерически регулировать мускариновые ацетилхолиновые, β-адренергические, опиоидные и дофаминовые рецепторы [269, 314, 336-341]. Первые сведения о способности ионов магния модулировать активность GPCR были получены почти полвека назад в отношении µопиоидных рецепторов [337], и этот факт в дальнейшем был подробно исследован [314, 341]. Было установлено, что ионы магния стабилизируют активную конформацию рецептора, в то время как ионы натрия оказывают противоположный эффект, стабилизируя неактивную его конформацию [314]. Тем самым ионы магния функционируют как РАМ, в то время как ионы натрия для µ-опиоидного рецептора являются NAM. В 2020 г. Ни и соавт. идентифицировали в µ-опиоидном рецепторе сайт, ответственный за связывание ионов Mg²⁺, который включал отрицательно заряженные остатки Asp²¹⁶ и Glu³¹⁰, локализованные соответственно в ECL2 и ECL3 [341]. Эти остатки обеспечивают закрытие и открытие внешнего входа в ортостерический сайт и потому их конформационная подвижность непосредственно влияет на аффинность рецептора к ортостерическому агонисту. Сайт, связывающий ионы натрия, находится в глубине трансмембранного тоннеля, традиционно включая высококонсервативный остаток Asp^(2.50), и не пересекается с сайтом связывания ионов Mg²⁺. В то же время продемонстрирована отрицательная кооперативность между связыванием ионов Mg²⁺ и Na⁺, поскольку в присутствии ионов натрия связывание ионов магния ослабляется, и наоборот [341].

Сходные аллостерические влияния ионов магния и натрия продемонстрированы и для А2А-аденозинового рецептора, хотя механизмы и локализация Mg²⁺-связывающего аллостерического сайта в этом случае немного отличаются [269]. Показано, что ионы Mg^{2+} , как и ионы Ca^{2+} , увеличивают долю конформеров, соответствующих активированному состоянию А2А-аденозинового рецептора, индуцированному как его обработкой 5'-*N*-этилкарбоксамид-аденозином (NECA), смешанным агонистом А1- и А2-аденозиновых рецепторов, так и добавлением С-концевого пептидного фрагмента Gasсубъединицы, который влияет на функциональное сопряжение рецептора с G_s-белками. Данные молекулярного докинга показывают, что оба иона, Mg²⁺ и Ca²⁺, способны проникать в трансмембранный тоннель и связываются там с сайтом, расположенным вблизи Na⁺-связывающего сайта, препятствуя негативному эффекту ионов Na⁺ на связывающие характеристики рецептора. Показано также, что ионы Mg²⁺ и Ca²⁺ взаимодействуют с отрица-тельно заряженной карбоксильной группой остатка Glu^{228(6.30)}, который является ключевым звеном в "ионном замке", предотвращающим возвращение рецептора в неактивную конформацию [269].

Основными кандидатами для первичного взаимодействия с ионами Mg²⁺ и Ca²⁺ являются остатки Glu¹⁵¹, Glu¹⁶¹, Glu¹⁶⁹ и Asp¹⁷⁰, локализованные в ECL2 A_{2A}-аденозинового рецептора, во внеклеточно ориентированном вестибюле трансмембранного тоннеля [342]. Такое взаимодействие, согласно результатам молекулярного моделирования, суживая вход в трансмембранный тоннель, повышает доступность цитоплазматических G-белок-связывающих сайтов для образования функционально активного комплекса с G-белком. С другой стороны, такое суживание входа в тоннель может затруднить проникновение агониста к ортостерическому сайту. Важно и то, что ион Fe²⁺ не оказывает потенцирующего эффекта на агонист-индуцированную активацию А_{2А}-аденозинового рецептора, что может указывать на необходимость очень тонкой подгонки двухзарядного катиона к связывающему его сайту [269]. Остается открытым вопрос, оказывают ли двухзарядные катионы свой эффект на рецептор еще до его активации агонистом, или этот эффект реализуются уже после того, как рецептор перешел в активную форму.

Достаточно подробно изучено влияние ионов Mg^{2+} на активность $mACh_2R$, причем и в этом случае они проявляют свойства РАМ [339, 340]. Показано, что в основе потенцирующего влияния Mg^{2+}

на активность $mACh_2R$ лежит его способность замедлять диссоциацию агониста из ортостерического сайта рецептора и, тем самым, существенно повышать устойчивость его активированной агонистом конформации. На это указывает значительный сдвиг вправо кривых конкурентного вытеснения N-метилскополамина, ортостерического селективного лиганда $mACh_2R$, в присутствии ионов магния, взятых в концентрации 3 мМ и выше [339].

Ионы кальция

Ионы Са²⁺ являются одними из важнейших вторичных посредников, регулируя активность большого числа кальций-зависимых эффекторных белков, а также контролируют функциональную активность множества транскрипционных факторов, мишеней гормонов, действующих через посредство GPCR. Тем не менее большое значение в контроле сигнальной трансдукции также отводят аллостерическому влиянию ионов кальция на связывающие характеристики и степень активации GPCR. Выше отмечалось, что ионы кальция, наряду с ионами магния, могут функционировать, как РАМ, при регуляции активности MC₄R и A_{2A}-аденозинового рецептора [269, 271]. В то же время спектр GPCR, которые аллостерически регулируются ионами кальция, существенно шире, хотя идентификация аллостерических эффектов ионов Ca²⁺ во многих случаях затруднена из-за проблем с их надежным дифференцированием от других эффектов этого иона.

Ионы кальция, а также близкие им по физикохимическим характеристикам ионы марганца повышают эффективность связывания агониста цопиоидного рецептора, [d-Ala2, N-Me-Phe4, Gly5ол]-энкефалина, с гомогенатами мозга морской свинки [314], а также усиливают высокоаффинное связывание гидроксибензилизопротеренола, агониста β-AR, с адренергическими рецепторами эритроцитарных мембран лягушки [336]. Повышение концентрации ионов кальция во внеклеточной среде аллостерически влияет на связывание ортостерических и аллостерических лигандов с метаботропным глутаматным рецептором 1α-подтипа (mGluR1α) и на величину стимулирующего эффекта mGluR1-агонистов [343]. Внеклеточный Ca²⁺ усиливает стимулирующий эффект ортостерического mGluR1α-агониста L-квисквалата на стимуляцию инозитол-специфичной PLCβ и внутриклеточный кальциевый сигналинг, и при этом снижает ингибирующие эффекты ортостерического mGluR1α-антагониста (S)-α-метил-4-карбоксифенилглицина на агонист-стимулированную активность mGluR1α. Идентифицированы AKO, локализованные в области внеклеточного вестибюля, ведущего в трансмембранный тоннель mGluR1α,

которые формируют Ca²⁺-связывающий сайт и одновременно с этим участвуют в первичном опознавании ортостерических и аллостерических агонистов, мишенями которых являются связывающие карманы внутри трансмембранного тоннеля рецептора. Замены этих остатков приводят не только к нарушению аллостерического влияния ионов кальция на мутантный рецептор, но и вызывают изменение ответа mGluR1α как на ортостерический агонист L-квисквалат, так и на соединение Ro 67-4853 со свойствами РАМ [343]. Полученные данные свидетельствуют о том, что внеклеточные ионы кальция способны аллостерически положительно модулировать выход ионов кальция из внутриклеточных депо через посредство активации системы mGluR1– $G_{q/11}$ -белок–PLC β [344].

Установлена важная роль ионов кальция в позитивной аллостерической регуляции меланокортиновых рецепторов MC₁R и MC₄R [345-347]. Ионы кальция, как и ионы магния, усиливали связывание полных и частичных агонистов с MC₁R в клетках меланомы мыши линии B16F10 [345]. В дальнейшем была установлена локализация Ca²⁺-связывающего сайта в MC₁R, для чего с помощью криоэлектронной микроскопии исследовали структуру комплекса MC₁R-G₅-белок с различными агонистами - эндогенным MCR-агонистом α-MSH, синтетическими MCR-агонистами афамеланотидом (afamelanotide) и SHU9119. В результате был выявлен уникальный и консервативный Ca²⁺-связывающий сайт, включающий $Glu^{(2.64)}$. Asp $^{(3.25)}$ и Asp $^{(3.29)}$ в MC₁R, с которым взаимодействовали боковые функциональные группы α-MSH или его синтетических аналогов [347]. Наличие ионов Ca²⁺ препятствует образованию канонической дисульфидной связи между ТМ3 и ECL2, которая играет важную роль в доступности и аффинности ортостерического сайта в большом числе GPCR класса А. Снижение концентрации ионов кальция во внеклеточной среде или разрушение структуры Ca²⁺-связывающего сайта ослабляет агонист-стимулированную активность рецептора и ингибирует вызываемое MC₁R-агонистами повышение уровня цАМФ внутри клетки-мишени.

При анализе кристаллической структуры комплекса MC_4R –SHU9119 было показано, что во внеклеточном вестибюле он включает сайт с повышенной электронной плотностью, который способен с высокой эффективностью связывать двухзарядные катионы, включая ионы кальция [346]. В составе такого комплекса ионы Ca^{2+} образуют координационные связи с двумя карбонильными атомами кислорода, локализованными в основной цепи соединения SHU9119, пептидного аналога α -MSH, и с тремя отрицательно заряженными остатками Glu^{100(2.60)}, Asp^{122(3.25)} и Asp^{126(3.29)}, подобно тому, как это происходит в случае MC₁R.

Ионы кальция повышали сродство α -MSH к MC₄R в 37 раз, а эффективность ответа к агонисту более чем в 600 раз, причем аллостерический эффект выявлялся только для внеклеточных ионов кальция (физиологические концентрации в структурах мозга около 1.2 мМ), в то время как изменение концентрации ионов Ca²⁺ внутри клетки на связывающие характеристики MC₄R существенно не влияли [346]. Эти данные указывают на решающую роль внеклеточных ионов Ca²⁺ в распознавании лигандов ортостерического сайта MC₁R и MC₄R и в активации MC_{1/4}R-опосредуемых сигнальных каскадов [346, 347].

Другие катионы

Информация о вкладе других катионов в аллостерическую регуляцию GPCR не столь многочисленна. Катионы меди ингибируют связывание антагониста празозина с α_{1А}-AR, экспрессируемым в культуре COS7-клеток, не влияя при этом на диссоциацию празозина от рецептора. Наряду с этим ионы Cu²⁺ оказывают модулирующее влияние на связывание эндогенного агониста адреналина с α_{1А}-AR и на трансдукцию адреналинового сигнала к эффекторным системам клетки [320]. Установлено, что ионы двухзарядного кобальта снижают аффинность связывания агонистов с µ-опиоидными рецепторами в гомогенатах мозга морской свинки [314]. Следует отметить, что какие-либо данные о возможном аллостерическом эффекте трехзарядных катионов на GPCR в настоящее время отсутствуют. Возможно, это указывает на отсутствие в их структуре потенциальных аллостерических сайтов для специфичного связывания таких ионов.

При анализе воздействий различных катионов на GPCR необходимо учитывать тот факт, что в ряде случаев их мишенями могут быть и другие сигнальные белки, образующие функционально активные комплексы с рецепторами. Наряду с этим ионы металлов могут образовывать комплексы с лигандами, модифицируя их способность связываться с ортостерическим или аллостерическим сайтами. В высоких концентрациях ионы металлов способны влиять на структурную организацию GPCR и устойчивость их комплексов, изменяя осмолярность среды и влияя на физико-химические свойства мембран. Вследствие этого для окончательного суждения об аллостерическом характере воздействия ионов металлов на структуру и функциональную активность GPCR часто требуются дополнительные разноплановые исследования. С другой стороны, обнаружение в GPCR сайтов, опосредующих их специфичное связывание с ионами металлов, и постоянно возрастающее число примеров аллостерической регуляции этими ионами указывают на то, что катионы металлов являются важнейшим, физиологически релевантным компонентом аллостерической регуляции GPCR, функционируя как NAM, PAM, аго-PAM, аго-NAM.

Хлорид-анионы

Имеются данные об аллостерическом влиянии хлорид-анионов на GPCR класса С. Эти анионы, как известно, модулируют активность множества других сигнальных белков (ионные каналы, рецепторы натрийуретических пептидов, и др.). Еще в 1995 году были получены данные о том, что хлорид-анионы повышают связывание [³H]-L-2-амино-4-фосфонобутирата с mGluR4, в то время как ни один из изученных двухзарядных катионов (Mg²⁺, Ca²⁺, Mn²⁺) на связывающие характеристики этого рецептора не влиял [348]. В дальнейшем было установлено, что значение ЕС₅₀ для связывания L-2-амино-4-фосфонобутирата с mGluR4 составляет 63 мМ, что соответствует примерно 50% концентрации хлорид-анионов во внеклеточной среде [349]. При воздействии глутамата на клетки с экспрессированным в них mGluR4 в среде с концентрацией хлорид-анионов в концентрациях, близких физиологическим, отмечали активацию этого рецептора, в то время как в среде с низкими концентрациями ионов Cl⁻ рецептор mGluR4 был мало чувствителен к глутамату [350]. Отмечалась высокая положительная кооперативность между хлорид-анионами и глутаматом (коэффициент Хилла около 6), вследствие чего даже небольшое повышение концентрации ионов Cl- во внеклеточной среде приводило к значительному усилению глутамат-индуцированной активации mGluR4 [350]. Рецептор mGluR3 также чувствителен к хлорид-анионам, но в отличие от mGluR4 аллостерически регулируется и двухзарядными катионами. Хлорид-анионы позитивно регулируют эффекты агонистов на mGluR6 и mGluR8 [351]. В то же время некоторые представители глутаматных метаботропных рецепторов, такие как mGluR1 и mGluR2, не чувствительны к хлорид-анионам, при этом, например, рецептор mGluR1 является мишенью для аллостерического влияния ионов кальция и магния [349, 351]. Тем самым показана селективность аллостерической регуляции хлорид-анионами и двухзарядными катионами различных типов метаботропных глутаматных рецепторов, что позволяет дифференцированно контролировать их сигнальные каскады [351, 352].

С помощью сайт-направленного мутагенеза и молекулярного моделирования показано, что в основе PAM-эффекта хлорид-анионов в случае mGluR3 и mGluR4 лежит их связывание с двумя аллостерическими сайтами, расположенными в значительном по размеру внеклеточном домене метаботропных глутаматных рецепторов, что приводит к стабилизации индуцированного глутаматом активного состояния рецептора. Это является

следствием формирования уникальной интерактивной сети "хлоридных замков" (interactive "chloride-lock" network), затрудняющих выход глутамата из ортостерического сайта [350, 352]. Тем самым хлорид-анионы существенно снижают эффективные концентрации глутамата и способствуют активации глутаматных рецепторов существенно более низкими концентрациями глутамата или его аналогов, вследствие чего полноценные функциональные ответы этих рецепторов на глутамат реализуются даже при микромолярных концентрациях этого агониста во внеклеточной среде. Фактически хлорид-анионы являются дирижерами такого ответа.

РАМ-эффект хлорид-анионов показан также для кальций-чувствительного рецептора CaSR, который эффективно активируется ионами Ca²⁺ в среде, содержащей ионы Cl⁻, но не ионы глюконата, которые хотя и имеют сходный с хлорид-анионами отрицательный заряд, но существенно превышают их по размеру, что не позволяет ионам глюконата эффективно взаимодействовать с Cl⁻связывающими сайтами рецептора [353]. Необходимо отметить, что в молекуле CaSR выявлено три сайта, структурно сходных с Cl⁻-связывающими сайтами метаботропных глутаматных рецепторов, которые претендуют на роль аллостерических сайтов, специфично связывающих ионы Cl⁻ [353].

Учитывая вовлеченность хлорид-анионов в контроль вкуса, в последние годы значительные усилия были предприняты для исследования зависимости активности различных подтипов вкусовых рецепторов 1-го типа (T1r1, T1r2, и T1r3), относящихся к классу C GPCR, от содержания во внеклеточной среде ионов Cl⁻ [354, 355]. Необходимо отметить, что эти рецепторы в функционально активном состоянии образуют гетеродимеры T1r2a/T1r3 и T1r1/T1r3, что обеспечивает распознавание широкого спектра сладкого и пикантного вкусов, присущего сахарам и аминокислотам. При исследовании кристаллической структуры внеклеточного домена T1r3 в составе гетеродимера T1r2a/T1r3 японской рисовой рыбы, который кристаллизовали в присутствии хлорида натрия, были выявлены сайты, способные специфично связывать хлорид-анионы. Замена этих ионов на бромид-анионы вызывала критические изменения в структуре внеклеточного домена T1r3, в том числе в сайтах связывания аминокислот, результатом чего было снижение их связывающих характеристик [354]. Хлорид-анионы взаимодействовали с боковой гидроксильной группой остатка Thr¹⁰⁵ и с амидными группами остова пептидной цепи, принадлежащими остаткам Gln¹⁴⁸ и Ser¹⁴⁹. Остатки, с которыми взаимодействуют хлорид-анионы, координируются с остатком Ser¹⁵⁰, играющим критическую роль в связывании аминокислот, а также вовлечены в стабилизацию агонист-активированного состояния рецептора и его гетеродимерной структуры [354]. Тем самым хлорид-анионы важны как для поддержания конформации ортостерического сайта, обеспечивающей эффективную активацию рецептора пищевыми аминокислотами, так и для ди- и олигомеризации вкусовых рецепторов, определяющей их способность адекватно воспринимать внеклеточные сигналы. Важно, что хлориданионы в относительно низких, миллимолярных концентрациях были способны индуцировать в гетеродимере T1r2a/T1r3 конформационные изменения, вызываемые "классическими" агонистами этих рецепторов. Так, пероральное введение мышам хлорид-анионов повышало частоту импульсов во вкусовых нервах, где были экспрессированы различные подтипы T1r [355]. Тем самым, помимо модулирующей, хлорид-анионам присуща и собственная агонистическая активность, что позволяет их характеризовать в отношении вкусовых рецепторов T1r-семейства, как адо-РАМ.

Нельзя исключить, что существуют и другие анионы, наделенные свойствами аллостерических регуляторов, но в настоящее время среди простых анионов такие свойства показаны только для хлориданионов. Эти свойства иона Cl⁻ должны учитываться в связи с тем, что многие лекарственные препараты и новые биологически активные тестируемые соединения представляют собой хлористоводородные соли, и нельзя исключить возможность манифестации собственной активности хлорид-анионов на физиологические и биохимические процессы. В определенной степени это относится и к некоторым катионам, в первую очередь к ионам натрия, также используемым в качестве противоионов в фармакологических препаратах.

7.5. Липиды

За последние годы для большого числа липидов показана способность аллостерически регулировать GPCR, причем наибольшее значение в этом отношении отводят мембранным липидам - холестерину и фосфолипидам. Изначально считали, что роль мембранных липидов обусловлена в основном их влиянием на физико-химические свойства плазматической мембраны и структурнофункциональную организацию рафтов, представляющих собой мембранные микродомены, ответственные за транслокацию и встраивание в мембрану сигнальных молекул и сборку сигнальных комплексов. При этом такое влияние, как правило, является неспецифическим и обусловлено свойствами липидов, функционирующих как структурная матрица для формирования многокомпонентных комплексов лиганд-GPCR-G-белок/β-аррестин-эффектор. В дальнейшем эти представления стали пересматриваться. Выяснилось, что действие липидов, в том числе и такого универсального аллостерического модулятора, как холестерин, во

многих случаях является высоко специфичным по отношению к определенным типам GPCR, а в молекулах рецепторов имеются аллостерические сайты, ответственные за специфичное взаимодействие с различными классами липидов. Эти сайты, как правило, расположены на боковой поверхности трансмембранной части GPCR, контактирующей с липидами мембраны, и также включают сегменты проксимальных к мембране участков ECLs и ICLs. Тем самым липиды могут непосредственно влиять на конформацию и стерическую доступность ортостерических и аллостерических сайтов, локализованных внутри трансмембранного тоннеля рецептора, а также сайтов, локализованных во внеклеточных и внутриклеточных вестибюлях трансмембранного домена.

Основываясь на вышесказанном, предложены два основных механизма аллостерического воздействия липидов на GPCR. Первый из них является не специфичным или низко специфичным и зависит в основном от физико-химических свойств рецептора, его гидрофобности, площади контакта с мембраной, его микроокружения. Как известно, физико-химические свойства плазматической мембраны, такие как текучесть, упругость и механическая прочность, зависят от соотношения различных липидов в мембране, и это оказывает значительное влияние на структурные свойства GPCR и его комплексов, на стабильность и соотношение активных и неактивных конформаций рецептора, на сопряжение рецептора с трансдукторными и эффекторными белками. Это показано для различных типов GPCR, наиболее отчетливо для светочувствительного рецепторного белка родопсина.

Показано, что физико-химические свойства мембраны, ее толщина и текучесть, непосредственно влияют на переход между метародопсинами I и II, что предопределяет эффективность фототрансдукции [356-359]. Взаимосвязь между толщиной мембраны и конформационными характеристиками родопсина была наглядно продемонстрирована с помощью ступенчатого изменения толщины мембраны (фосфатидилхолиновые слои с толщиной гидрофобной фазы от 21 до 38 ангстрем), достигаемого путем изменения содержания холестерина в модельной мембране [359]. Добавление холестерина к мембране, толщина которой была меньше, чем средняя длина гидрофобных ТМ (менее 27 ангстрем), смещало равновесие в сторону метародопсина II, в то время как добавление холестерина к мембране, толщина которой превосходила длину ТМ, вызывало увеличение доли метародопсина І. В первом случае холестерин в небольшой степени повышал и, тем самым, нормализовал толщину мембраны, в то время как во втором случае он менял упругость мембраны и индуцировал образование олигомерных комплексов родопсина, стабилизируя конформацию метародопсина I [359].

Недавно было изучено прямое влияние физикохимических свойств мембраны на β_1 -AR и AT₁-ангиотензиновый рецептор [360, 361]. В случае β₁-AR было обнаружено, что холат натрия, будучи встроен в мицеллы, образуемые додецил-β-D-мальтозидом, индуцирует димеризацию рецептора, усиливая контакты между TM1, TM2 и H8 протомеров [360]. В случае АТ₁-ангиотензинового рецептора показано изменение его функциональной активности при изменении толщины и натяжения плазматической мембраны, причем паттерн активных конформаций в этом случае отличался от такового в случае активации рецептора эндогенным агонистом – ангиотензином II [361]. Описан двойственный механизм влияния холестерина на активность А_{2А}-аденозинового рецептора, путем влияния на физико-химические свойства мембраны и посредством специфичного связывания с молекулой рецептора [362]. Полученные данные указывают на то, что могут реализовываться два различных сценария активации AT₁-ангиотензинового и A_{2A}-аденозинового рецепторов, один из которых зависит от физико-химических свойств мембраны, в то время как второй реализуется вследствие специфичного связывания липида с рецептором, хотя нельзя исключать и совмещения этих сценариев.

Важная роль при реализации первого механизма, посредством которого липиды влияют как на связывающие характеристики и эффективность активации GPCR, так и на предпочтительность активации агонистом определенного сигнального каскада (предвзятость сигнальной трансдукции), принадлежит их способности регулировать субклеточную компартментализацию рецепторных и связанных с ними акцессорных и эффекторных белков и контролировать образование кавеол и липидных рафтов, представляющих собой scaffoldплатформы для высокоупорядоченных многокомпонентных GPCR-содержащих комплексов [363–365].

С точки зрения машинерии липид-опосредуемой аллостерической регуляции наиболее интересен второй механизм, который состоит в непосредственном, высокоспецифичном взаимодействии липидов с аллостерическими сайтами, локализованными в молекуле GPCR. В качестве аллостерических регуляторов GPCR могут выступать такие липиды, как эндоканнабиноиды (анандамид, 2-арахидоноилглицерин) [366–370], липоксин А4 (производное арахидоновой кислоты) [371-373], олеамид [374-376], а также стероидные гормоны – прегненолон, прогестерон, 17β-эстрадиол и некоторые их метаболиты [377— 382]. Эндоканнабиноиды, являясь эндогенными лигандами каннабиноидных рецепторов, негативно влияют на передачу сигналов через серотониновые рецепторы [366], mACh₁R и mACh₄R [367, 368], а также через А₃-аденозиновые рецепторы [369]. При этом отмечается высокая их селективность в

отношении определенного типа близкородственных рецепторов, поскольку, например, 2-арахидоноилглицерин ингибирует связывание агонистов с A_3 -аденозиновым рецептором, но не влияет на родственные ему A_1 - и A_{2A} -аденозиновые рецепторы [369].

Наиболее изученным липидным аллостерическим регулятором GPCR является холестерин, основной компонент клеточных мембран, липидных рафтов, предшественник большого числа биологически активных липидов, включая стероидные гормоны [133, 383, 384]. Важную роль в аллостерической регуляции GPCR также имеют фосфолипиды, которые, как и холестерин, воздействуют на компоненты сигнальной трансдукции еще на ранних стадиях эволюции GPCR-систем [385, 386]. Их эффекты и механизмы действия подробно рассмотрены ниже.

Холестерин

Холестерин представляет собой стерол-подобный липид, который составляет до 30% мембран в клетках животных, и его основная функция состоит в регуляции текучести мембраны путем формирования упорядоченных структур между различными ее липидными компонентами. Поскольку в отличие от фосфолипидов холестерин представляет собой жесткую молекулу, при повышении его содержания в мембране ее текучесть снижается, в то время как толщина мембраны варьирует в меньшей степени. Несмотря на то что гидроксильные группы холестерина могут быть вовлечены во взаимодействие между двумя молекулами холестерина с образованием димеров, чаще с помощью водородных связей они взаимодействуют с гидроксильными группами других липидов или с молекулами белков и гликозильными группами [387].

Как отмечалось выше, холестерин может оказывать влияние на активность GPCR и их сигнальных каскадов, определяя физико-химические свойства мембраны или с высокой специфичностью взаимодействуя с аллостерическими сайтами в молекуле GPCR. Используя различные подходы, включая кристаллографический анализ комплексов рецепторов с холестерином, в настоящее время связывание холестерина продемонстрировано для большого числа рецепторов, в том числе для адренергических (α_{2C} -AR, β_2 -AR), серотониновых (5-HT_{1A}R, 5- $HT_{2B}R$), ангиотензиновых (AT₁R), хемокиновых (CCR9, CXCR2, CXCR3), опиоидных (кOR, µOR), аденозиновых ($A_{2A}R$), пуринергических ($P2Y_1R$, $P2Y_{12}R$), эндотелиновых (ET_BR), каннабиноидных (CB₁R, CB₂R) и метаботропных глутаматных (mGluR1a) рецепторов, рецепторов окситоцина, N-формилпептида и гонадолиберина, цистеиниллейкотриенового рецептора 2-го типа (CysLT₂R), холецистокининового рецептора 1-го типа (CCK1R) и ряда других GPCR, в основном принадлежащих к классу А [133, 182, 267]. При этом холестерин в таких комплексах может находиться как в форме мономера, так и димера. Существенно варьирует локализация молекулы холестерина в комплексе с GPCR, включая такую неожиданную ориентацию, как параллельное расположение в середине липидного бислоя или параллельное расположение относительно поверхности плазматической мембраны, как это показано для CB₁- и CB₂-каннабиноидных рецепторов соответственно [388, 389].

Еще в 1990-2010-е годы было показано, что повышенное содержание холестерина в липидных рафтах приводит к значительному усилению сродства рецептора окситоцина, mGluR1a, 5-HT_{1A}R и ССК1R к лигандам ортостерического сайта, в то время как в рафтах с низким содержанием холестерина аффинность рецепторов к агонистам резко ослабляется [390–393]. При этом восстановление содержания холестерина в обедненных им липидных рафтах восстанавливало число функционально активных рецепторов и их аффинность к лигандам [390, 391]. В обедненных холестерином мембранах снижалась не только активность рецепторов, но и нарушался процесс передачи гормонального сигнала, осуществляемого через GPCR. При недостаточности мембранного холестерина ослаблялась активация PLCβ и кальциевых сигнальных путей, опосредуемая агонистами ССК1R, и подавлялась стимуляция ERK1/2 и транскрипционного фактора с-Fos, вызываемая гонадолиберином при его стимулирующем воздействии на рецептор этого рилизинг-фактора. Нормализация содержания холестерина приводила к полному восстановлению этих эффектов [393, 394]. Важно подчеркнуть, что содержание мембранного холестерина может поразному влиять на сигнальную трансдукцию даже в случае близкородственных рецепторов, что необходимо принимать во внимание. Так снижение содержания холестерина нарушает передачу сигнала с агонист-активированного µ-опиоидного рецептора, но мало влияет на сигнальные пути, реализуемые через б-опиоидный рецептор [395]. Нормализация содержания холестерина в липидных рафтах приводит к восстановлению аффинности ССК1 к агонистам, но слабо влияет на сродство к агонистам холецистокининового рецептора 2-го типа (CCK2R) [393].

Обнаружение специфичных по отношению к определенным типам GPCR аллостерических эффектов холестерина поставило перед исследователями задачу выявить сайты, ответственные за взаимодействие рецепторов с этим липидом. Первые работы были осуществлены в 2008 г. Напѕоп и соавт., которые с помощью рентгеноструктурного анализа исследовали кристаллические структуры комплекса β₂-AR с двумя молекулами тимола и двумя молекулами холестерина [396]. Было показа-

но, что в TM β_2 -AR локализованы AKO, которые способны образовывать координационные связи с димерной формой холестерина – три остатка локализованы в TM4 и один в TM2, причем наиболее значимым было взаимодействие димера холестерина с остатком Trp^{158(4.50)}. На основе полученных данных был предложен консенсусный мотив для связывания холестерина (cholesterol consensus motif, CCM), который включал 4 высококонсервативных АКО, имеющихся в большом числе других рецепторов (не менее, чем в 96 GPCR) [396]. В β₂-AR этот мотив, наряду с остатком Trp¹⁵⁸, включал остатки Туг⁷⁰, Arg¹⁵¹ и Leu¹⁵⁵. Этот консенсусный мотив, находящейся в канавке между двумя или тремя ТМ-спиралями, включал положительно заряженный АКО в позиции 4.39-4.43 (Lys или Arg), алифатический АКО в положении 4.46 (Ile, Val или Ile) и ароматические АКО в положениях 4.50 (Тгр или Туг) и 2.41 (Phe, Туг или Тгр). В общем виде его можно представить как R/K-X5-I/V/L-X5-Y/W в одной ТМ-спирали (ТМ4 в случае β_2 -AR) и F/Y в противоположной ей ТМ-спирали (ТМ2 в случае β_2 -AR). При этом AKO Arg/Lys и Phe/Tyr в CCM находятся на внутриклеточном конце ТМ, что обеспечивает взаимодействие гидроксилов холестерина с их положительно заряженными боковыми группами. Остатки Tyr/Trp находятся в средней части трансмембранного домена, что лежит в основе гидрофобных и ароматических взаимодействий между TMs и димерной формой холестерина, причем определяющую роль здесь играют π - π -стэкинговые взаимодействия [396, 397].

Однако в дальнейшем было показано, что в структуре GPCR могут быть и другие холестеринсвязывающие консенсусные мотивы, поскольку ряд рецепторов, в которых отсутствует β₂-AR-подобный ССМ, подвергаются аллостерической регуляции холестерином. Так, ССМ отсутствует в рецепторе эндотелина и в СВ2-каннабиноидном рецепторе несмотря на то, что оба этих рецептора образуют функционально активные комплексы с холестерином и являются мишенями его аллостерического влияния [307, 389]. В дополнение к этому, наличие такого β₂-AR-подобного ССМ вовсе не является условием для зависимости активности рецептора от присутствия холестерина, как это показано для имеющего такой мотив CCK2R, активность которого, однако, не снижается при истощении запасов холестерина в липидных рафтах [393], и для ряда других GPCR, включая мускариновые ацетилхолиновые рецепторы [133, 398, 399]. Так, СММ были выявлены во всех пяти типах mAChR, но во всех известных для них 16 кристаллических структурах связывания с холестерином показано не было [400]. И только в двух кристаллических структурах mACh₁R была обнаружена совместная кристаллизация рецептора с водорастворимой формой холестерина - холестерил гемисукцинатом (cholesteryl hemisuccinate, CHS), но этот аналог существенно отличается от нативного холестерина по своим связывающим характеристикам с белковыми молекулами [398, 399].

В некоторых GPCR, несмотря на наличие ССМ или подобного ему мотива, связывание холестерина было продемонстрировано в другом месте рецепторной молекулы, что указывает на наличие в GPCR альтернативных холестерин-связывающих сайтов. Один из таких сайтов локализован во внутриклеточном вестибюле трансмембранного тоннеля и включает цитоплазматическое окончание TM1 и спираль H8, как это показано для β_2 -AR [12], к-опиодиного рецептора [401], 5-HT_{2B}R [402, 403] и АТ₁R [404]. Связывание холестерина с этим сайтом требует ковалентной модификации остатка цистеина, локализованного в спирали Н8, жирнокислотным остатком (обычно пальмитатом), что обеспечивает подходящую для связывания липида конформацию этой спирали. Другой неканонический сайт располагается во внеклеточном вестибюле трансмембранного тоннеля и включает внеклеточное окончание ТМ6, как это показано для δ- и к-опиоидных рецепторов и А24-аденозинового рецептора [288, 386, 405, 406]. Существенные изменения по сравнению с каноническим ССМ отмечаются в холестерин-связывающем мотиве ц-опиоидного рецептора, где вместо положительно заряженного остатка на границе ICL1 и TM2 располагается остаток Gln³¹⁴, образующий водородную связь с гидроксилом димерной формы холестерина [407, 408].

В настоящее время предложена обширная классификация локализации аллостерических сайтов для холестерина, причем немаловажную роль в предпочтительности выбора сайта связывания играет то, находится ли холестерин в мономерной или димерной формах. Как показано для β₂-AR [396], холестерин в димерной форме связывается с сайтом, расположенным в бороздке, образованной TM2, TM3 и TM4, включающей внутриклеточный вестибюль трансмембранного тоннеля. Сходная локализация сайта связывания димера холестерина показана в Р2Ү12-пуринергическом рецепторе, рецепторе N-формилпептида и хемокиновом рецепторе CXCR2 [409-411]. Другая локализация холестерин-связывающего сайта также включает бороздку, образованную TM2, TM3 и TM4 (или TM6 вместо TM4), но направленную к внеклеточному входу в трансмембранный тоннель рецептора. Такая локализация, впервые изученная для А_{2А}-аденозинового рецептора [288, 386, 405], показана также для P2Y₁-пуринергического рецептора [163], к-опиоидного рецептора в активной конформации [406, 412], и-опиоидного рецептора в активной и неактивной конформациях [407, 408] и хемокинового рецептора СХСR3 в активной конформации [413], причем с рецептором и в этом случае взаимо-
действует исключительно димерная форма холестерина. В случае окситоцинового рецептора мономер холестерина связывается с расположенным во внеклеточном вестибюле сайте, образованном внеклеточными окончаниями TM4 и TM5 [414], а в случае α_{2C} -AR, P2Y₁₂-пуринергического рецептора и эндотелинового рецептора мономерный холестерин связывается с сайтом, также расположенным во внеклеточном вестибюле, но более вытянутым и образованным внеклеточными окончаниями ТМ1 и ТМ7 [133, 307, 409]. Мономерная форма может связываться и с внутриклеточным вестибюлем трансмембранного тоннеля, как это показано для к-опиоидного рецептора [406], хемокинового рецептора ССР9 [146], цистеиниллейкотриенового рецептора CysLT₂R [415] и рецептора N-формилпептида [416]. Достаточно необычной является локализация холестерин-связывающего сайта, вынесенного за пределы трансмембранного домена и включающего в основном гидрофобную спираль Н8 и внутриклеточное окончание ТМ1, как это продемонстрировано в случае 5-НТ_{2В}-серотонинового рецептора [402, 403], АТ₁R [404] и одной из кристаллических форм β₂-AR [12].

Необходимо отметить, что локализация сайтов связывания холестерина с GPCR и форма холестерина (мономер или димер) никак не коррелируют с типом G-белка или β-аррестина и особенностями внутриклеточных сигнальных путей, что указывает на раннее формирование в эволюции GPCR механизма их аллостерической регуляции холестерином и родственными ему липидами и указывает на отсутствие значимого влияния холестерина на предвзятость сигнальной трансдукции. Не выявлено и отчетливо выраженных закономерностей в связывании холестерина с активными и неактивными конформациями GPCR, что указывает на сложный паттерн влияния холестерина на связывающие характеристики рецептора и эффективность его активации агонистами. Однако делать окончательные выводы в этом случае преждевременно, поскольку требуются специальные исследования по вкладу холестерина в предвзятость и селективность сигнальной трансдукции.

Вот лишь некоторые примеры сложности и неоднозначности холестерин-опосредуемой регуляции функций GPCR и их каскадов. Показано, что холестерин способен повышать связывание агонистов с хемокиновым рецептором CXCR4 [417], но при этом негативно влияет на связывание агонистов с другим хемокиновым рецептором CCR5, структурно близким CXCR4 [418]. При этом удивительно, что в кристаллических структурах обоих хемокиновых рецепторов не было обнаружено холестерина. При повышении уровня холестерина в мембранах мозга отмечается повышение базальной активности CB1-каннабиноидного рецептора, что обусловлено стабилизацией активной конформации рецептора в присутствии холестерина, но при этом снижается его чувствительность к ортостерическим агонистам [419]. В кристаллической структуре А_{2А}-аденозинового рецептора идентифицированы сразу два сайта для связывания с димером холестерина. Один в наружном листке плазматической мембраны, включающий остатки Arg/Gln^(6.35) и Leu/Ile^(6.46), локализованные в ТМ6, и другой вблизи него, но включающий внеклеточные окончания ТМ2, ТМ3 и ТМ4, причем оба сайта находятся вблизи ортостерического сайта и даже могут, хотя и в небольшой степени, с ним перекрываться [404, 405]. Именно в связи с таким расположением этих сайтов отмечали снижение связывания А₂₄антагониста ZM241385 с рецептором в присутствии 3 мМ холестерина гемисукцината [420]. С другой стороны, не было выявлено существенного влияния содержания холестерина в мембране на связывание агонистов с А_{2А}-аденозиновым рецептором [421]. Как отмечалось выше, холестерин не был выявлен в кристаллических структурах всех пяти подтипов мускариновых ацетилхолиновых рецепторов, несмотря на наличие холестерин-связывающего сайта в их внеклеточном вестибюле [400, 422]. Снижение уровня холестерина в мембране приводило к снижению связывания $mACh_1R$, $mACh_2R$ и $mACh_3R$ c антагонистом N-метилскополамином, в то время как восстановление содержания холестерина приводило к повышению связывания этого антагониста с $mACh_2R$, но в еще большей степени снижало связывание с ним mACh₁R и mACh₃R [423, 424]. При этом эффекты повышения содержания холестерина в мембране оказывали противоположные эффекты на связывание рецепторов с агонистом карбахолом, что указывает на возможность присутствия в молекулах mAChR не одного, а двух холестерин-связывающих сайтов [133, 425]. Необычен тот факт, что некоторые GPCR, имеющие в своей структуре ССМ или родственные им мотивы, нормально экспрессируются в мембранах, лишенных холестерина, и проявляют при этом специфическую активность, как показано для GPCR в холестерин-дефицитных мембранах бактерии Escherichia coli [426].

В отношении влияния холестерина на предвзятость GPCR-сигналинга имеется обнадеживающее исследование чешских ученых, Michal и соавт., в котором они изучили зависимость внутриклеточного сигналинга, осуществляемого через различные типы mAChR, от содержания мембранного холестерина [423, 424]. Было установлено, что истощение мембранного холестерина в случае mACh₂R приводит как к повышению активации G_i -белоксопряженного каскада, направленного на снижение внутриклеточного уровня цАМФ, так и к усилению G_s -белок-опосредуемого усиления синтеза этого вторичного посредника. Наряду с этим отмечали ослабление стимуляции фосфоинозитидного

обмена, реализуемого через активацию PLCB, индуцированную как высвобождаемым при активации G_i-белка Gβγ-димером, так и α-субъединицей G_{q/11}-белка [423]. Необходимо отметить, что значительное повышение (+137%) содержания холестерина в мембране в сравнении с контролем не вызывало заметных изменений в сигнальной трансдукции, как цАМФ-зависимой, так и зависимой от продуктов гидролиза фосфоинозитидов. При изучении mACh₁R и mACh₃R было показано, что снижение содержания холестерина в мембране также приводит к повышению G_s-белок-опосредуемой активации АЦ. В то же время как повышение, так и снижение содержания мембранного холестерина вызывало значительное ослабление фосфоинозитидных путей, опосредуемых через G_{q/11}-белок [423, 424]. Сложные взаимоотношения между предвзятостью сигнальных путей mACh₁₋₃R и содержанием холестерина в мембране связывают с множественностью холестерин-связывающих сайтов в рецепторах, с различными механизмами влияния холестерина на активные и неактивные конформации рецептора (сайт-специфичное связывание и(или) влияние на текучесть и толщину мембраны), а также на стабильность комплексов рецепторов с другими компонентами сигнальной трансдукции [133, 422]. Важно и то, что аффинность холестерин-связывающих сайтов к холестерину также может в значительной степени варьировать, что приводит к различному паттерну их активации при различных концентрациях холестерина.

Отдельную и до конца не решенную проблему представляет влияние холестерина на стабильность ди- и олигомерных рецепторных комплексов, которые не только важны для функциональной активности GPCR, но в ряде случаев полностью определяют способность рецептора селективно активировать эффекторные системы [133, 427]. В настоящее время имеются свидетельства того, что холестерин, в первую очередь его димерные формы, оказывают регуляторное влияние на ди- и олигомеризацию для большого числа GPCR, включая β_2 -AR [12, 428], CB1- и CB2-каннабиноидные рецепторы [429], хемокиновый рецептор CXCR4 [430], 5-HT_{1A}R [383, 431, 432], 5-HT_{2A}R [433], 5-HT_{2C}R [432, 434], mACh₃R [435].

Еще в 2007 г. Vadim Cherezov и соавторы, осуществляя пионерские исследования по изучению пространственной структуры β -AR, показали, что кристаллическая структура β_2 -AR, связанного с инверсионным агонистом, представляет собой гомодимер, в котором интерфейс между мономерами образован TM4-TM5 одного протомера и TM1-H8 другого протомера, причем каждый такой димер стабилизирован шестью молекулами холестерина и двумя молекулами пальмитиновой кислоты [12]. При этом в каждом мономере димер холестерина

связан с ТМ2 и ТМ4, а мономер холестерина с ТМ1 и гидрофобной спиралью Н8, в то время как жирнокислотная цепь пальмитата ковалентно связана с остатком цистеина в положении 341, что обеспечивает прочную ассоциацию Н8 с липидной фазой мембраны. Эти результаты продемонстрировали как зависимость олигомеризации β_2 -AR от присутствия холестерина, так и существование в молекуле рецептора, по крайней мере, двух холестерин-связывающих сайтов. В дальнейшем были проведены прямые исследования влияния содержания мембранного холестерина на димеризацию β_2 -AR, и это позволило установить, что при низком содержании холестерина образуется β₂-AR-димер, в котором протомеры соединены посредством гидрофобных контактов между ТМ1 и ТМ2 одного протомера и ТМ4 и ТМ5 другого протомера. При повышении содержания холестерина, который взаимодействует с сайтом, включающим ТМ4, образуется β₂-AR-димер, соединенный посредством гидрофобных контактов TM1 и TM2 для обоих протомеров [428]. Таким образом, содержание холестерина в мембране является фактором, контролирующим организацию димерного комплекса β₂-AR, переводя комплексы с гетероинтерфейсом (ТМ4/ТМ5-ТМ1/ТМ2) в комплексы с гомоинтерфейсом (ТМ1/ТМ2-ТМ1/ТМ2), что, безусловно, влияет на эффективность и селективность сигнальной трансдукции.

В отсутствие холестерина при изучении димеризации 5-HT_{2C}R было идентифицировано до 17 различных интерфейсов, обеспечивающих взаимодействие протомеров, в то время как в присутствии холестерина их число сокращалось и преобладал интерфейс, включающий ось ТМ1-ТМ7-Н8 [434]. Это может свидетельствовать в пользу того, что в обогащенных холестерином мембранах происходит уменьшение числа энергетически выгодных гомо- и гетероинтерфейсов с предпочтительным образованием какого-то одного типа комплекса [432]. В случае mACh₃R показано, что холестерин может стабилизировать и более сложные GPCRкомплексы, включающие четыре протомера, стабилизируя взаимодействия между рецепторными димерами [435]. Молекулы холестерина располагались в этом случае между димерами, обеспечивая более тесный контакт между ними и внося значимый вклад в стабилизацию тетрамерного комплекса. Это указывает на возможную роль холестерина в образовании многомерных GPCR-комплексов, в первую очередь для класса A GPCR [436].

Следует, однако, отметить, что холестерин также вовлечен в стабилизацию олигомерных комплексов и для GPCR класса С, в которых ключевую роль в стабилизации рецепторных комплексов играют внеклеточные домены [437]. Он является PAM для CaSR, обеспечивая эффективное образование гомодимерной формы рецептора посред-

ством взаимодействия молекул холестерина с боковым гидрофобным радикалом остатков Ile⁸¹⁶, локализованных в ТМ6 каждого из протомеров [438]. Определяющая роль холестерина в образовании функционально активного гомодимерного комплекса показана в отношении орфанного рецептора GPR158, который экспрессируется в мозге и посредством регуляции цАМФ-зависимых каскадов вовлечен в синаптогенез, контролируя, тем самым, когнитивные функции и развитие депрессивных состояний [439]. Молекулы холестерина локализованы как в интерфейсе между протомерами рецептора, делая димерный комплекс более устойчивым, так и снаружи, что позволяет сохранить GPR158 в неактивной конформации, предотвращая активацию им G-белков. Важно, что молекулы холестерина также влияют на образование комплекса GPR158 с RGS-белком (RGS7-Gβ5) [439]. Три молекулы холестерина способны специфично связываться с GABA_BR, который находится в комплексе с РАМ, тем самым, обеспечивая повышение его активности, направленной на открытие калиевых каналов, снижение активности цАМФ-зависимых и кальциевых сигнальных путей [440]. Интересно, что с рецептором, в ортостерическом сайте которого находится антагонист, способны взаимодействовать от 10 до 16 молекул холестерина, как в мономерной, так и в димерной формах, и это обеспечивает формирование прочного гомодимерного GABA_BR-комплекса [441]. В свободном от лиганда состоянии GABA_BR, напротив, не способен специфично взаимодействовать с холестерином, и это позволяет сделать вывод о том, что сайты для связывания холестерина, которые вовлечены в процесс олигомеризации рецептора, имеют различную доступность в зависимости от занятости ортостерического или аллостерических сайтов [437].

Поскольку уровень холестерина и соотношение его форм существенно меняются при различных патологических состояниях, то имеются веские основания полагать, что индуцированные этим изменения аллостерических эффектов холестерина на GPCR-сигналинг вносят заметный вклад в этиологию и патогенез многих заболеваний [432, 437, 439, 442–444].

Фосфолипиды

Несомненно, что фосфолипиды плазматической мембраны влияют на ее физико-химические характеристики и, тем самым, непосредственно регулируют активность GPCR, предвзятость сигнальной трансдукции, устойчивость олигомерных рецепторных комплексов и комплексов GPCR с другими компонентами сигнальной трансдукции, причем, как правило, фосфолипиды действуют в ансамбле с холестерином и другими мембранными липидами [181, 385, 386, 445]. В 2016 г. Dawaliby и соавт. показали, что различные фосфолипиды, такие как диолеилфосфатидилглицерин, диолеилфосфатидилсерин и диолеилфосфатидилинозитол (DOPG, DOPS и DOPI), взаимодействуя с сайтами, локализованными во внутриклеточном вестибюле трансмембранного тоннеля, стимулируют как базальную, так и агонист-индуцированную активность β_2 -AR, в то время как диолеилфосфатидилэтаноламин действует противоположным образом, стабилизируя неактивное состояние рецептора [180]. Действие фосфолипидов осуществлялось в том числе и в отсутствие β₂-агониста, что указывает на независимость их влияния от конформационных перестроек, вызываемых лигандами ортостерического сайта, и позволяет рассматривать фосфолипиды как самодостаточные аллостерические регуляторы. В дальнейшем было изучено влияние фосфолипидов на активность различных представителей класса A GPCR, включая β₁-AR, А_{2А}-аденозиновый рецептор и нейротензиновый рецептор 1-го типа (NTSR1) [181, 386]. Во всех случаях, как и в β₂-AR, фосфолипид-связывающие сайты были локализованы в области цитоплазматического входа в трансмембранный тоннель.

При изучении β₁-AR было показано, что две молекулы фосфатидилинозитол-4,5-дифосфата (РІР2) стабилизируют комплекс рецептора с α -субъединицей G_s-белка, основным трансдукторным белком для β_1 -AR, но при этом не влияют на образование комплекса с другими типами α-субъединиц (Gα_i, Gα_a) или с антителами, выработанными на цитоплазматические участки рецептора [181]. При этом другие изученные фосфолипиды, например, фосфатидилсерин, слабо или вовсе не влияли на связывание β₁-AR с Gα_s-субъединицей и на активацию нижележащих сигнальных каскадов, что указывает на специфичность PIP2, как PAM для этого рецептора. Связывание PIP2 с рецептором повышается в условиях его активации изопротеренолом, неселективным β-агонистом, и это обусловлено конформационными изменениями в ICL2, которая не только тесно связана с агонистиндуцированной активацией G_s-белка, но и, как можно полагать, является одной из мишеней для связывания с фосфолипидами. При этом положительно заряженные остатки, локализованные в проксимальных участках ICL2 и ICL3, могут быть вовлечены в ионные взаимодействия с отрицательно заряженной "головкой" фосфолипида. Это согласуется с тем фактом, что фосфолипиды, не содержащие полианионных групп, такие как фосфатидилсерин, не были активны в случае всех трех изученных рецепторов [181]. Возможно, однако, что другие, чем PIP2, фосфолипиды могут влиять на текучесть и толщину мембраны и, тем самым, модулировать GPCR-опосредуемую сигнальную трансдукцию, как это показано для β_2 -AR [180], но

это требует дополнительных исследований для более широкого спектра рецепторов.

Значительный интерес в последние годы представляет опосредуемая фосфоинозитидами аллостерическая регуляция GPCR, обусловленная их способностью влиять на образование комплекса между GPCR и β-аррестинами, что играет критическую роль как в контроле β-аррестинового сигналинга, так и в процессе эндоцитоза и рециклизации рецепторов [385]. Для эффективного образования комплексов с GPCR необходима транслокация β-аррестинов в плазматическую мембрану и их накопление вблизи рецепторных комплексов в составе структур, покрытых клатрином (clathrincoated endocytic structures, CCSs), еще до GRK-опосредуемого фосфорилирования GPCR, являющегося триггером для взаимодействия с В-аррестинами. Как β-аррестин, так и ассоциированные с ним компоненты эндоцитарного аппарата, включая адаптерный белок-2 (АР-2), способны взаимодействовать с PIP2 [446, 447]. В результате была выдвинута гипотеза, которая сейчас получила весомые доказательства, что "каталитически активированный" В-аррестин должен находиться в комплексе с мембранными PIP2 до его связывания с рецептором и в дальнейшем PIP2 обеспечивает надлежащее взаимодействие β-аррестинов с лиганд-рецепторным комплексом и реализацию сигнальных функций такого комплекса [385, 445, 448]. При изучении комплекса нейротензинового рецептора 1-го типа с β-аррестином с помощью криоэлектронной микроскопии было показано включение в него PIP2, который образовывал мостик между внутриклеточными окончаниями ТМ1 и ТМ4 рецептора и С-концевой частью молекулы β-аррестина. При этом отрицательно заряженная головка PIP2 образовывала солевые мостики с положительно заряженными аминогруппами остатков лизина и аргинина, которые были локализованы на поверхности β-складчатых структур β-аррестина, обращенных по направлению K внутриклеточному вестибюлю трансмембранного тоннеля рецептора [448]. Мутантный β-аррестин, имеющий замены положительно заряженных аминокислот Lys²³²Gln, Arg²³⁶Gln и Lys²⁵⁰Gln, не способен образовывать комплекс с β_2 -AR, что препятствует как интернализации рецептора, так и осуществлению β-аррестин-специфичных сигнальных каскадов [385, 445, 446].

Детальное изучение структурных особенностей комплексов GPCR и β-аррестинов и возможного участия в их стабилизации PIP2 и других фосфолипидов показало, что фосфолипиды наиболее важны для образования таких комплексов в случае GPCR класса A, но не GPCR класса B [385]. Это обусловлено тем, что GRK-индуцированное фосфорилирование GPCR класса A не позволяет обеспечить эффективное взаимодействие с молекулой

β-аррестина без ее дополнительной координации с помощью PIP2. Образование мостика между фосфорилированным рецептором и β-аррестином позволяет не только стабилизировать тройной комплекс лиганд-GPCR-β-аррестин, но и обеспечивает β-аррестин-специфичную трансдукцию, а также интернализацию и рециклизацию GPCR. Определенную роль здесь играет взаимодействие PIP2 с С-концевой частью β-аррестина, что позволяет обеспечить его конформацию, оптимальную для связывания с рецептором. GRK-опосредуемое фосфорилирование GPCR класса В в полной мере обеспечивает рекрутирование и тесное взаимодействие с β-аррестинами, вследствие чего участие PIP2 в этом случае не является необходимым, хотя нельзя исключить, что фосфоинозитиды могут влиять на другие этапы сигнальной трансдукции. Тем самым по способности фосфоинозитидов влиять на образование комплекса между рецептором и β-аррестином все GPCR можно условно разделить на PIP2-зависимые и PIP2-независимые [385, 386]. При переходе в активное состояние, в том числе в G-белок-связанном состоянии, GPCR способны накапливать PIP2 вблизи внутриклеточной части трансмембранного домена, тем самым, презентуя их для β-аррестинов [181, 449].

Аллостерические функции может выполнять фосфатидилинозитол-3,4,5-трифосфат (PI(3,4,5)P3), продукт катализируемой фосфатидилинозитол-3киназой реакции, как это продемонстрировано для рецептора паратиреоидного гормона 1-го типа (PTH1R) [450]. Этот рецептор, как в активном, так и в неактивном состоянии, образует комплексы с различными липидами, включая фосфолипиды, что указывает на присутствие в нем липид-специфичных аллостерических сайтов [451, 452]. При погружении в клетку в составе ранней эндосомы РТН1R осуществляет активацию АЦ и стимулирует цАМФ-зависимые сигнальные пути. Показано, что важную роль в эндосомальном сигналинге агонист-стимулированного PTH1R играет образование комплекса лиганд-РТН1R-G_βγ-димер-β-аррестин. В свою очередь, стабилизация этого комплекса осуществляется с помощью PI(3,4,5)P3, который, подобно PIP2, осуществляет координацию молекул рецептора и β-аррестина в этом комплексе [450, 453].

7.6. Аминокислоты, пептиды и белки

Аминокислоты и их производные

Среди 20 "канонических" природных аминокислот, являющихся структурными элементами пептидов и белков у эукариотических организмов, наибольшую роль в качестве аллостерических регуляторов GPCR играют ароматические аминокислоты (триптофан, тирозин и фенилаланин), а также гомоцистеин и агматин, метаболиты цистеина и аргинина соответственно [267]. Функционирова-

ние ароматических аминокислот в качестве аллостерических регуляторов представляется весьма логичным, по крайней мере, по двум причинам. Во-первых, некоторые их производные являются эндогенными ортостерическими агонистами GPCR, например, серотонин, триптамин, дофамин, адреналин, норадреналин, октопамин, что предопределяет наличие множественных сайтов связывания для них. Во-вторых, ароматические аминокислоты, обладающие липофильными свойствами, легко проникают в гидрофобные карманы рецепторов, а также в интерфейсы между липидным слоем мембраны и внешней поверхностью трансмембранного домена, где располагаются полости, являющиеся потенциальными аллостерическими сайтами.

Основными мишенями аллостерического влияния ароматических аминокислот являются GPCR класса С, имеющие значительный по размеру внеклеточный домен, в первую очередь CaSR [454-457]. Показано, что ароматические аминокислоты специфично связываются с аллостерическими сайтами, которые расположены вблизи входа в трансмембранный тоннель и сформированы сегментами CaSR, и потенцируют стимулирующее влияние ионов кальция на активность рецептора [456]. Имеются сведения о модулирующем влиянии фенилаланина и алифатических аминокислот, лейцина и изолейцина, на регуляторные эффекты баклофена на активность GABA_BR, что, как считают, вносит определенный вклад в функционирование сигнальных систем, контролируемых ү-аминомасляной кислотой [458]. Однако физиологическая роль такого влияния до конца не ясна, тем более что дальнейшие исследования не подтвердили возможности регуляции GABA_BR низкими, не превышающими физиологические, концентрациями фенилаланина [459].

Обнаружение того факта, что гомоцистеин может выступать в роли аллостерического регулятора D₂-дофаминового рецептора, указывает на возможные дополнительные механизмы патогенетического влияния этого производного цистеина, повышение концентрации которого в крови ассоциировано с нейродегенеративными и эндокринными заболеваниями. Гомоцистеин связывается с аллостерическим сайтом, включающим проксимальные сегменты ECL3 D₂-дофаминового рецептора, снижая его активацию дофамином и функционируя, тем самым, как NAM [460]. В этом отношении интересен тот факт, что одним из подходов для лечения болезни Паркинсона является применение агониста дофаминовых рецепторов – L-3,4-дигидроксифенилаланина (L-DOPA), который с помощью фермента катехол-О-метилтрансферазы легко превращается в гомоцистеин. У пациентов, леченных L-DOPA, в качестве одного из побочных эффектов наблюдают гипергомоцистеинемию и это сопровождается снижением эффективности используемой терапии [461]. В связи с этим имеются все основания считать, что образующийся при метилировании L-DOPA гомоцистеин аллостерически снижает агонист-индуцированную активацию D_2 -дофаминового рецептора [462]. Более того, это объясняет и высокую эффективность ингибиторов катехол-O-метилтрансферазы, препятствующих гипергомоцистеинемии и усиливающих эффекты L-DOPA на дофаминовую систему мозга у пациентов с болезнью Паркинсона [461].

Агматин является РАМ для α_2 -AR, повышая связывание с ним норадреналина, причем в основе действия агматина лежит взаимодействие как с аллостерическим, так и с ортостерическим сайтами рецептора [463]. Активирующее влияние агматина на функции α₂-AR во многом объясняет защитные эффекты этого декарбоксилированного производного аргинина при лечении неврологических заболеваний и нарушений функций сердечно-сосудистой системы [464]. Показано, что агматин, также как и L-аргинин, способен позитивно модулировать активность CaSR [465, 466]. На изолированных кардиоцитах зимующих сусликов продемонстрировано, что посредством связывания с CaSR низкие дозы агматина (до 500 мкМ) вызывают Gβγ-опосредуемую активацию 3-фосфоинозитидного пути, что приводит к повышению продукции оксида азота эндотелиальной NO-синтазой. В дозах выше 2 мМ агматин вызывает CaSR-опосредуемую стимуляцию PLC_β и повышает уровень внутриклеточного кальция [465]. Тем самым в зависимости от концентрации агматина происходит перераспределение внутриклеточных сигнальных каскадов, реализуемых через CaSR.

Пептиды и белки

Одним из хорошо исследованных пептидных аллостерических регуляторов GPCR является 5-гидрокситриптамин-модулин, представляющий собой тетрапептид Leu-Ser-Ala-Leu, высвобождаемый в различных областях мозга. Он специфично взаимодействует с аллостерическими сайтами, локализованными в серотониновых рецепторах 5-НТ_{1В/1D}-подтипа, и подавляет индуцированную агонистами синаптосомальную активность этих рецепторов, функционируя как NAM При остром иммобилизационном [467-469]. стресе в различных областях мозга определяли быстрое и значительное повышение уровня 5-гидрокситриптамин-модулина, что приводило к десенситизации 5-HT_{1B/1D}-серотониновых рецепторов и нарушало реализуемое через него ингибирующее влияние на активность АЦ [470].

Свойства аллостерических регуляторов для различных типов каннабиноидных рецепторов продемонстрированы у пептидов, являющихся производ-

ными α-гемоглобина, в первую очередь у RVD-гемопрессина (RVD-hemopressin) RVDPVNFKLLSH, обозначаемого как пепкан-12 (pepcan-12) [471-473]. RVD-гемопрессин демонстрировал активность NAM для CB₁-каннабиноидного рецептора, подавляя связывание с ним ортостерического агониста WIN55212-2 и ингибируя агонист-индуцированную активацию опосредуемых через СВ₁-каннабиноидный рецептор сигнальных каскадов [472, 474]. Нонапептид гемопрессин PVNFKLLSH также обладал способностью влиять на активность СВ1каннабиноидного рецептора, хотя и в меньшей степени в сравнении с пепканом-12 [475], но при физиологических условиях в процессе гидролиза α -гемоглобина, в отличие от пепкана-12, он не образуется и потому не имеет существенного значения для клиники [471, 472]. Важно, что пепкан-12 может быть применен для нормализации пищевого поведения и энергетического обмена при метаболических расстройствах, поскольку, в отличие антагонистов ортостерического сайта CB₁-каннабиноидного рецептора, действует более мягко и не вызывает депрессивных и других неврологических расстройств [476, 477]. Одним из путей введения пепкана-12 может быть применение его биологического прекурсора – пепкана-23, который более устойчив к гидролизу и надежно превращается в пепкан-12 в условиях in vivo [478].

Укорочение пепкана-12 с N-конца всего на одну аминокислоту наделяет полученный ундекапептид VD-гемопрессина свойствами селективного аллостерического агониста CB₁-каннабиноидного рецептора [479, 480]. В тесте отдергивания хвоста у мышей показано, что при спинальном и супраспинальном введении VD-гемопрессин дозо-зависимо вызывал антиноцицептивный эффект со значениями EC₅₀ менее 7 нМ, и этот эффект блокировался селективными CB₁-антагонистами [479]. При супраспинальном введении VD-гемопрессин также вызывал характерную для CB₁-агонистов гипотермию и влиял на мотивацию пищевого поведения, и эти эффекты снимались в присутствии CB₁-антагонистов [480].

В отношении CB_2 -каннабиноидного рецептора пепкан-12, действуя в наномолярных концентрациях, проявляет свойства РАМ, потенцируя стимулирующие эффекты CB_2 -агонистов, в том числе 2-арахидоноилглицерина [473]. В присутствии пепкана-12 усиливаются как стимулирующие эффекты этих агонистов на ГТФ-связывающую активность G_i -белков, так и реализуемое через них ингибирование АЦ. Поскольку содержание пепкана-12 и его прекурсора пепкана-23 повышается при ишемии и воспалительных процессах, а CB_2 -каннабиноидные рецепторы выполняют при этих патологических состояниях защитные функции, то генерацию пепкана-12, как агониста этих рецепто-

ров, можно рассматривать в качестве молекулярного механизма реализации этих функций [473]. Принимая во внимание локализацию аллостерических сайтов в молекуле СВ2-каннабиноидного рецептора, связывание пепкана-12 и его аналогов осуществляется предположительно с сайтами Н и J, локализованными во внеклеточном преддверии трансмембранного тоннеля и прикрывающими сверху ортостерический сайт [481]. Необходимо отметить, что недавно был идентифицирован еще один пептидный регулятор с активностью ago-РАМ для СВ₂-каннабиноидного рецептора – пептид остеогенного роста (osteogenic growth peptide, OGP), который предотвращает потерю костной ткани при старении [482]. Тем самым, каннабиноидные рецепторы являются мишенями для целого ряда пептидов, образующихся как в норме, так и в условиях патологии, и способных аллостерически влиять на нервную и другие системы организма, дифференцированно регулируя различные типы каннабиноидных рецепторов [483].

Мишенями белков, обогащенных положительзаряженными аминокислотами, являются но mACh₂R. Эти белки взаимодействуют с отрицательно заряженным аллостерическим сайтом, расположенным в области внеклеточного входа в трансмембранный тоннель рецептора [484]. Поликатионный белок протамин, основной белок миелина, положительно заряженный пептид динорфин-А(1-13) [485, 486], некоторые токсины яда змей [487], а также обогащенный остатками аргинина доминантный основный белок эозинофилов (eosinophil major basic protein) [488, 489], в больших количествах высвобождаемый у пациентов с бронхиальной астмой в области воспаления и активирующий тучные клетки и нейтрофилы, негативно регулируют mACh₂R-опосредуемый сигналинг, причем их действие, за исключением компонентов яда змей, высоко специфично по отношению к mACh₂R.

Достаточно интересен тот факт, что аллостерические свойства присущи глутатиону, представляющему собой трипептид ү-Glu-Cys-Gly, основной функцией которого является поддержание окислительно-восстановительного баланса в клетке. Глутатион, подобно ароматическим аминокислотам, позитивно воздействует на активность CaSR [490, 491]. При этом основным физиологическим результатом такого взаимодействия является изменение продукции паратиреоидного гормона фолликулярными клетками паращитовидной железы, в том числе при различных формах гиперпаратиреоза [491]. Тем самым изменение содержания глутатиона может приводить к патологии не только вследствие нарушений окислительно-восстановительного баланса в организме, но и путем изменения функциональной активности CaSR и его сигнальных каскадов [492].

7.7. Аутоантитела к GPCR

В результате деградации GPCR и их комплексов, нарушения процессинга рецепторов и их внутриклеточной локализации, как в норме, так и в условиях патологии (онкологические и эндокринные заболевания, травмы, воспалительные процессы, некроз, аутофагия), генерируется большое число различающихся по размеру и локализации фрагментов GPCR. В дальнейшем эти фрагменты выступают в роли антигенов, к которым вырабатываются специфичные ауто-GPCR-антитела. В последние годы проводятся интенсивные исследования по идентификации и изучению механизмов образования таких антител, а также выясняются молекулярные механизмы их действия и их роль в развитии аутоиммунных заболеваний [116, 493-495]. Наибольший интерес представляют антитела, вырабатываемые на внеклеточный *N*-концевой домен и ECLs GPCR, поскольку в физиологических условиях они способны с высокой специфичностью взаимодействовать с внеклеточными участками рецепторов и аллостерически влиять на их функциональную активность и сродство к агонистам.

Одни аутоантитела характеризуются агонистподобной активностью, вызывая повышение базальной активности GPCR, или потенцируют стимулирующие эффекты агонистов, функционируя как РАМ. Другие аутоантитела подавляют регуляторные эффекты агонистов, снижая их сродство к GPCR и предотвращая активацию внутриклеточных сигнальных каскадов, функционируя, тем самым, как NAM. Ряд аутоантител имеют более сложный спектр биологической активности, обеспечивая предвзятость внутриклеточного сигналинга и модулируя активность других аллостерических GPCR-регуляторов [494]. Основными мишенями ауто-GPCR-антител являются либо N-концевые внеклеточные домены и их спейсеры с трансмембранным доменом, как это имеет место в случае рецептора ТТГ [496, 497] и CaSR [498], либо ECLs peцепторов, как это продемонстрировано для большого числа GPCR класса А [494]. Определяющая роль в таких взаимодействиях принадлежит ECL2, которая в большинстве рецепторов не только самая значительная по размеру, но и локализована при входе в трансмембранный тоннель, влияя на доступность ортостерического сайта и на взаимное расположение ТМ, вовлеченных в передачу сигнала с ортостерического сайта к трансдукторным белкам. Установлено, что ауто-GPCR-антитела взаимодействуют с этой петлей в случае различных типов адренергических рецепторов (β_1 -AR, β_2 -AR, α_1 -AR) [499–501], мускариновых ацетилхолиновых рецепторов (mACh₂R, mACh₃R) [502, 503], AT₁-ангиотензинового [504, 505] и 5-HT₄-серотонинового рецепторов [506]. В то же время в ряде случаев во взаимодействии с ауто-GPCR-антителами принимают участие ECL1 и ECL3, как правило, в координации друг с другом или другими внеклеточными сегментами, как это показано для β_1 -AR [500], α_1 -AR [507], μ -опиоидного рецептора [508], mACh₃R [503, 509].

В настоящее время имеется большое число свидетельств о вовлеченности ауто-GPCR-антител в этиологию и патогенез различных заболеваний у человека и животных, хотя только в ограниченном числе случаев доказана их ведущая роль в развитии патологических процессов. Это обусловлено как тем, что не всегда ясно, являются ли ауто-GPCRантитела первопричиной заболеваний или образуются в результате нарушенной иммунотолерантности, так и отсутствием во многих случаях информации о первичной структуре и пространственной организации ауто-GPCR-антител и эпитопах их специфического связывания с GPCR. Может считаться доказанной роль аутоантител к β_2 -AR, АТ₁-ангиотензиновому рецептору и mACh₂R (как правило, к их ECL2) в развитии кардиомиопатий и других сердечно-сосудистых патологий, аутоантител к ЕТ_А-эндотелиновому рецептору – в развитии легочной артериальной гипертензии, аутоантител к mACh₃R – в патогенезе синдрома Шегрена, аутоантител к АТ₁-ангиотензиновому рецептору – в развитии преэклампсии, аутоантител к MC₄R – в патогенезе ожирения и метаболического синдрома, аутоантител к mGluR1 – в этиологии и патогенезе церебральной атаксии. Общепризнана роль аутоантител к рецептору ТТГ в этиопатогенезе заболеваний щитовидной железы, в том числе аутоиммунного гипертиреоза (болезни Грейвса), карциномы щитовидной железы, аутоиммунного тиреоидита (болезни Хашимото), причем по фармакологическому профилю эти аутоантитела могут относиться к различным группам аллостерических регуляторов.

Некоторые ауто-GPCR-антитела выявлены и у здоровых людей, что предполагает их участие в контроле физиологических и биохимических процессов [510, 511]. Если для значительного числа таких аутоантител их физиологические функции остаются не выясненными, то для аутоантител к β_1 и β₂-AR [512, 513], μ- и δ-опиоидным рецепторам [508, 514, 515], ЕТ_А-эндотелиновому рецептору [510] и хемокиновому рецептору ССR5 [516, 517] показана их специфическая активность, которая в ряде случаев может быть полезной для организма. Так, например, аутоантитела к δ-опиоидному рецептору с агонистической активностью проявляют иммуномодуляторную активность и осуществляют cross-talk между иммунной и нейроэндокринной системами [515]. Стимулирующие аутоантитела к μ-опиоидному рецептору, связываясь с аллостерическим сайтом, включающим проксимальные участки ECL1 и ECL3, мимикрируют эффекты морфина и, наряду с этим, принимают участие в

контроле гомеостаза лимфоцитов [508, 514]. Аутоантитела к ЕТ_А-эндотелиновому рецептору проявляют хемотактическую активность, влияя на миграцию нейтрофилов, что свидетельствует об их вовлечении в функционирование иммунной системы [510]. Блокирующие аутоантитела к хемокиновому рецептору CCR5, который является корецептором для вируса иммунодефицита человека 1-го типа (HIV-1) и способствует его проникновению в клетку-мишень, обнаружены как у здоровых, HIV-1-отрицательных, субъектов, так и у пациентов, инфицированных HIV-1, но длительное время не имеющих признаков развития синдрома приобретенного иммунодефицита [516-518]. Защитные свойства этих аутоантител обусловлены их способностью препятствовать активации рецептора CCR5 агонистами, а также их способностью блокировать проникновение вируса в клетку, что препятствует размножению HIV-1 и генерализации вирусной инфекции [516—519]. Аутоантитела к β_1 -АР, выявленные у значительной части субъектов без каких-либо признаков сердечно-сосудистой патологии, в отличие от таковых у больных с дилатационной кардиомиопатией не были способны стимулировать β_1 -AP, а в ряде случаев имели слабую антагонистическую активность [512]. Эти антитела создают в своем роде регуляторный "буфер", позволяющий смягчить активирующие воздействия β-агонистов на адренергическую систему и предотвратить нарушения функций сердечно-сосудистой системы. Такие регуляторные "буферные" системы могут функционировать и для других GPCRсистем, тем самым являясь неотъемлемым компонентом сигнальной трансдукции.

Аутоантитела к GPCR характеризуются предвзятостью внутриклеточного сигналинга, будучи способны селективно активировать определенные типы G-белков и β-аррестинов. Так, при взаимодействии с β_2 -AR, которые функционально могут сопрягаться как с G_s-, так и с G_i-белками, оказывающими противоположные влияния на цАМФ-зависимые сигнальные пути, ауто-β₂-AR-антитела способны как стимулировать АЦ, активируя G_s -белки [501], так и снижать продукцию цАМ Φ через посредство активации G_i-белков [520]. В обоих случаях они взаимодействуют с эпитопами. локализованными в ECL2. Следует отметить, что ингибирующие АЦ аутоантитела получают от пациентов с тяжелой сердечно-сосудистой патологией. Обработка коклюшным токсином, инактивирующим α-субъединицу G_i-белка, блокирует ингибирующее влияние этих аутоантител на АЦ, что указывает на определяющую роль G_i-белков в этих эффектах [520]. Показано, что одни типы аутоантител к β_1 -AR, полученные из крови пациентов с диалатационной кардиомиопатией, способны активировать G-белки, в то время как другие аутоантитела предвзято стимулируют β-аррестиновые каскады, включающие в качестве эффекторных звеньев киназы ERK1/2 [521].

Аутоантитела к 5-НТ₂₄-серотониновому рецептору, в зависимости от источника получения, были избирательны в отношении различных типов G-белков, функционально сопряженных с этим рецептором [522, 523]. Аутоантитела к этому рецептору, полученные от пожилых пациентов с сахарным диабетом и нефропатией, а также с осложнениями, вызванными ожирением и воспалительными процессами, вызывали активацию G_{q/11}-белков и PLCβ и приводили к усилению внутриклеточного кальциевого сигналинга [522], в то время как ауто-5-HT_{2A}R-антитела, полученные от пациентов с шизофренией, стимулировали сигнальные пути, опосредуемые через G_{і/о}-белки [523]. Аутоантитела к эктодомену CaSR, полученные из крови пациента с синдромом приобретенной гипокальциурической гиперкальциемии, селективно стимулировали сигнальные пути, реализуемые через G_{а/11}белки, но не влияли на активность G_{і/о}-белков, которые также сопряжены с CaSR [524, 525]. Было показано, что аллостерический сайт для изолированных аутоантител с G_{q/11}-белок-специфичной активностью локализован во внеклеточном домене типа венериной мухоловки (Venus flytrap domain) вблизи Ca²⁺-связывающего сайта. Поскольку мишенью цинакальцета (cinacalcet), PAM для CaSR, является аллостерический сайт, локализованный в трансмембранном тоннеле рецептора, то он эффективно снимает ингибирующее воздействие аутоантител на CaSR и может быть использован для нормализации уровня кальция в крови при аутоиммунных формах гиперкальциемии [525].

Помимо влияния на связывающие характеристики рецепторов и их функциональную активность, ауто-GPCR-антитела могут влиять на перемещение рецепторов между внутриклеточными компартментами [493, 494]. В отличие от ортостерических агонистов и некоторых низкомолекулярных аллостерических модуляторов, ауто-GPCRантитела, индуцируя интернализацию рецептора, препятствуют его дальнейшей рециклизации, что в конечном итоге приводит к снижению числа рецепторов на поверхности клетки и ослабляет сигнальную трансдукцию. Это показано для аутоантител к хемокиновому рецептору CCR5 и mGlu₅R [519, 526, 527], причем процесс интернализации происходит существенно медленнее, чем при активации рецепторов эндогенными агонистами.

Для изучения функциональной активности и механизмов действия циркулирующих в крови ауто-GPCR-антител и для создания новых аутоантител с целью разработки селективных GPCR-зондов и изучения потенциальной патогенетической роли ауто-GPCR-антител в развитии заболеваний широко применяют синтетические пептиды, соответствующие функционально важным внеклеточ-

ным сегментам рецепторов, а также выработанные к ним моноклональные антитела. Этот подход еще в 1990-е годы был успешно использован для получения и дальнейшего исследования аутоантител к β₁-и β₂-AR, играющих ведущую роль в развитии кардиомиопатии и других сердечно-сосудистых патологий. В результате изучения большого числа аутоантител было установлено, что у пациентов с кардиомиопатией и болезнью Чагаса эпитоп, на который вырабатывались ауто- β_1 -AR-антитела, включает короткий фрагмент 201-205 ECL2, у пациентов с послеродовой кардиомиопатией – фрагмент 200-210 ECL2, у пациентов с дилатационной кардиомиопатией взаимоперекрывающиеся фрагменты 183–208, 197–202, 206–212 и 213–218, соответствующие ECL2 и внеклеточному окончанию ТМ4 [500, 528, 529]. В дальнейшем с помощью циклических пептидов, по первичной структуре и пространственной организации соответствующих ECL2 рецептора, было показано, что ключевым эпитопом для выработки "патогенных" аутоантител к β₁-AR у пациентов с кардиомиопатией, является короткий сегмент 211-214, локализованный в С-концевой части обратно ориентированной αспирали, образуемой ECL2. При взаимодействии ауто- β_1 -AR-антител с этим сегментом происходит нейтрализация отрицательно заряженного остатка Asp²¹², что приволит к стабилизании активной конформации рецептора и опосредует свойства аутоантител, как аллостерических агонистов [530]. В экспериментах с грызунами включающие эти сегменты циклические пептиды, структурно подобные ECL2 β_1 -AR, оказывали кардиопротекторный эффект, защищая животных от патогенного воздействия ауто-β₁-AR-антител [530–532].

Нами для изучения функциональной роли меланокортиновых рецепторов в развитии метаболических расстройств и выяснения потенциальных детерминант, мишеней аутоантител, были синтезированы конъюгаты пептидов, соответствующих различным внеклеточным участкам MC_3R и MC_4R . В результате было показано, что многократная, на протяжении года, иммунизация крыс с помощью БСА-конъюгата пептида 11-25, соответствующего внеклеточному N-концевому домену MC₄R, и БСА-конъюгата пептида 269-280, соответствующего ECL3 MC₃R, приводила к значимым метаболическим и гормональным изменениям, характерным для метаболического синдрома [533-535]. Выбор указанных участков основывался на результатах экспериментальных и клинических исследований аутоантител к MC_3R и MC_4R , которые были проведены ранее группой швейцарских ученых под руководством Karl Hofbauer [536-538]. Иммунизация пептидом 11-25 приводила к повышению массы тела и жировой ткани и уровней глюкозы и инсулина в крови, нарушению толерантности к глюкозе, инсулиновой резистентности, отчетливо

выраженной дислипидемии [533], а также индуцировала гипотиреоидное состояние [535]. В свою очередь, иммунизация пептидом 269—280 вызывала значительное повышение массы жировой ткани при относительно небольшом изменении общей массы тела, что указывает на жировое перерождение мышечной ткани. У иммунизированных этим пептидом крыс отмечали повышение индекса атерогенности, гиперглицеридемию, инсулиновую резистентность, а также снижение продукции тиреоидных гормонов, что указывает на развитие метаболического синдрома с признаками гипотиреоидного состояния [534].

VIII. СИНТЕТИЧЕСКИЕ АЛЛОСТЕРИЧЕСКИЕ РЕГУЛЯТОРЫ GPCR

Разработка новых аллостерических регуляторов GPCR является одним из магистральных направлений в фармакологии. Для значительного числа GPCR имеется большое число различных по химической природе и механизмам действия аллостерических регуляторов с различной фармакологической активностью. Одни из них действуют на сайты, включающие ECLs и внеклеточный вестибюль трансмембранного тоннеля рецептора, другие проникают внутрь этого тоннеля и специфично связываются с аллостерическими сайтами, локализованными в трансмембранном домене, в то время как третьи сначала преодолевают плазматическую мембрану и в дальнейшем специфично взаимодействуют с аллостерическими сайтами, локализованными в ICLs и во внутриклеточном преддверии трансмембранного тоннеля. Структурно аллостерические регуляторы обычно представляют собой небольшие органические молекулы, как правило, гетероциклической природы, которые могут иметь гидрофильную или гидрофобную природу. Достаточно интересную группу аллостерических регуляторов представляют синтетические пептилы, в том числе те из них, которые по своей первичной структуре сходны с функционально важными участками GPCR или с участками внутриклеточных сигнальных белков (в первую очередь, G-белков и β-аррестинов), ответственных за взаимодействие с рецептором. Поскольку их мишенями чаще являются внутриклеточные участки GPCR, то для эффективного проникновения через мембрану и фиксации вблизи места взаимодействия с аллостерическими сайтами рецептора, такие пептиды должны быть модифицированы гидрофобными радикалами (остатками пальмитата, миристата и др.) или иметь поликатионную природу, что обеспечивает им эффективный транспорт через плазматическую мембрану.

В рамках этого обзора мы акцентируем внимание на синтетических аллостерических регуляторах рецепторов ТТГ и ЛГ/ХГЧ. Эти рецепторы относятся к GPCR подкласса A10 и отличаются от

ШПАКОВ

The single a cosopbin and introduced on the analysis of the single state of the single sing

Рецептор	Ссылка	Краткое описание
Мускариновые ацетилхолиновые рецепторы	[539]	Систематизированы данные по РАМ и аллостерическим агонистам для mACh ₁ R, а также по РАМ для mACh ₄ R и mACh ₅ R. Эти регуляторы могут применяться для лечения депрессии, шизофрении, привыкания, нейродегенератив- ных заболеваний, двигательных расстройств, нейропатиче- ской боли и ряда других дисфункций ЦНС
Мускариновые ацетилхолиновые рецепторы	[425]	Проанализированы данные по структуре и механизмам дей- ствия аллостерических регуляторов различных типов mAChR, включая PAM, а также по битопным лигандам, вза- имодействующим как с аллостерическими, так и с ортосте- рическими сайтами рецепторов. Эти регуляторы могут применяться для лечения неврологических расстройств, болезни Альцгеймера, сахарного диабета 2-го типа
Мускариновые ацетилхолиновые рецепторы	[540]	Проанализированы результаты исследований аллостериче- ских регуляторов mACh ₁ R, mACh ₄ R и mACh ₅ R, обсуждены перспективы их применения для лечения привыкания к алкоголю и психотропным препаратам
Мускариновые ацетилхолиновые рецепторы	[422]	Представлены данные об аллостерической регуляции активности mAChR с помощью холестерина, нейростерои- дов, стероидных гормонов, включая их синтетические ана- логи, а также о механизмах их действия и локализации аллостерических сайтов
Метаботропные глутаматные рецепторы	[541]	Представлены данные по РАМ, NAM и SAM для различных классов mGluR, обсуждаются механизмы их действия, взаимоотношения структура-активность, а также терапевтический потенциал при лечении тревожности, депрессии, шизофрении, болезни Паркинсона и синдрома Мартина-Белл (Fragile X syndrome)
Метаботропные глутаматные рецепторы	[539]	Систематизированы данные по РАМ и NAM для mGluR1, mGluR2, mGluR5, по РАМ для mGluR4, по NAM для mGluR3 и mGluR7, по аллостерическим агонистам для mGluR7 и mGluR8. Эти регуляторы могут применяться для лечения депрессивных состояний, привыкания, нейропати- ческой боли, мигрени, шизофрении и ряда других невроло- гических расстройств
Метаботропные глутаматные рецепторы	[542]	Обобщены и проанализированы данные о NAM для mGluR5, обсуждается подходы для их дизайна, терапевтический потенциал этих соединений при лечении глутаматассоциированных нейродегенеративных и неврологических заболеваний
Метаботропные глутаматные рецепторы	[543]	Проанализированы данные о дизайне и соотношении структура-активность аллостерических регуляторов для раз- личных типов mGluR, а также информация о локализации и пространственной структуре сайтов их связывания

Таблица 2. Продолжение

Рецептор	Ссылка	Краткое описание
Метаботропные глутаматные рецепторы	[544]	Описаны свето-регулируемые аллостерические лиганды для различных типов метаботропных глутаматных рецепторов, а также показана их роль в установлении механизмов дей- ствия аллостерических регуляторов mGluR и в определении локализации аллостерических сайтов
Серотониновые рецепторы	[462]	Описаны структура и фармакологические свойства низко- молекулярных синтетических РАМ и NAM для 5 -HT _{1A} R, 5-HT _{2A} R, 5 -HT _{2B} R и 5 -HT _{2C} R, в сравнении с таковыми эндогенных аллостерических модуляторов. Рассмотрены перспективы их применения для лечения шизофрении и других неврологических расстройств
Дофаминовые рецепторы	[462]	Описаны структура и фармакологические свойства низкомо- лекулярных синтетических РАМ и NAM для D ₁ -, D ₂ -, D ₃ - и D ₄ -дофаминовых рецепторов, в сравнении с гомоцистеином и другими эндогенными аллостерическими их модуляторами
Дофаминовые рецепторы	[545]	Обобщены данные о механизмах действия и соотношении структура-активность для аллостерических модуляторов D ₂ -дофаминовых рецепторов, а также приведена информа- ция об их терапевтическом потенциале при лечении болезни Паркинсона, шизофрении и некоторых других нев- рологических расстройств
Опиоидные рецепторы	[546]	Представлены новые стратегии для создания аллостериче- ских модуляторов опиоидных рецепторов, в основном µ- типа, которые позволяют усилить противоболевые эффекты опиатов при ослаблении их побочных эффектов
Каннабиноидные рецепторы	[547]	Проанализированы свойства и механизмы действия алло- стерических регуляторов CB_1R , таких как хорошо зареко- мендовавшие себя ORG27569, PSNCBAM-1 и их производные, а также некоторых новых соединений, обсуждены перспективы их применения для купирования боли, голода, снижения зависимости к наркотикам, а также при лечении нейродегенеративных заболеваний
Каннабиноидные рецепторы	[548]	Обобщены данные по структуре, активности и локализации сайтов связывания для аллостерических регуляторов CB_1R и CB_2R , показано отсутствие их существенного влияния на десенситизацию и толерантность рецепторов, характерные для лигандов ортостерического сайта, а также продемон- стрированы предвзятость внутриклеточного сигналинга и высокая селективность аллостерических регуляторов кан- набиноидных рецепторов
Каннабиноидные рецепторы	[549]	Проанализированы механизмы влияния аллостерических модуляторов на предвзятость внутриклеточного сигналинга, осуществляемого через CB ₁ R, оценены перспективы использования таких модуляторов в таргетном лечении неврологических и психиатрических расстройств

Таблица 2. Продолжение

Рецептор	Ссылка	Краткое описание
Каннабиноидные рецепторы	[550]	Представлены новые данные по структуре аллостерических регуляторов CB ₁ R и CB ₂ R, а также по структуре и локализа- ции их аллостерических сайтов
Адренергические рецепторы, опиоидные рецепторы	[551]	Проанализировано перекрестное влияние различных алло- стерических регуляторов адренергических и опиоидных рецепторов, позволяющее оптимизировать терапевтические эффекты агонистов этих рецепторов, обобщены механизмы такого влияния, в основе которых лежит образование функ- ционально активных гетеродимерных комплексов. Приме- нение смесей регуляторов адренергических и опиоидных рецепторов позволит существенно расширить терапевтиче- ский потенциал их действия, что важно для предотвраще- ния толерантности к агонистам этих рецепторов и лечения заболеваний нервной и сердечно-сосудистой систем
5-HTR, mAChR, опиоидные рецепторы	[552]	Проанализирована структура и механизмы действия алло- стерических регуляторов различных типов 5-HTR, mAChR и опиоидных рецепторов на моторику желудочно-кишеч- ного тракта
mAChR, mGluR, CB ₁ R, GLP1R	[553]	Рассмотрены аллостерические модуляторы, которые кова- лентно, за счет реакционноспособных групп, присоединя- ются к аллостерическим сайтам различных GPCR, что позволяет определить локализацию и структурную органи- зацию этих сайтов и исследовать механизмы действия алло- стерических модуляторов
mGluR, GABA _B R	[554]	Подробно обсуждаются новые аллостерические модуля- торы mGluR и GABA _B R, которые стабилизируют образова- ние ди- и олигомерных комплексов, что необходимо для полноценной активации G-белков и β-аррестинов и обес- печения предвзятости внутриклеточного сигналинга. Это обеспечивается при взаимодействии таких модуляторов с аллостерическими сайтами, локализованными в области контактов между протомерами
Аденозиновые рецепторы	[555]	Представлены новые данные о структуре и эффективности аллостерических модуляторов A _{2A} R, обсуждается их роль в коррекции воспалительных процессов, неврологических расстройств, когнитивного дефицита, режима сон-бодр- ствование, проанализированы преимущества этих модуля- торов над агонистами и антагонистами ортостерического сайта A _{2A} R
Аденозиновые рецепторы	[556]	Обобщены и проанализированы данные об аффинности, эффективности и кооперативности аллостерических моду- ляторов A ₁ R, обсуждаются их терапевтический эффект для лечения миокардиальных нарушений при ишемии-репер- фузии, эпилепсии, нейропатической боли, а также приме- нение таких модуляторов для улучшения когнитивных функций

Таблица 2. Окончание

Рецептор	Ссылка	Краткое описание
Рецептор нейропептида S, MC ₄ R	[557]	Проанализированы фармакологические характеристики аллостерических антагонистов, аллостерических инверси- онных агонистов и NAM для MC_4R и рецептора нейропеп- тида S, как препаратов для контроля аппетита, а также неврологических расстройств, обусловленных потребле- нием психоактивных соединений
Ангиотензиновые рецепторы	[558]	Основываясь на структурных характеристиках AT_1R и AT_2R , продемонстрированы локализация и функциональное значение в них аллостерических сайтов, приведены сведения об аллостерических регуляторах этих рецепторов и механизмах их действия, а также оценен их терапевтический потенциал
GLP1R	[559]	Проанализированы дизайн, структура и эффективность непептидных аллостерических агонистов и РАМ для GLP1R, обусловленная ими предвзятость внутриклеточного сигналинга, механизмы взаимодействия аллостерических и ортостерических регуляторов GLP1R, а также перспективы применения аллостерических регуляторов GLP1R для лече- ния сахарного диабета 2-го типа и других метаболических расстройств
Рецепторы свободных жирных кислот	[117]	Представлены результаты по эффективности и фармаколо- гическому профилю аллостерических регуляторов рецепто- ров FFAR-семейства, таких как FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), FFAR4 (GPR120), GPR84, обсуждаются перспективы их применения для лечения метаболических, инфекционных, эндокринных и сердечно- сосудистых заболеваний
Рецептор свободных жирных кислот GPR40	[560]	Представлены данные о специфической активности и меха- низмах действия аллостерических регуляторов (РАМ, ago- РАМ) рецептора длинноцепочечных жирных кислот GPR40, которые могут быть эффективны при лечении метаболических расстройств, включая сахарный диабет 2-го типа
5-HT _{2C} R	[561]	Обсуждаются РАМ для 5-HT _{2C} R и их терапевтический потенциал для нормализации пищевого поведения и лечения ожирения и других метаболических расстройств, делается акцент на безопасности применения этих модуляторов в сравнении с ортостерическими 5-HT _{2C} R-агонистами
Рецептор N-формилпептида	[562]	Описана роль пептидов, производных сывороточного ами- лоидного белка SAA (single serum amyloid A (SAA) protein), как аллостерических модуляторов рецептора N-формил- пептида FPR2, в том числе в контроле миграции нейтрофи- лов и моноцитов
Окситоциновый рецептор, его гетерокомплексы	[563]	Обсуждаются аллостерические модуляторы, которые вли- яют на активность окситоцинового рецептора посредством регуляции его гомодимеризации и гетеродимеризации с другими GPCR (D_2 -дофаминовым рецептором, 5- $HT_{2A}R$, 5- $HT_{2C}R$). Анализируются общие принципы влияния алло- стерических регуляторов на комплексообразование GPCR

большинства других представителей класса А наличием значительного по объему эктодомена, в котором локализован высокоаффинный ортостерический сайт для связывания гликопротеиновых гормонов. Оба рецептора имеют исключительно важное значение для функционирования тиреоидной и репродуктивной систем и вовлечены в патогенез большого числа заболеваний. Выбор этих рецепторов обусловлен тем, что нами, в лаборатории молекулярной эндокринологии и нейрохимии Института эволюционной физиологии и биохимии им. И.М. Сеченова, на протяжении более десяти лет проводится разработка как низкомолекулярных (на основе структуры тиенопиримидина), так и пептидных (на основе структуры ICL3) аллостерических регуляторов рецепторов ТТГ и ЛГ/ХГЧ. По другим классам GPCR имеется большое число исчерпывающих обзоров и аналитических статей, наиболее значимые из которых представлены в табл. 2.

Следует отметить, что, несмотря на несколько тысяч синтезированных в настояшее время аллостерических регуляторов для более чем 80 типов GPCR, наделенных специфической биологической активностью, число тех из них, которые одобрены для клинического применения или находятся на заключительных стадиях клинических испытаний, сравнительно невелико [185]. Это во многом обусловлено тем, что требуются более длительные, чем в случае ортостерических лигандов, исследования фармакологического профиля аллостерических регуляторов, с учетом большого диапазона их регуляторных эффектов, в том числе в отношении GPCR, стимулированных ортостерическими агонистами. К тому же начало эры разработки и внедрения аллостерических регуляторов по времени существенно отстает от начала эры лигандов ортостерических сайтов GPCR, в среднем на 30-40 лет, что и определяет существенное отставание рынка аллостерических регуляторов GPCR.

В настоящее время, согласно данным базы аллостерических регуляторов (Allosteric Database, http://mdl.shsmu.edu.cn/ASD), только четыре препарата одобрены для клинического применения в соответствии с принципами FDA (U.S. Food and Drug Administration) [564]: препарат Cinacalcet, РАМ для кальций-чувствительного рецептора CaSR, который применяется для нормализации уровня кальция в крови пациентов с гиперпаратиреоидизмом [565, 566]; препарат Ticagrelor, NAM для P2Y₁₂-пуринергического рецептора, используемый для лечения инсульта и острого коронарного синдрома [567, 568]; препарат Ivermectin, РАМ для GABA_BR, который обладает антибактериальными и противовирусными свойствами, в том числе будучи эффективным при лечении малярии [569, 570]; препарат Avacopan, NAM для хемокинового рецептора C5aR1, предназначенный для лечения васкулитов, ассоциированных с цитоплазматическими антителами к нейтрофилам [571–573]. Целая серия NAM для mGluR5, а также препарат Vercirnon, NAM для хемокинового рецептора CCR9, находятся на третьей стадии клинических испытаний [185].

IX. РЕЦЕПТОР ТИРЕОТРОПНОГО ГОРМОНА И ЕГО АЛЛОСТЕРИЧЕСКИЕ РЕГУЛЯТОРЫ

9.1. Структурно-функциональная организация рецептора ТТГ, механизмы его активации и сигнальные каскады

ТТГ, эндогенный агонист рецептора ТТГ, относится к семейству гликопротеиновых гипофизарных гормонов, к которому также принадлежат гонадотропины. ТТГ и гонадотропины состоят из одинаковой по первичной структуре α-субъединицы, кодируемой одним геном, и структурно различных β-субъединиц, которые, тем самым, определяют тип гормона. В мономерном состоянии β-субъединица (118 AKO) лишена активности и способна взаимодействовать с рецептором ТТГ, только находясь в комплексе с α-субъединицей, включающей 92 АКО, в том числе 10 остатков цистеина, образующих дисульфидные связи. В ходе посттрансляционного процессинга β-субъединица подвергается ограниченному протеолизу, укорачиваясь до 112 АКО, после чего в процессе N-гликозилирования модифицируется отрицательно заряженными N-гликанами по остатку Asn²³ в молекуле β -субъединицы и по остаткам Asn⁵² и Asn⁷⁸ в молекуле α-субъединицы [574].

Рецептор ТТГ, наряду с рецепторами гонадотропинов, релаксина и инсулиноподобного пептида-3, формирует подкласс A10 класса A GPCR или, по другой классификации, относится к группе б GPCR. Отличительными особенностями рецептора ТТГ являются значительный по размеру эктодомен (около 400 АКО), в котором локализован ортостерический сайт. Эктодомен может быть разделен на субдомен, сформированный 11 повторяющимися участками, обогащенными остатками лейцина (leucine-rich repeats, LRR), и шарнирную область (hinge region), обогащенную цистеином, выполняющую функции спейсера, соединяющего LRRсубдомен с трансмембранным доменом [575]. По аминокислотной последовательности и некоторым структурным особенностям трансмембранный домен рецептора ТТГ близок таковому β_2 -AR, хотя при сравнении пространственной структуры трансмембранных доменов этих рецепторов выявляются существенные различия. Наиболее значимое из них обусловлено тем, что в ТМ5 рецептора ТТГ в позиции 5.50 локализован остаток Ala⁵⁹³, в то время как в β_2 -AR и в других GPCR класса A в этой позиции расположен остаток пролина, который изгибает TM5 и скручивает ее по направлению к

ECL2. Замена спиралеразрушающего остатка пролина на аланин в рецепторе ТТГ приводит к стабилизации ТМ5 в α-спиральной конформации и предотвращает излом этого участка [576, 577]. Еще одной структурной особенностью рецептора ТТГ является локализация остатка метионина в положении 637 в TM6 (6.48), где в большинстве GPCR располагается остаток триптофана. Замена метионина на триптофан способствует стабилизации конституитивно активированного состояния рецептора ТТГ [578]. Анализ аминокислотных замен показывает, что наиболее важными для функциональной активности являются взаимодействия между ТМ5 и ТМ6 и между ТМ3 и ТМ5, поскольку их нарушение вызывает критические изменения базальной активности рецептора и способствуют его переходу в гиперактивированное состояние, что ассоциировано как с гиперстимуляцией синтеза тиреоидных гормонов, так и с повышением онкогенного потенциала, вызванного неконтролируемой стимуляцией ТТГ-зависимых внутриклеточных каскадов [579].

Эндогенными регуляторами рецептора ТТГ, наряду с самим гормоном, являются специфичные к рецептору ТТГ аутоантитела и тиростимулин, взаимодействующие с LRR-субдоменом и шарнирной областью эктодомена [580, 581]. Определяющую роль в связывании ТТГ и других эндогенных регуляторов играет сульфатированный остаток Tyr³⁸⁵ в С-концевом сегменте шарнирной области [582, 583]. Результатом связывания ТТГ с рецептором являются изменения взаимодействия между Сконцевой спиралью LRR-субдомена и сближенными с ней N-и C-концевыми участками шарнирной области [584]. Некоторые аминокислотные остатки LRR-субдомена, например, Ser²⁸¹, локализованный в короткой α-спирали на стыке между LRRсубдоменом и шарнирной областью, могут непосредственно взаимодействовать с ECLs, передавая сигнал на G-белки или β-аррестины без участия шарнирной области [585, 586]. Изменение конформации эктодомена при связывании рецептора ТТГ с гормоном влечет за собой волну конформационных перестроек в трансмембранном домене, что выражается в изменении взаимодействий и углов наклона TM3, TM5 и TM6, причем в этом участвуют как локализованные в этих ТМ гидрофобные АКО (Val^{509(3.40)}, Ala^{593(5.50)} и Met^{637(6.48)}), так и гидрофильные остатки, такие как Lys660 на границе TM6 и ECL3, Asp⁴⁷⁴ на границе ECL1 с TM2, Glu⁴⁰⁹ на границе между шарнирной областью и TM1, а также Asp⁶³³ (TM6) и Asn⁶⁷⁰ (TM7), расположенные в центральной части трансмембранного ломена.

Результатом изменения конформации трансмембранного домена является активация различных типов G-белков, сопряженных с рецептором TTГ, в первую очередь G_{s} - и $G_{q/11}$ -белков, опосредующих стимуляцию АЦ и РLСВ, соответственно, а также запуск β-аррестин-опосредуемого сигналинга. Соотношение сигнальных каскадов (предвзятость сигналинга) определяется как изоформами ТТГ, что обусловлено степенью и паттерном Nгликозилирования α- и β-субъединиц гормона, микроокружением рецептора и эндогенными аллостерическими регуляторами (ионы, липиды). При этом расположенные в трансмембранном домене рецептора ТТГ сайты в процессе его активации недоступны для ортостерических лигандов и выполняют функции аллостерических сайтов, не перекрывающихся с внеклеточным ортостерическим сайтом. Соответственно, одной из актуальных задач является создание лигандов этих аллостерических сайтов с различной фармакологической активностью. Это рассматривается как крайне важный подход для регуляции ТТГ-зависимых сигнальных каскадов. В этой связи необходимо отметить, что ТТГ и другие эндогенные регуляторы рецептора ТТГ практически не используются в медицине, что связано с их онкогенным потенциалом и другими побочными эффектами, а также с низкой стабильностью, иммуногенностью и высокой стоимостью [587]. При этом отсутствуют фармакологически релевантные антагонисты и инверсионные агонисты рецептора ТТГ, а также ортостерические лиганды с предвзятой активностью в отношении внутриклеточного сигналинга. Создание таких регуляторов возможно только на основе лигандов аллостерических сайтов, локализованных внутри трансмембранного тоннеля рецептора ТТГ или в его ICLs, по аналогии с соответствующими лигандами других GPCR.

9.2. Регуляторы трансмембранного аллостерического сайта рецептора тиреотропного гормона

Аллостерические агонисты рецептора ТТГ

Первые аллостерические регуляторы рецептора ТТГ были открыты в 2006 г. в ходе изучения тиено[2,3-d]-пиримидиновых производных Org41841, Org43553 и их аналогов, часть из которых проявили активность аллостерических агонистов рецептора ЛГ/ХГЧ [155]. Было показано, что трансмембранные аллостерические сайты в рецепторах ТТГ и ЛГ/ХГЧ, как и их трансмембранные домены, имеют струкутурное сходство. Это имело как позитивный аспект, поскольку облегчало конструирование аллостерических регуляторов рецепторов ТТГ и ЛГ/ХГЧ, но одновременно с этим создало проблему разработки лигандов, селективных по отношению к каждому из этих рецепторов. Решая эту проблему, Gershengorn и соавт. исследовали фармакологическую значимость каждой функциональной группы, присутствующих в соединениях Org41841 и Org43553 и их аналогах. В результате было показано, что метилирование аминогруппы, связанной с

тиено[2,3-d]-пиримидиновым остовом, лишает такое производное способности активировать рецептор ТТГ, что было обусловлено нарушением взаимодействия с функционально важным для активности рецептора остатком Glu(3.37) [588]. При изучении трет-бутиламидной группы, присоединенной к тиенопиримидиновому остову, было установлено, что метилирование амидного азота не влияет на способность такого производного активировать рецептор ЛГ/ХГЧ, но лишает его способности стимулировать рецептор ТТГ, в то время как замена в этой группе азота на кислород слабо влияет на агонистическую активность в отношении рецептора ТТГ, хотя полностью лишает его способности активировать рецептор ЛГ/ХГЧ [155].

Значительный прогресс в разработке низкомолекулярных агонистов рецептора ТТГ был достигнут после построения модели его трансмембранного аллостерического сайта [588], которая впоследствии была усовершенствована [589-592]. Этот сайт образован АКО, локализованными в ТМЗ, TM4, TM5, TM6 и TM7, а внешний вход в него формируют сегменты ECL2. Следует, однако, отметить, что в трансмембранном домене рецептора ТТГ может быть не один, а два или более аллостерических сайтов, что хорошо соответствует парадигме множественности трансмембранных аллостерических сайтов в GPCR класса А [116] и в целом согласуется с данными Rauf Latif и соавторов о существовании, по крайней мере, еще одного сайта, образуемого TM1, TM2, TM3 и TM7 и сегментами внеклеточных петель рецептора ТТГ [592, 593].

В отличие от рецептора ЛГ/ХГЧ, вход в трансмембранный аллостерический сайт в рецепторе ТТГ более узкий и включает гидрофобные АКО, расположенные в интерфейсах TM4/ECL2, ECL2/TM5 и TM6/ECL3. С помощью молекулярного докинга было показано, что определяющую роль в агонистической активности низкомолекулярных соединений играет остаток Met^{637(6.48)}, который в большинстве других рецепторов, родственных рецептору ТТГ, заменен на остаток триптофана. Так полный агонист Org41841 меньше по размеру, чем наделенное антагонистической активностью соединение с52, и потому после проникновения в трансмембранный аллостерический сайт рецептора ТТГ соединение Org41841 способно более эффективно взаимодействовать с Met⁶³⁷. В свою очередь, соединение с52 с помощью своего длинного бокового заместителя в ароматическом кольце цепляется за остаток Туг⁶⁶⁷, локализованный в ТМ7, и тем самым не может достичь остатка Met⁶³⁷, результатом чего является стабилизация неактивной конформации рецептора ТТГ [589].

Основываясь на результатах исследования пространственной организации трансмембранного аллостерического сайта, в 2009—2011-х гг. была разработана серия низкомолекулярных полных аго-

нистов рецептора ТТГ, наибольшей активностью среди которых характеризовались соединения NC-GC00168126-01 и NCGC00165237-01, производные 5-гидрокси-4-оксо-1,2,3,4-тетрагидрохиназолина [594-596] (табл. 3). В культурах клеток с экспрессированным в них рецептором ТТГ эти соединения повышали уровень цАМФ со значениями ЕС₅₀ 660 и 40 нМ, соответственно, по эффективности были сопоставимы с ТТГ и практически не влияли на активацию АЦ гонадотропинами в клетках с экспрессированным в них рецептором ЛГ/ХГЧ [594, 595]. Оба соединения взаимодействовали с трансмембранным аллостерическим сайтом и не связывались с эктодоменом рецептора ТТГ, поскольку в клетках с экспрессированным мутантным рецептором, лишенным эктодомена, их максимальный стимулирующий АЦ эффект сохранялся, хотя значения ЕС₅₀ заметно повышались. В то же время, замена локализованного в TM5 остатка Asn^(5.47), образующего водородную связь с гидроксилами 5-гидрокси-4-оксо-1,2,3,4-тетрагидрохиназолинов, на аланин полностью блокировала стимулирующий эффект NCGC00165237-01 на активность АЦ. Интересно отметить, что стимулирующий эффект ТТГ на уровень цАМФ внутри клетки при этом сохранялся. Тем самым АКО, формирующие трансмембранный аллостерический сайт рецептора ТТГ, критичны для его активации низкомолекулярными агонистами, но слабо или вовсе не влияют на его активацию ТТГ, который связывается с внеклеточным ортостерическим сайтом [594].

Соединение NCGC00165237-01 (30 мкМ) при 24-часовой инкубации с тироцитами человека повышало экспрессию тиреоглобулина сходно с тем, как это происходило при обработке клеток с помощью ТТГ. Оно также повышало экспрессию генов, кодирующих тиреопероксидазу, Na⁺/I⁻-симпортер и D2-дейодиназу, вовлеченные в синтез и конверсию тиреоидных гормонов - тироксина (Т4) и трийодтиронина (T3), причем в случае D2-дейодиназы повышалась не только экспрессия гена, но и активность фермента, что ускоряло превращение Т4 в ТЗ [594]. При внутрибрюшинном и пероральном введении мышам соединение NCGC00165237-01 значительно повышало уровень Т4 в крови, а также увеличивало поглощение радиоактивного йода тироцитами щитовидной железы у крыс, что обусловлено стимуляцией экспрессии генов тиреоидогенеза [594]. В этой связи необходимо отметить, что в настоящее время для диагностики метастаз и рецидивов рака щитовидной железы у пациентов используют стимуляцию поглощения ¹³¹I с помощью рекомбинантного ТТГ человека [611]. Однако из-за сравнительно низкой аффинности связывания рекомбинантного ТТГ с рецептором требуются высокие дозы этого дорогостоящего препарата, его введение возможно только парентерально и

ограничено значимыми побочными эффектами. В связи с этим низкомолекулярные аллостерические агонисты, в том числе с учетом возможности их перорального введения, могут стать хорошей альтернативой рекомбинантному ТТГ, как стимуляторы поглощения радиоактивного йода [612].

Аллостерические агонисты способны активировать мутантные формы рецептора ТТГ, которые имеют замены функционально важных аминокислот во внеклеточном ортостерическом сайте и потому нечувствительны к ТТГ [597]. Так, низкомолекулярный агонист С2 стимулировал АЦ и повышал уровень цАМФ в клетках с экспрессированными в них мутантными формами рецептора ТТГ, имеющих замены локализованных в эктодомене остатков Cys⁴¹ или Leu²⁵² на серин и пролин, соответственно, в то время как ТТГ в этом случае был неактивен. Напротив, замена остатка Leu⁴⁶⁷ на пролин в трансмембранном аллостерическом сайте блокировала стимулирующее влияние соединения С2 на активность АЦ, хотя при этом слабо влияла на соответствующий эффект ТТГ [597]. Эти данные указывают на то, что аллостерические агонисты могут быть эффективны при субклиническом гипотиреозе, причиной которого часто является резистентность тироцитов к ТТГ вследствие инактивирующих мутаций в эктодомене рецептора ТТГ.

Исследование избирательности аллостерических агонистов рецептора ТТГ позволило выявить соединения, которые либо активировали G_s-белки, стимулируя АЦ, повышая уровень цАМФ в клетке-мишени и активируя протеинкиназу А, как это показано для соединения MS438, либо активировали G_{q/11}-белки, повышая активность PLCβ и ее нижележащего эффектора – протеинкиназы С, как это продемонстрировано для соединения MSq1 [592, 593]. Для соединения MSq1 показано, что в отличие от активаторов G_s-белков оно не влияет на цАМФ-зависимые сигнальные пути и на опосредуемую через них экспрессию генов тиреоидогенеза, но при этом повышает фосфорилирование протеинкиназы С и модулирует пролиферативную активность тироцитов [593]. При этом выявлены аналоги указанных соединений, способные в одинаковой степени стимулировать различные типы сопряженных с рецептором ТТГ G-белков (G_s, $G_{a/11}, G_{12/13}$) и зависимых от них внутриклеточных путей [592]. В случае предвзятого сигналинга показано различие в паттерне АКО, локализованных в трансмембранном домене и критически важных для взаимодействия с низкомолекулярными агонистами, что косвенно указывает на наличие в трансмембранном тоннеле более чем одного аллостерического сайта.

Нами разработан и исследован *in vitro* и *in vivo* аллостерический агонист рецептора ТТГ — 5-амино-4-(4-(1-бензил-1Н-1,2,3-триазол-4-ил)фенил)-*N*-(*mpem*-бутил)-2-(метилтио)тиено[2,3-d]-пиримидин-6-карбоксамид (ТРҮ3m) [598] (табл. 3). При инкубации с культивируемыми FRTL-5-тироцитами соединение ТРҮЗт стимулировало экспрессию гена Na⁺/I⁻-симпортера. При внутрибрюшинном введении крысам оно повышало уровень Т4 в крови, а в ткани щитовидной железы усиливало экспрессию генов тиреопероксидазы и D2-дейодиназы, ключевых ферментов синтеза Т4 и его конверсии в Т3. При совместном введении с ТТГ (*in vitro*, клетки FRTL-5) или тиролиберином (in vivo, щитовидная железа крыс) соединение ТРУЗт предотвращало вызываемое ими снижение экспрессии рецептора ТТГ, что может быть одним из механизмов ТРУ3т-опосредуемого потенцирования эффектов ТТГ (*in vitro*) и тиролиберина (*in vivo*) на продукцию Т4 и Т3. Соединение ТРУ3т не оказывало влияния на уровень тестостерона и экспрессию генов тестикулярного стероидогенеза при введении самцам крыс, что свидетельствует в пользу его специфичности в отношении рецептора ТТГ. Тем самым ТРУ3т является прототипом препарата для коррекции функций щитовидной железы при субклиническом гипотиреозе, в том числе, обусловленном резистентностью к ТТГ [598].

Позитивные аллостерические модуляторы рецептора тиреотропного гормона

Помимо функционирования в качестве тиреоидогенного гормона, действующего на фолликулярные клетки щитовидной железы, ТТГ также влияет на ряд других тканей, в первую очередь, на формирование костной ткани и ремоделирование скелета, вследствие чего ослабление сигнальных путей ТТГ самым непосредственным образом сказывается на физиологическом состоянии опорно-двигательного аппарата. В условиях дефицита ТТГ или снижения функциональной активности его рецептора нарушается остеобластогенез, индуцируются дефекты формирования костной ткани, происходит ее потеря, что, в конечном итоге, ведет к остеопорозу [613]. Терапия рекомбинантным ТТГ препятствует этим процессам, но длительное введение препарата, даже в сравнительно низких дозах, может вызвать нарушения тиреоидной функции и повышает риск развития ТТГ-зависимых опухолей, как тиреоидной, так и нетиреоидной локализации [614]. Применение аллостерических полных агонистов рецептора ТТГ в этом случае предпочтительнее, поскольку они действуют на ТТГ-регулируемые внутриклеточные каскады не столь интенсивно, как ТТГ, но риски и в этом случае сохраняются. Одним из путей решения проблемы является разработка низкомолекулярных РАМ для рецептора ТТГ, которые сами не способны активировать рецептор ТТГ, но в небольшой степени повышают эффекты гормона, что позволяет функционально компенсировать физиологическое снижение уровня ТТГ в крови.

Таблица 3. Аллостерические	регуляторы рецептора ТТГ
----------------------------	--------------------------

Фармакологическая активность	Соединения	Биологический эффект	Ссылки
Аллостерические агонисты	Производные 5-гидрокси-4- оксо-1,2,3,4-тетрагидрохина- золина (NCGC00168126–01, NCGC00165237–01)	В культурах клеток стимулируют экс- прессированный в них рецептор ТТГ, повышают внутриклеточный уро- вень цАМФ, в культуре тироцитов стимулируют экспрессию и актив- ность ферментов тиреоидогенеза. При в/б и пероральном введении мышам NCGC00165237—01 стимули- рует экспрессию генов тиреоидоге- неза в щитовидной железе и повышает продукцию тиреоидных гормонов	[594–596]
	Соединение С2	Селективно стимулирует G _s -белки и АЦ в клетках с экспрессированным в них рецептором ТТГ, в том числе с инактивирующими мутациями в ортостерическом сайте	[597]
	Соединение MS438	Активируя рецептор ТТГ, селективно стимулирует G _s -белки и компоненты цАМФ-зависимого пути, усиливает тиреоидогенез в тироцитах.	[592, 593]
	Соединение MSq1	Активируя рецептор ТТГ селектив- но стимулирует G _{q/11} -белки и нижеле- жащие компоненты фосфоинозитид- ного пути, модулирует пролиферацию тироцитов, но не их тиреоидогенную активность	[592, 593]
	Тиено[2,3-d]-пиримидино- вое производное ТРҮ3т	Стимулирует активность АЦ в мем- бранах щитовидной железы крыс, стимулирует тиреоидогенез в куль- туре FRTL-5-тироцитов, усиливает базовую и тиролиберин-стимулиро- ванную продукцию тиреоидных гор- монов при в/б введении крысам	[598]
	Пепдуцин 612—627(Palm)	Стимулирует активность G _s -белков и АЦ в мембранах, выделенных из щитовидной железы крыс. При интраназальном введении крысам повышает у них продукцию тиреоид- ных гормонов	[599, 600]
PAM	NCGC00379308	Усиливает стимулирующие эффекты ТТГ на экспрессию остеопонтина и щелочной фосфатазы, вовлеченных в остеобластогенез, через β-аррестино- вые сигнальные пути, незначительно влияет на базальную экспрессию спе- цифичных для остеобластов генов	[601]

Таблица 3. Окончание

Фармакологическая активность	Соединения	Биологический эффект	Ссылки
	Coethine NIDDK/CEB 52		[602]
Аллостерические антагонисты	Cocdunence MIDDK/CEB-32	ТТЕ и аутоантител на активности АП	[002]
		TTT u ay roannaich na akrubhoerb AL,	
		прессию тена тиреопероксидазы в	
		почентором ТТГ В неботным в них	
		neur pruget up artupuorti neuen	
		Topa $\Pi\Gamma/X\Gamma\Psi$	
			[(02 (04]
	Производные 4-оксо-1,2-	в культуре ороитальных фиороола-	[603, 604]
	дигидрохиназолина	стов ингиоируют активацию АЦ и	
	(INCGC00242595,	продукцию гиалуроновой кислоты,	
	NCGC00242364)	вызываемых 111 и аутоантителами.	
		у мышеи подавляют стимулирован-	
		ную тиролиоерином продукцию	
		тиреоидных гормонов и экспрессию	
		ферментов тиреоидегенеза в тироци-	
		тах. влияние на оазальныи тиреоидо-	
		генез не выявлено	
	Тиено[2,3-d]-пиримидино-	Снижает ТТГ-индуцированную	[605]
	вое производное ТРҮ1	стимуляцию экспрессии генов тирео-	
		пероксидазы и тиреоглобулина в	
		тироцитах, при в/б введении крысам	
		снижает стимулированную тироли-	
		берином продукцию тиреоидных гор-	
		монов и экспрессию генов тиреоидо-	
		генеза, причем влияние на базовые	
		уровни Т4 и Т3 не выявлено	
Аллостерический антаго-	Соединение \$37а	Ингибирует активацию АЦ с помо-	[591, 606]
нист/NAM		щью ТТГ и стимулирующих аутоан-	
		тител. При пероральном введении	
		грызунам подавляет стимулирован-	
		ную тиролиберином продукцию	
		тиреоидных гормонов	
Аллостерические инверсион-	Производное 2,3-дигидрохи-	Подавляет как стимулированную	[607]
ные агонисты	назолин-4-она	ТТГ, так и базальную активность	
	NCGC00161856	рецептора ТТГ в клеточных культу-	
		рах с экспрессированным в них	
		рецептором ТТГ	
	Соединение NCGC00229600	Ингибирует стимулирующий эффект	[608, 609]
		антител на активность АЦ в культи-	
		вируемых тироцитах, а также подав-	
		ляет стимуляцию АЦ с помощью ТТГ	
		и аутоантител в ретроорбитальных	
		фибробластах пациентов с болезнью	
		Грейвса	
	Тиено[2,3-d]-пиримидино-	Снижает стимулированную тироли-	[605, 610]
	вое производное ТР48	берином продукцию Т4 и Т3 при вве-	
		дении крысам, в небольшой степени	
		снижает базовые уровни тиреоилных	
		гормонов в крови крыс	

Стимулирующее влияние ТТГ на остеобласты реализуется через путь, включающий рецептор ТТГ и β1-аррестин, активация которого приводит к стимуляции экспрессии специфичных для остеобластов генов, в том числе кодирующих остеопонтин и щелочную фосфатазу [615, 616]. Тем самым РАМ рецептора ТТГ, предназначенные для предотвращения остеопороза, должны иметь предвзятую активность в отношении β-аррестиновых каскадов. В результате скрининга большого числа потенциальных кандидатов было идентифицировано соединение NCGC00379308, производное 2-(1-пиперазинил)-4-хиназолинамина, которое повышало взаимодействие рецептора ТТГ с β1-аррестином, слабо влияя на активность G_s- и G_{q/11}-белков, причем по эффективности усиления транслокации β1-аррестина к рецептору оно в 5 раз превосходило ТТГ [601] (табл. 3). Соединение NCGC00379308 практически не влияло на экспрессию генов остеопонтина и щелочной фосфатазы, но в значительной степени усиливало ее ТТГ-индуцированную стимуляцию. При сочетанном воздействии ТТГ с NCGC00379308 экспрессия генов остеопонтина и щелочной фосфатазы повышалась в 5.5 и 1.6 раза соответственно. Наряду с этим при инкубации проостеобласт-подобных клеток с соединением NCGC00379308 отмечали потенцирование стимулирующего эффекта ТТГ на секрецию белка остеопонтина, контролирующего процесс остеобластогенеза. Тем самым соединение NCGC00379308 по своему фармакологическому профилю может быть отнесено к РАМ для рецептора ТТГ с предвзятым действием в отношении активации β-аррестиновых каскадов [601].

Аллостерические низкомолекулярные антагонисты и инверсионные агонисты рецептора тиреотропного гормона

Необходимость создания лигандов рецептора ТТГ с антагонистической активностью обусловлена широким распространением аутоиммунного гипертиреоза (болезни Грейвса), первопричиной которой являются стимулирующие рецептор ТТГ аутоантитела, вызывающие гиперпродукцию тиреоидных гормонов. Это приводит к тяжелым осложнениям, наиболее грозным из которых является офтальмопатия, а также к нарушению функционирования всех звеньев гипоталамо-гипофизарной оси. Следует отметить, что все используемые для лечения гипертиреоза фармакологические подходы, в том числе применение блокирующих антител к рецептору ТТГ, имеют серьезные ограничения, поскольку направлены на коррекцию последствий гиперактивации рецептора ТТГ, а не на нормализацию его функциональной активности [617–619].

Первый нейтральный антагонист рецептора ТТГ, NIDDK/CEB-52, был разработан в 2008 г.

[602] (табл. 3). Наличие в *пара*-положении фенильного кольца метоксипропиленовой группы приводило к повышению его гидрофобности и, тем самым, облегчало проникновение в аллостерический сайт рецептора. При инкубации с клетками, экспрессирующими рецептор ТТГ, соединение NIDDK/CEB-52 (30 мкМ) ингибировало стимулирующие эффекты ТТГ и активирующих аутоантител на активность АЦ, а также в значительной степени снижало ТТГ-стимулированную экспрессию гена тиреопероксидазы [602]. Однако соединение NIDDK/CEB-52, хотя и в незначительной степени, но влияло на активность рецептора ЛГ/ХГЧ, действуя, как его инверсионный агонист, что препятствовало его внедрению в клинику [602].

В ходе дальнейшего поиска нейтральных антагонистов рецептора ТТГ, не обладающих биологической активностью по отношению к рецептору ЛГ/ХГЧ, были разработаны производные 4-оксо-1,2-дигидрохиназолина, NCGC00242595 и NCGC00242364 [603, 604] (табл. 3). В культуре орбитальных фибробластов они ингибировали активацию АЦ как ТТГ, так и стимулирующими рецептор ТТГ антителами и подавляли индуцированную антителами продукцию гиалуроновой кислоты. Оба соединения не оказывали влияния на базальную активность рецептора и базальный уровень продукции гиалуроновой кислоты, а также на активность рецептора ЛГ/ХГЧ [603, 604]. При обработке с помощью NCGC00242364 мышей, которые в течение трех дней получали низкие дозы тиролиберина, рилизинг-фактора ТТГ, уровень Т4 в крови животных снижался на 44%, а экспрессия генов, кодирующих Na⁺/I⁻симпортер и тиреопероксидазу, снижалась на 75 и 83% соответственно. Обработка соединением NCGC00242364 была эффективной и в отношении ингибирования стимулирующего эффекта антител на уровень T4 и экспрессию генов Na⁺/I⁻симпортера и тиреопероксидазы. Тем самым соединения NCGC00242595 и NCGC00242364 могут быть эффективны при лечении болезни Грейвса и офтальмопатии Грейвса, не вызывая гипотиреоидных состояний [595, 604, 620, 621].

Нами на основе структуры тиено[2,3-d]-пиримидина разработано соединение 5-амино-*N*-(*трет*бутил)-4-(4-(3-метоксипроп-1-ин-1-ил)фенил)-2-(метиотио)тиено-[2,3-d]-пиримидин-6-карбоксамид (ТРҮ1), которое предотвращало ТТГ-индуцированную стимуляцию экспрессии генов тиреопероксидазы и тиреоглобулина в FRTL-5-клетках, а при внутрибрюшинном введении крысам подавляло стимуляцию тиролиберином как продукции Т4 и Т3 в крови, так и экспрессии генов, кодирующих белки, вовлеченные в синтез и конверсию тиреоидных гормонов в тироцитах щитовидной железы [605] (табл. 3). При однократном воздействии соединение ТРҮ1 не влияло на базовый уровень тиреоид-

ных гормонов, но в небольшой степени снижало его при длительном введении. Тем самым TPY1 может рассматриваться как перспективный препарат для коррекции аутоиммунного гипертиреоза.

Не в меньшей степени, чем нейтральные антагонисты, в медицине востребованы и низкомолекулярные соединения с активностью инверсионных агонистов рецептора ТТГ. При лечении болезни Грейвса их применение может привести к гипотиреозу вследствие подавления базальной активности рецептора ТТГ, хотя риски этого весьма невелики. В то же время инверсионные агонисты могут иметь широкое применение для лечения неаутоиммунных гипертиреоидных состояний, вызванных активирующими мутациями в рецепторе ТТГ, индуцирующими развитие опухолей щитовидной железы и нетиреоидных тканей. Для лечения таких заболеваний в настоящее время используют в основном хирургические подходы и радиотерапию, что приводит к множеству побочных эффектов [622].

Первый инверсионный агонист рецептора ТТГ, производное 2,3-дигидрохиназолин-4-она NCGC00161856, был разработан в 2010 г. [607] (табл. 3). Это соединение подавляло не только стимулированную ТТГ, но и базальную активность рецептора. В дальнейшем, на основе структуры NCGC00161856 был разработан более эффективный аналог NCGC00229600, который снижал стимулирующий АЦ эффект антител в культуре тироцитов человека и соответствующий эффект ТТГ и антител в первичной культуре фибробластов, полученных из ретроорбитальной области пациентов с болезнью Грейвса [608, 609]. Способность соединений NCGC00161856 и NCGC00229600 подавлять активацию рецептора ТТГ стимулирующими антителами в ретроорбитальных фибробластах позволяет устранить первопричину офтальмопатии обусловленную Грейвса, гиперстимуляцией цАМФ-сигнальных путей в этих клетках [619, 623].

Нами разработано галоген-содержащее производное тиено[2,3-d]-пиримидина, соединение ТР48 (5-амино-*N*-(*трет*-бутил)-4-(4-иодфенил)-2-(метилтио)тиено[2,3-d]-пиримидин-6-карбоксамид), с активностью инверсионного агониста (табл. 3). Оно не только ингибировало стимулированную тиролиберином продукцию Т4 и Т3 при внутрибрюшинном введении крысам, но в небольшой степени снижало базовые уровни тиреоидных гормонов [605, 610]. Важно, что соединение ТР48 сохраняло свой фармакологический профиль при пероральном введении, что свидетельствует в пользу его стабильности и хорошей всасываемости в желудочнокишечном тракте.

В 2019 г. Marcinkowski и соавт. создали аллостерический регулятор рецептора ТТГ на основе гетероциклического соединения S37a, которое содержало семь центров хиральности, причем функционально активным был только один из изомеров, который проявлял свойства антагониста и NAM [591, 606] (табл. 3). В микромолярных концентрациях соединение S37a ингибировало АЦ, стимулированную как ТТГ и антителами к рецептору ТТГ (стимулирующие моноклональные антитела TSAb M22 человека, олигоклональные антитела TSAb, полученные от пациентов с болезнью Грейвса), так и низкомолекулярным аллостерическим агонистом С2. При пероральном введении мышам соединение S37a имело высокую биодоступность и не оказывало на организм животных токсических эффектов [606].

Таким образом, в настоящее время создана обширная линейка аллостерических регуляторов рецептора ТТГ с различным профилем фармакологической активности (полные и инверсионные агонисты, нейтральные антагонисты, РАМ), которые могут быть применены для коррекции тиреоидной патологии, обусловленной изменением сигнальной трансдукции через рецептор ТТГ [612, 621, 624]. Следующим этапом является выбор наиболее перспективных кандидатов для проведения клинических испытаний и внедрения препаратов в клинику.

9.3. Регуляторы внутриклеточного аллостерического сайта рецептора тиреотропного гормона

Помимо трансмембранной локализации аллостерических сайтов, в молекуле рецептора ТТГ они могут быть локализованы во внутриклеточном вестибюле и в проксимальных к мембране участках ICLs, которые ответственны за взаимодействие с G-белками и β-аррестинами. Как отмечалось выше, одними из регуляторов таких сайтов могут быть пептиды, по первичной структуре соответствующие внутриклеточным участкам, либо образующим такие внутриклеточные аллостерические сайты, либо контактирующим с ними. Поскольку таким GPCR-пептидам для взаимодействия необходимо преодолеть плазматическую мембрану, они должны быть модифицированы гидрофобными группами, обеспечивающими их транспорт через мембрану, или образовывать амфипатические поликатионные спирали. Наибольшая эффективность показана для производных пептидов, модифицированных остатками длинноцепочечных жирных кислот – пальмитатом или миристатом. Подобные липидированные GPCR-пептиды называют пепдуцинами, и в настоящее время имеется много исследований, демонстрирующих их высокую активность в отношении различных классов GPCR [153, 625-628]. Нами разработаны пепдуцины, которые продемонстрировали высокую активность для релаксинового рецептора 1-го типа и 5-НТ_{1В}-серотонинового рецептора [629–631].

Эта стратегия была успешно применена и для разработки аллостерического агониста рецептора ТТГ на основе пептидов, соответствующих его

ШПАКОВ

Рис. 2. Аллостерические сайты в молекуле рецептора ТТГ и их регуляторы.

ICL3, в которой локализованы основные молекулярные детерминанты для активации G_s-белка [599, 600]. Наиболее эффективным оказался модифицированный с С-конца пальмитатом пепдуцин 612-627(Palm), структурно соответствующий С-концевому участку 612-627 ICL3 рецептора ТТГ (табл. 3). В мембранах, выделенных из тироцитов щитовидной железы крыс, пепдуцин 612-627(Palm) дозозависимо стимулировал активность чувствительной к ТТГ аденилатциклазной сигнальной системы. Его действие было специфичным по отношению к рецептору ТТГ и не выявлялось в мембранах, где этот рецептор отсутствовал. Пальмитоилированный аналог в значительной степени превосходил по эффективности и селективности пептид 612-627, не содержащий пальмитата, а также более короткие аналоги, в том числе липидированные [599]. В экспериментах in vivo было показано, что при интраназальном введении крысам пепдуцин 612-627(Palm) стимулировал продукцию тиреоидных гормонов, причем в дозе 450 мкг/кг его максимальный стимулирующий эффект на уровень свободного Т4 достигался через 2 ч [600]. Значения ED₅₀ для стимуляции пепдуцином 612-627(Palm) продукции свободного Т4 и общего Т3 составили 87 и 78 мкг/кг соответственно. Необходимо отметить, что внутримышечное введение было менее эффективным, чем интраназальное [600]. Тем самым пепдуцин 612-627(Palm) наделен активностью внутриклеточного аллостерического агониста рецептора ТТГ и может быть использован для разработки стимуляторов тиреоидогенеза, но с условием повышения его устойчивости к протеолизу в кровотоке.

На рис. 2 суммированы полученные в настоящее время данные по аллостерической регуляции рецептора ТТГ, осуществляемой различными по химической природе и механизмам действия соединениями, включая аутоантитела к рецептору ТТГ. Множественность аллостерических сайтов в молекуле рецептора ТТГ обусловливает многоуровневую и многофакторную регуляцию его активности, как в базальном состоянии, так и в условиях активации ТТГ или стимулирующими аутоантителами.

Представлены блокирующие (ингибирующие) и стимулирующие аутоантитела к рецептору ТТГ, действующие на различные участки эктодомена, спейсерный субдомен, связывающий эктодомен с трансмембранным доменом, а также на ECLs рецептора. Приведены разработанные в настоящее время синтетические аллостерические регуляторы рецептора ТТГ с активностью полных или частичных агонистов, в том числе пептидной природы (пепдуцин 612– 627), РАМ, нейтральных антагонистов, инверсионных агонистов, а также соединений со смешанным профилем фармакологической активности (антагонист/NAM). В трансмембранном домене рецептора ТТГ показаны основные локусы, AS-1, AS-2 и AS-3, являющиеся мишенями для аллостерических регу-

ляторов, причем в каждом локусе может быть локализовано несколько топологически различающихся аллостерических сайтов, а в случае локуса AS-2 такие сайты могут быть расположены как внутри трансмембранного канала (предпочтительная локализация), так и снаружи его, на границе трансмембранного домена с липидной фазой мембраны. Подробности см. в табл. 3 и в соответствующих подразделах раздела IX.

Х. РЕЦЕПТОР ЛЮТЕИНИЗИРУЮЩЕГО ГОРМОНА/ХОРИОНИЧЕСКОГО ГОНАДОТРОПИНА И ЕГО АЛЛОСТЕРИЧЕСКИЕ РЕГУЛЯТОРЫ

10.1. Структурно-функциональная организация рецептора ЛГ/ХГЧ, механизмы его активации и сигнальные каскады

Как отмечалось выше, рецептор ЛГ/ХГЧ, как и рецептор ТТГ, включен в подкласс А10 класса А GPCR и имеет значительное структурное сходство с рецептором ТТГ, особенно в области трансмембранного домена и проксимальных к мембране участков ICL3, где локализованы трансмембранные и внутриклеточные аллостерические сайты. Все это свидетельствует в пользу сходства механизмов аллостерической регуляции рецепторов ЛГ/ХГЧ и ТТГ, в том числе внутриклеточными аллостерическими регуляторами. Эктодомен рецептора ЛГ/ХГЧ включает обогащенный остатками цистеина N-концевой участок, значительный по размеру субдомен, включающий обогащенные остатками лейцина повторы (leucine-rich repeats, LRR), и спейсерный участок, соединяющий LRRсубдомен с ТМ1 [632-634]. В эктодомене локализован высокоаффинный ортостерический сайт, с которым специфично связываются αβ-гетеродимеры ЛГ и ХГЧ. Результатом такого связывания является активация сразу нескольких сигнальных каскадов, что обусловлено способностью лигандсвязанного рецептора взаимодействовать с различными типами G-белков, в первую очередь с G_s- и G_{α/11}-белками, а также с β-аррестинами и адаптерными белками APPL-семейства [632, 635]. Сигнальные пути, направленные на повышение уровня цАМФ (через G_s-белки) и ионов кальция (через G_{п/11}-белки) внутри клетки-мишени и на активацию MAPKs (через β-аррестины), вовлечены в регуляцию синтеза и секреции стероидных гормонов, в контроль роста и дифференцировки тестикулярных и овариальных клеток. При этом β-аррестиновые пути также играют определяющую роль в интернализации, эндоцитозе и рециклизации лиганд-рецепторных комплексов и определяют, тем самым, чувствительность тканей-мишеней к ЛГ и ХГЧ [635].

При активации рецептора ЛГ/ХГЧ гонадотропином запускается волна конформационных перестроек, в которую вовлечены следующие молекулярные детерминанты: высококонсервативный в GPCR класса A ERW-мотив, который локализован на границе ТМЗ и ICL2, заряженные остатки Arg⁴⁶⁴ и Asp⁵⁶⁴, расположенные во внутриклеточных окончаниях ТМЗ и ТМ6, остатки Asp⁵⁷⁸ (ТМ6) и Asn⁶¹⁵ (ТМ7), локализованные внутри трансмембранного домена. Идентифицированы формы рецептора с активирующими мутациями, которые локализованы преимущественно в трансмембранном домене (ТМ1, ТМ2, ТМ3, ТМ5 и ТМ6), а также формы рецептора с инактивирующими мутациями, локализованными в эктодомене, трансмембранном домене (ТМ1, ТМ4, ТМ5, ТМ6 и ТМ7) и во внеклеточных участках (ICL1, ICL3) [636-638]. Многие репродуктивные дисфункции обусловлены как мутациями в рецепторе ЛГ/ХГЧ, так и нарушением его посттрансляционного процессинга, внутриклеточного транспорта и транслокации в плазматическую мембрану [639].

Большое значение для обеспечения избирательности передачи сигнала к внутриклеточным рецепторам имеет микрооокружение рецептора, в том числе доступность определенных типов G-белков и β-аррестинов, статус N-гликозилирования гонадотропинов, образование и структура рецепторных комплексов, а также паттерн N-гликозилирования рецептора ЛГ/ХГЧ. Известно, что димерные молекулы ЛГ и ХГЧ имеют по три сайта для N-гликозилирования – по два в α-субъединице и по одному в β-субъединице. α-Субъединица, как правило, гликозилирована полностью, в то время как β-субъединица может быть негликозилирована, что в сумме дает две формы ЛГ и ХГЧ – с двумя или тремя N-гликанами. Наряду с этим в зависимости от места синтеза и ряда других факторов существенно отличаются разветвленность и заряд N-гликанов, определяемые паттерном и активностью ферментов N-гликозилирования [640-642]. Так, синтезируемые в аденогипофизе ЛГ и гипофизарная форма ХГЧ имеют более кислые N-гликаны, что обусловлено высоким содержанием в них сульфатированного N-ацетилгалактозамина, в то время как плацентарная форма ХГЧ вместо сульфатированного N-ацетилгалактозамина содержит сиаловые кислоты, что делает ее менее кислой. Важно отметить, что слабогликозилированные формы ЛГ с меньшими по размеру N-гликанами более активны, поскольку с большей аффинностью и эффективностью связываются с рецепторами ЛГ/ХГЧ. Показано, например, что доля таких форм ЛГ резко возрастает в короткую фазу индукции овуляции, в то время как в фолликулярную и лютеиновую фазы превалируют более гликозилированные формы гонадотропинов [642].

Среди рецепторов ЛГ/ХГЧ выделяют негликозилированные и гликозилированные мономерные формы с молекулярным весом соответственно 67 и

84 кДа, а также ди- и олигомерные формы с молекулярным весом 166 и 240 кДа [643]. Показано, что связывание гонадотропина с рецептором ЛГ/ХГЧ приводит к увеличению доли ди- и олигомерных форм, что указывает на повышение стабильности рецепторных комплексов в присутствии ортостерического агониста [644, 645]. Формирование рецепторных комплексов важно для полноценной активации рецептора гонадотропином, поскольку показано, что связывание молекулы ЛГ или ХГЧ с одним протомером рецепторного комплекса приводит к активации другого протомера, и это явление описывается как трансактивация рецептора ЛГ/ХГЧ [646, 647]. Одним из прямых доказательств механизма трансактивации рецептора ЛГ/ХГЧ является то, что коэкспрессия изоформ рецептора, одна из которых не может связывать гормон, а другая не способна передавать гормональный сигнал, приводит к олигомерному рецепторному комплексу, который способен как опознавать ЛГ-сигнал, так и осуществлять его трансдукцию к внутриклеточным мишеням [648].

Крайне интересным является обнаружение гетеродимерных и гетероолигомерных комплексов между рецептором ЛГ/ХГЧ и рецептором ФСГ с последующей их трансактивацией любым из гонадотропинов [649-653]. При активации таких гетеродимерных комплексов с помощью ЛГ или ФСГ отмечают резкое снижение эффективности сигналов, передаваемых через G_s-белки на АЦ, что указывает на взаимные аллостерические влияния протомеров рецепторов ЛГ/ХГЧ и ФСГ в таком комплексе [649]. Кроме того, даже небольшая доля таких гетерокомплексов в общем пуле рецепторов ЛГ/ХГЧ и ФСГ существенно влияет на процессы атрезии фолликулов, развитие доминантного фолликула, а также обеспечивает продукцию андрогенов в отсутствие достаточного количества ЛГ [653].

Образование рецепторных комплексов, в том числе гетеродимерных, гликозилирование и другие посттрансляционные модификации рецептора ЛГ/ХГЧ являются аллостерическими механизмами, которые вносят значимый вклад в модуляцию сигналов, индуцируемых гонадотропинами, а также опосредуют избирательную активацию определенных внутриклеточных каскадов, тем самым программируя адекватный для определенных физиологических условий клеточный ответ. Однако существуют и другие аллостерические механизмы, влияющие на эффективность и предвзятость ЛГ/ХГЧ-сигналинга. Это обусловлено присутствием в молекуле рецептора различных по локализации аллостерических сайтов, в том числе в трансмембранном домене и в области интерфейсов, включающих сегменты внутриклеточного вестибюля трансмембранного тоннеля и проксимальные участки ICLs рецептора. Синтетические аллостерические регуляторы этих сайтов будут рассмотрены ниже.

Аллостерические влияния на рецептор ЛГ/ХГЧ могут оказывать аутоантитела, вырабатываемые на его внеклеточные участки. Недавно в крови женщин с поликистозными яичниками и гиперандрогенемией были обнаружены стимулирующие аутоантитела к рецептору ЛГ/ХГЧ [654]. В связи с этим необходимо отметить, что у женщин с яичниковой недостаточностью обнаружены ингибирующие аутоантитела к рецептору ФСГ [655, 656]. Поскольку рецепторы ЛГ/ХГЧ и ФСГ могут гетеродимеризоваться, то аутоантитела к рецептору $\Phi C \Gamma$, как и аутоантитела к рецептору ЛГ/ХГЧ, являются потенциальными аллостерическими модуляторами ЛГ/ХГЧ-сигналинга. Нельзя исключить того, что, как и в случае аутоантител к β-AR, антитела к рецептору ЛГ/ХГЧ могут создавать "регуляторный буфер", позволяющий модулировать мощные активационные сигналы, вызываемые значительными перепадами уровня гонадотропинов в ходе репродуктивных циклов. Этот вопрос крайне интересен и требует дополнительного изучения.

10.2. Регуляторы трансмембранного аллостерического сайта рецептора ЛГ/ХГЧ

Необходимость разработки аллостерических регуляторов рецептора ЛГ/ХГЧ обусловлена следующими обстоятельствами, важными с точки зрения лечения репродуктивных расстройств и при использовании гонадотропинов во вспомогательных репродуктивных технологиях (ВРТ). Применяемые в настоящее время гонадотропины с ЛГ-активностью либо выделяют из природных источников (мочевые формы ХГЧ), либо синтезируют с помощью генно-инженерных технологий (рекомбинантные формы ЛГ и ХГЧ). У обеих форм гонадотропинов, природных и рекомбинантных, имеются существенные недостатки. Мочевой ХГЧ содержит ряд биологически активных примесей, а его препараты от партии к партии сильно варьируют по специфической активности, что затрудняет их стандартизацию. Кроме того, мочевой ХГЧ, представляющий собой плацентарную форму гормона, имеет отличный от ЛГ и гипофизарного ХГЧ спектр биологической активности, включая предвзятость активации внутриклеточных сигнальных путей. Рекомбинантные формы, в свою очередь, также не лишены примесей, но при этом, что еще более существенно, значимо отличаются от природных форм по паттерну N-гликозилирования, что, как отмечалось выше, влияет на активацию ими рецептора ЛГ/ХГЧ и на предвзятость сигнальной трансдукции. В связи с этим в настоящее время применение рекомбинантного ЛГ в ВРТ существенно ограничено. Гонадотропины могут быть использованы только в форме инъекций, требуют надлежащего хранения и способны вызывать иммуногенные реакции. Поскольку аллостерические регуляторы трансмембранного сайта рецептора ЛГ/ХГЧ пред-

ставляют собой низкомолекулярные соединения, устойчивые в желудочно-кишечном тракте и хорошо всасывающиеся стенками кишечника, то они эффективны при пероральном способе введения. Наряду с этим они хорошо хранятся и не вызывают иммунных реакций. Одним из существенных недостатков ряда их активных аналогов является низкая растворимость в водных растворах, что, однако, не препятствует их высокой биодоступности при различных способах доставки, хотя и требует дополнительных усилий по разработке базирующихся на структуре таких соединений лекарственных форм.

Несмотря на востребованность в основном агонистов рецептора ЛГ/ХГЧ, в ряде случаев, например, при гонадотропин-зависимых опухолях или для предотвращения преждевременного полового созревания у мальчиков, необходимы антагонисты или инверсионные агонисты этого рецептора. Подобных препаратов, лигандов ортостерического сайта рецептора ЛГ/ХГЧ, в настоящее не разработано, что делает необходимым создание аллостерических регуляторов с активностью антагонистов и инверсионных агонистов на основе низкомолекулярных лигандов.

Аллостерические агонисты и позитивные аллостерические модуляторы рецептора ЛГ/ХГЧ

Первые низкомолекулярные агонисты рецептора ЛГ/ХГЧ были разработаны голландскими учеными в 2002 г. на основе производных тиено[2,3-d]-пиримидина, наиболее активными среди которых были соединение Org41841, *N*-трет-бутил-5-амино-4-(3-метоксифенил)-2-(метилтио)тиено[2,3-d]-пиримидин-6-карбоксамид, и его аналог – Org43553 [154] (табл. 4).

В дальнейшем соединения Org41841 и Org43553 стали прототипами для большого числа других низкомолекулярных соединений с агонистической активностью, включая новые производные тиено[2,3-d]-пиримидина [116, 620, 658, 659, 661-663, 665, 666, 680-682]. Показано, что соединение Org43553 специфично связывается с рецептором ЛГ/ХГЧ (K_d, 2.4 нМ), причем в его присутствии связывание [¹²⁵I]-ХГЧ с рецептором сохраняется, что указывает на несовпадение ортостерического и Org43553-специфичного аллостерического сайтов [657]. В пользу несовпадения этих сайтов свидетельствует отсутствие снижения стимулирующего эффекта ЛГ на активность АЦ и цАМФ-зависимых транскрипционных факторов в клетках, экспрессирующих рецептор ЛГ/ХГЧ, в присутствии Org43553 [158].

Гонадотропины, ЛГ и ХГЧ, через посредство различных G-белков активируют как АЦ, так и PLCβ, повышая внутриклеточную концентрацию ионов кальция, причем для активации PLCβ требуются более высокие концентрации гонадотропи-

нов, чем для активации АЦ [683]. Соединение Org43553 является более селективным по отношению к аденилатциклазному пути, играющему ключевую роль в синтезе и секреции половых стероидных гормонов, практически не влияя на G_{q/11}-белки, PLCβ и фосфоинозитидный обмен [158]. Только в высоких концентрациях (1-10 мкМ) Org 43553 стимулировал PLCB на 33-37%, что составляет менее 5% от соответствующего эффекта ЛГ. Соединение Org43553 сравнительно слабо влияло на активность β-аррестинов, на что указывает отсутствие его стимулирующего эффекта на активность MAPKs и эндоцитоз рецепторов ЛГ/ХГЧ. Тем самым Org43553 характеризуется предвзятой активностью по отношению к G_s-белкам и АЦ, что обеспечивает его выраженный стероидогенный эффект как in vitro [158, 658]), так и in vivo при различных путях введения экспериментальным животным и женщинам-добровольцам [658-660]. Необходимо отметить, что разработанные нами тиено[2,3-d]-пиримидиновые производные также избирательно стимулировали аденилатциклазный сигнальный путь [663, 665], что может указывать на присутствие в молекулах тиено[2,3-d]-пиримидиновых производных фармакофоров, ответственных за стабилизацию активной конформации рецептора, взаимодействующей с G_s-белком. Исследование структуры и локализации аллостерического сайта, с которым связывались Org43553 и его аналоги, показало, что в его формировании принимают участие ориентированные во внутреннюю полость трансмембранного тоннеля АКО, принадлежащие TM3, TM5 и TM6, а также ориентированные во внеклеточный вестибюль этого тоннеля остатки ECL2 и ECL3, формирующие внешний вход в этот сайт [588, 634]. Эти результаты были подтверждены при исследовании взаимоотношений структураактивность и при молекулярном докинге разработанных нами производных тиено[2,3-d]-пиримидина [665, 666].

Пероральное введение Org43553 (50 мг/кг) вызывало овуляцию у неполовозрелых мышей и половозрелых крыс. Полученные яйцеклетки были хорошего качества, характеризовались высокой фертильностью, при имплантации давали жизнеспособные эмбрионы. При введении самцам крыс Org43553 стимулировал у них тестикулярный стероидогенез, повышая уровень тестостерона в крови [658]. Соединение Org43553 при пероральном введении женщинам-добровольцам репродуктивного возраста (в дозе 300 мг) вызывало овуляцию у 83% из них без каких-либо значимых побочных эффектов [660]. Важно, что в этом случае, как и при индукции овуляции у грызунов, не было выявлено признаков развития синдрома гиперстимуляции яичников, что свидетельствует о перспективности этого агониста для индукции овуляции и лечения репродуктивных расстройств у женщин. Это во многом обусловлено более мягкой активацией

Таблица 4. Аллостерические регуляторы	рецептора ЛГ/ХГЧ
---------------------------------------	------------------

Фармакологическая активность	Соединения	Биологический эффект	Ссылки
Аллостерические агонисты	Тиено[2,3-d]-пиримидино- вые производные (Org41841, Org43553)	Стимулируют G _s -белки и АЦ в клет- ках с экспрессированным рецепто- ром ЛГ/ХГЧ, при введении самцам крыс повышают продукцию тесто- стерона, при введении самкам крыс и женщинам-добровольцам вызывают у них индукцию овуляции. Отмечено отсутствие конкуренции с гонадо- тропинами за связывание с рецепто- рами	[154, 158, 657–660]
	Тиено[2,3-d]-пиримидино- вые производные (ТР01, ТР02, ТР21, ТР22, ТР23)	Стимулируют активность G _s -белков и АЦ в тестикулярных и овариальных мембранах, повышают продукцию тестостерона при в/б и пероральном способах введения самцам крыс	[661–663]
	Тиено[2,3-d]-пиримидино- вые производные (ТР03, ТР04)	Стимулируют аденилатциклазную систему в тестикулярных мембранах, активируют стероидогенез и продук- цию тестостерона в культивируемых клетках Лейдига, стимулируют тести- кулярный стероидогенез при в/б, подкожном и пероральном введении самцам крыс, в том числе с диабетом и стареющим животным, активируют овариальный стероидогенез и вызы- вают индукцию овуляции у поло- возрелых и неполовозрелых самок крыс, потенцируют стероидогенные эффекты ХГЧ <i>in vitro</i> и <i>in vivo</i>	[664–669]
	Производное пиразола, Compound 1	Стимулирует активность АЦ и про- дукцию тестостерона в клетках Лей- дига	[670]
	Пепдуцин 562—572- К(Palm)А, его димерный ана- лог, включающий сшитые участки 562—572	Стимулируют АЦ и G _s -белки в тести- кулярных и овариальных мембранах крыс, 562–572-К(Palm)А повышает продукцию тестостерона у самцов крыс при интратестикулярном введе- нии	[671, 672]
Аллостерические антагони- сты	Производное терфенила, LUF5771	Существенно ингибирует стимулиру- ющие эффекты ХГЧ и аллостериче- ских агонистов на ЛГ-зависимые внутриклеточные каскады	[673, 674]
	Производные бензамидов (ADX68692, ADX68693)	Ингибируют стимулированную гона- дотропинами активность ЛГ-зависи- мых сигнальных каскадов, показана специфичность эффектов в различных типах клеток и при различном соотно- шении экспрессии рецепторов ЛГ/ХГЧ и ФСГ	[675]

Таблица 4. Окончание

Фармакологическая активность	Соединения	Биологический эффект	Ссылки
NAM	Производные тетрагидро-1,6- нафтиридина (ВАҮ-298, ВАҮ-899)	Снижают стимулированную гона- дотропинами и аллостерическими агонистами продукцию стероидных гормонов, ингибируют системы тестикулярного и овариального стеро- идогенеза, подавляют фолликулогенез при введении самкам крыс	[676]
	Дихлородифенилтрихлорэтан	Ослабляет стимулирующий эффект ХГЧ на АЦ, подавляет ЛГ/ХГЧ-инду- цированное рекрутирование β-арре- стинов, но существенно не влияет на гонадотропин-стимулированную про- дукцию тестостерона, что указывает на предвзятость его эффектов в отноше- нии различных сигнальных каскадов	[677]
NAM/Аллостерический инверсионный агонист	Тиено[2,3-d]-пиримидино- вое производное ТР31	Снижает стимулирующие эффекты ХГЧ и ТР03 на активность АЦ в тести- кулярных мембранах (в большей сте- пени в случае ТР03), ингибирует ХГЧ- индуцированную стимуляцию продук- ции тестостерона у самцов крыс. Вызывает небольшое снижение базо- вого уровня тестостерона	[678, 679]
	Производное пиридо[3,4- <i>d</i>]пиримидина PP17	Ингибирует стимулирующие эффекты ХГЧ и ТР03 на аденилатциклазную систему в тестикулярных мембранах (в большей степени в случае ХГЧ), инги- бирует ХГЧ-стимулированный и базо- вый уровни тестостерона в крови самцов крыс	[678]

цАМФ-зависимых сигнальных путей, а также меньшим периодом полувыведения Org43553 в сравнении с ХГЧ, что предотвращает длительную активацию рецептора $Л\Gamma/Х\GammaЧ$ в клетках-мишенях [658, 660].

Основываясь на фармакологических характеристиках Org43553 и его аналогов, нами была разработана серия тиено[2,3-d]-пиримидиновых производных, первым из которых было созданное и изученное в 2014 г. соединение 5-амино-*N*-(*трет*бутил)-4-(3-(изоникотинамидо)фенил)-2-(метилтио)тиено [2,3-*d*]пиримидин-6-карбоксамида (ТР01) [661-663] (табл. 4). Среди синтезированных нами соединений наибольшей активностью характеризовались ТР03 и ТР04, которые были детально изучены в условиях in vitro и in vivo [665, 666] (табл. 4). Они стимулировали активность АЦ в тестикулярных и овариальных мембранах крыс, а также повышали продукцию тестостерона при инкубации с клетками Лейдига, причем их стимулирующие эффекты были частично аддитивны с таковыми ХГЧ. При внутрибрюшинном и пероральном введении самцам крыс они стимулировали тестикулярный стероидогенез, повышая продукцию тестостерона в крови. Это сопровождалось повышением экспрессии ряда стероидогенных генов, в первую очередь холестерин-транспортирующего белка StAR, катализирующего первую, скоростьлимитирующую стадию стероидогенеза. Эффект ТР03 и ТР04 сохранялся при длительном (5 дней и более) введении, в то время как соответствующие эффекты ХГЧ при этом существенно ослабевали [664-666]. Стабильность стимулирующего эффекта соединений ТР03 и ТР04 на тестикулярный стероидогенез была во многом обусловлена сохранением экспрессии рецептора ЛГ/ХГЧ в семенниках, которая в значительной степени снижалась при длительной обработке гонадотропинами.

Стероидогенный эффект тиено[2,3-d]-пиримидиновых производных был отчетливо выражен при

введении стареющим животным и самцам крыс с различными моделями сахарного диабета, в то время как стимулирующий эффект ХГЧ на тестикулярный стероидогенез у этих животных снижался [684]. Показано также, что у диабетических животных введение соединений ТРОЗ и ТРО4 приводило к повышению подвижности эпидидимальных сперматозоидов, нормализовало их число, а также число сперматоцитов в семенных канальцах, восстанавливало толщину герминативного эпителия, что указывает на нормализацию процесса сперматогенеза [665, 666].

Многие побочные эффекты гонадотропинов обусловлены сравнительно высокими их дозами, используемыми в репродуктивной медицине, что сопровождается сначала гиперстимуляцией ЛГ-зависимых сигнальных путей, а впоследствии формированием резистентности клеток-мишеней к эндогенным гонадотропинам. Обнаруженная нами в экспериментах in vitro аддитивность стимулирующих эффектов XГЧ и тиено[2,3-d]-пиримидиновых производных, являющаяся следствием различной локализации сайтов их связывания с молекулой рецептора, позволила высказать гипотезу, что низкомолекулярные агонисты способны повышать эффективность низких доз гонадотропинов при их комбинированном использовании. Действительно, при совместном воздействии сравнительно низких доз ТРОЗ (15 мг/кг) и ХГЧ (10 МЕ/крысу) отмечали потенцирование стимулирующего эффекта гонадотропина на продукцию тестостерона и экспрессию ключевых стероидогенных генов (StAR, Сур 11а 1) [685]. Потенцирующее действие ТР03 было продемонстрировано у самцов крыс с различными моделями сахарного диабета 1-го и 2-го типов и было выражено сильнее, чем у недиабетических животных. Тем самым показана перспективность комбинированной терапии тиено[2,3-d]-пиримидинами и гонадотропинами при компенсации андрогенного дефицита, вызванного метаболическими расстройствами [685, 686].

Нами показано, что длительная, на протяжении 5 нед, терапия самцов крыс с сахарным диабетом 2-го типа метформином не только частично восстанавливала у них стероидогенез и сперматогенез, но и усиливала стероидогенные ответы при введении животным ТР03 [666, 667], что указывает на улучшение чувствительности семенников к аллостерическим агонистам. Это было обусловлено нормализацией экспрессии рецепторов ЛГ/ХГЧ и ферментов стероидогенеза в семенниках диабетических животных. В то же время при длительном введении ТР03 крысам, леченным метформином, стимулирующий эффект низкомолекулярного агониста на продукцию тестостерона немного ослабевал, что может быть компенсаторной реакцией на длительную гиперактивацию системы тестикулярного стероидогенеза. Тем самым метформиновая терапия, которая эффективна для восстановления репродуктивной системы при метаболических расстройствах, сопровождающихся ожирением [687, 688], способна усиливать острые ответы семенников на стимуляцию аллостерическими агонистами рецептора ЛГ/ХГЧ, но мало эффективна для поддержания стероидогенных эффектов этих агонистов при их длительном применении.

Опираясь на данные, полученные при стимуляции тестикулярного стероидогенеза, было изучено влияние соединения ТР03 на овариальный стероидогенез и овуляцию у самок крыс. Введение этого соединения половозрелым и неполовозрелым самкам крыс усиливало овариальный стероидогенез, повышая продукцию прогестерона, а у обработанных препаратом ФСГ фоллимагом неполовозрелых самок вызывало овуляцию, причем ТР03 не уступал по эффективности ХГЧ [668, 669]. ТР03 не вызывал повышения экспрессии фактора роста эндотелия сосудов в яичниках, одного из триггеров синдрома гиперстимуляции яичников [668]. Тем самым ТР03 и его аналоги могут быть использованы для стимуляции овариального стероидогенеза и контролируемой индукции овуляции у женщин, что открывает широкие перспективы для их применения в ВРТ.

Наряду с тиено[2,3-d]-пиримидиновыми производными, ведутся поиски аллостерических агонистов рецептора ЛГ/ХГЧ и среди других классов низкомолекулярных соединений. Наибольший интерес в этом отношении представляют производные пиразола, одно из которых (Compound 1) стимулировало активность АЦ (ЕС₅₀, 20 нМ) и продукцию тестостерона клетками Лейдига со значением EC₅₀, равным 1.31 мкМ [670] (табл. 4). Его эффективность была сопоставимой с таковой ХГЧ. При внутрибрюшинном введении самцам крыс Соединение 1 (32 мг/кг) повышало уровень тестостерона в крови животных. Как и тиено[2,3-d]-пиримидиновые производные, Соединение 1 не конкурировало с ХГЧ за места связывания с рецептором, что указывает на отсутствие перекрывания сайтов, связывающих производное пиразола и гонадотропин. Основываясь на результатах молекулярного докинга, был сделан вывод, что Соединение 1 взаимодействует с аллостерическим сайтом, локализованным в трансмембранном домене рецептора [670].

Аллостерические антагонисты и негативные аллостерические модуляторы рецептора ЛГ/ХГЧ

Первым среди низкомолекулярных антагонистов рецептора ЛГ/ХГЧ стало производное терфенила LUF5771, которое подавляло стимуляцию рецептора гонадотропинами и аллостерическими агонистами, в том числе эндогенным ЛГ [673, 674] (табл. 4). В концентрации 10 мкМ оно более чем в три раза ускоряло диссоциацию Org43553 от рецеп-

тора ЛГ/ХГЧ и в 2-3 раза снижало регуляторные эффекты ХГЧ и Org43553 на ЛГ-зависимый внутриклеточный сигналинг [673, 674]. Исследование сайта связывания соединения LUF5771 показало, что он, как и сайт связывания Org43553 и других тиено[2,3-d]-пиримидинов, локализован в трансмембранном тоннеле, частично с ним перекрывается, но включает иной набор АКО, локализованных в ТМ1, ТМ2, ТМ3, ТМ6 и ТМ7, а также в ECL2 [674]. Другое производное терфенила, соединение LUF5419, в присутствии которого ингибирующие эффекты LUF5771 снижаются в 2-10 раз, связывалось с тем же сайтом, что и LUF5771, но при этом не образовывало контакты с АКО, локализованными в ТМ1 и ТМ2 [673]. Предположительно именно эти остатки и могут быть ответственны за ингибирующий эффект LUF5771.

Основываясь на этих результатах, в дальнейшем на основе тетрагидро-1,6-нафтиридина были разработаны соединения ВАҮ-298 и ВАҮ-899, наделенные активностью NAM для рецептора ЛГ/ХГЧ [676] (табл. 4). Соединение ВАҮ-298 снижало стимулированную ЛГ и аллостерическим агонистом Org43553 продукцию стероидных гормонов, подавляя тестикулярный и овариальный стероидогенез, а также блокировало фолликулогенез при введении самкам крыс. При этом оно связывалось с сайтом, отличным не только от ортостерического сайта, но и от аллостерического сайта связывания Org43553, который в значительной степени перекрывался с сайтом связывания LUF5771. Соединение ВАҮ-899 дозозависимо подавляло стероидогенез при введении самкам крыс и, подобно ВАҮ-298, останавливало цикл в фазе диэструса и метэстpyca [676].

Параллельно нами были разработаны производные тиено[2,3-d]-пиримидина (TP31) и пиридо[3,4-*d*]пиримидина (PP17), которые подавляли стимулированную ХГЧ и ТР03 активность G_sбелков и фермента АЦ во фракции плазматических мембран, выделенных из семенников самцов крыс, причем ТР31 (5-амино-*N*-(*трет*-бутил)-2-(метилтио)-4-[3-(2-(этиламино)никотинамидо)-фенил]тиено[2,3-d]пиримидин-6-карбоксамид) был эффективнее в отношении стимулирующего эффекта ТР03, а РР17 (этиловый эфир 7-амино-4-(3-(этоксикарбонил)пиперидин-1-ил)-2-(метилсульфанил)пиридо[4,3-d]пиримидин-8-карбоновой кислоты) – в отношении соответствующего эффекта ХГЧ [678, 679] (табл. 4). Обнаруженные эффекты, как мы полагаем, обусловлены различной локализацией ТР31- и РР17-связывающих аллостерических сайтов, а также сходной локализацией сайта, связывающего структурно близкие, но отличающиеся по фармакологическому профилю тиено[2,3-d]-пиримидиновые производные ТР03 и ТР31. В экспериментах in vivo соединения ТР31 и РР17 снижали стимулированную ХГЧ продукцию тестостерона, в существенно меньшей степени влияя на базовый уровень гормона, контролируемый эндогенным ЛГ, причем ТР31 был эффективнее РР17. Тем самым, ТР31 и РР17 проявляют активность NAM для гонадотропин-стимулированного рецептора ЛГ/ХГЧ, а также оказывают антагонистический эффект в отношении стимуляции агонистами трансмембранных аллостерических сайтов. С учетом слабо выраженного влияния на базовый уровень тестостерона, оба эти соединения могут быть классифицированы, как NAM/инверсионные агонисты.

Недавно было обнаружено, что дихлородифенилтрихлорэтан (p,p'DDT), который потенцирует ответ рецепторов ФСГ на введение препаратов ФСГ, также влияет на активность рецептора ЛГ/ХГЧ, предотвращая его активацию ЛГ и ХГЧ [677] (табл. 4). В культуре СНО-клеток p,p'DDT снижал стимулирующее влияние ХГЧ на уровень внутриклеточного цАМФ, и наряду с этим подавлял рекрутирование β-аррестинов, индуцированное ЛГ и ХГЧ. При этом, однако, он существенно не влиял на стимулированную гонадотропинами продукцию тестостерона. Это указывает на его активность как NAM для рецептора ЛГ/ХГЧ, наделенного предвзятой активностью в отношении определенных внутриклеточных каскадов [677]. Другим классом соединений, которые были активны как в отношении рецептора ФСГ, так и рецептора ЛГ/ХГЧ, являются производные бензамидов ADX68692 и ADX68693, которые в различной степени ингибировали стимулированную гонадотропинами активность этих рецепторов [675]. Парадоксально, но их действие является специфичным по отношению к определенным типам клеток с экспрессированными в них рецепторами ФСГ и ЛГ/ХГЧ и во многом зависит от паттерна их экспрессии. Не исключено, что мишенью производных бензамида являются гетероолигомерные комплексы рецепторов ФСГ и ЛГ/ХГЧ, что и определяет сложный профиль их фармакологической активности. Резюмируя, можно отметить, что в отличие от аллостерических агонистов рецептора ЛГ/ХГЧ, антагонисты и NAM менее специфичны по отношению к этому рецептору, что может быть обусловлено как сходством конфигурации "ингибирующего" аллостерического сайта рецепторов ФСГ и ЛГ/ХГЧ, так и гетероолигомеризацией этих рецепторов.

10.3. Аллостерические пептидные регуляторы внутриклеточного аллостерического сайта

Как и в случае рецептора ТТГ, проксимальные к мембране участки ICL3 рецептора ЛГ/ХГЧ играют определяющую роль во взаимодействии с G_s-белком, опосредующим стимуляцию цАМФ-зависимого сигналинга. Важное значение в таком взаимодействии имеют целостность кластеров положительно заряженных аминокислот и способность

ШПАКОВ

Рис. 3. Аллостерические сайты в молекуле рецептора ЛГ/ХГЧ и их регуляторы.

участков ICL3 образовывать амфипатическую спираль, оптимальную для формирования внутриклеточного аллостерического сайта. В полном соответствии с этими критериями нами был разработан пальмитоилированный с С-конца пепдуцин NK-DTKIAKK-Nle-A^{562–572}-K(Palm)-A (562–572-K(Palm)A), соответствующий С-концевому участку ICL3 рецептора ЛГ/ХГЧ [671, 672] (табл. 4). Для изучения взаимоотношений структура–активность были изучены его аналоги – немодифицированные пептиды 558–572 и 562–572, и липофильные производные пептида 562–572, модифицированные пальмитатом или деканоатом с Nи С-концов, а также разветвленные аналоги пептида 562–572 с дендримерной структурой [689].

Пепдуцин 562–572-К(Palm)А и его димерный аналог, включающий сшитые через лизиновый мостик последовательности 562–572, стимулировали АЦ и ГТФ-связывающую активность G_s -белков в тестикулярных и овариальных мембранах крыс [671, 672]. Пепдуцин 562–572-К(Palm)А превосходил как немодифицированный аналог, так и более протяженный пептид 558–572, что подтверждает концепцию о том, что гидрофобный радикал, имитирующий ТМ (в нашем случае ТМб), важен для активности пепдуцинов. Было установлено, что пепдуцин 562–572-К(Palm)А специфично активирует чувствительные к холерному токсину G_s -белки, существенно не влияя на $G_{i/o}$ - и $G_{q/11}$ -белки, также сопряженные с рецептором ЛГ/ХГЧ [672].

При изучении различных вариантов липофильных производных пептида 562–572, модифицированных деканоильными и пальмитоильными радикалами, было показано, что модификация ацильным радикалом с N-конца, который в молекуле рецептора соответствует середине гидрофильной ICL3, нарушает структуру пептида, в то время как деканоат в любой локализации недостаточен по длине и гидрофобности для транслокации пептида через мембрану и(или) для стабилизации его конформации, необходимой для эффективного взаимодействия с рецептором [689].

Для изучения активности пепдуцина 562-572-К(Palm)А in vivo осуществляли его введение самцам крыс линии Wistar. При интратестикулярном введении этот пепдуцин дозозависимо повышал продукцию тестостерона, что подтверждает наличие у него стероидогенной активности. Однако отсутствие значимого влияния пепдуцина на уровень тестостерона при его внутрибрюшинном введении свидетельствует о его деградации в кровотоке, что требует дальнейших исследований по созданию устойчивых к протеолизу аналогов этого пепдуцина [690]. Полученные результаты доказывают наличие внутриклеточного аллостерического сайта в молекуле рецептора ЛГ/ХГЧ, который может стать мишенью для позитивной и негативной регуляции ЛГ-сигналинга.

На рис. 3 суммированы данные по локализации аллостерических сайтов в молекуле рецептора

Рис. 4. Общая схема аллостерической регуляции GPCR. Представлены основные классы эндогенных аллостерических регуляторов GPCR, включая трансдукторные (G-белки, β-аррестины) и акцессорные белки (RAMP, RTP, REEP, RCP, MRAP), простые ионы, липиды, аминокислоты и регуляторы пептидной и белковой природы, а также аутоантитела к внеклеточным участкам рецепторов. Также указаны протомеры GPCR, относящихся как к одному, так и к различным типам рецепторов, которые при образовании ди- и олигомерных комплексов влияют на функциональную активность GPCR в составе таких комплексов. Даны синтетические аллостерические регуляторы с различным профилем фармакологической активностью, являющиеся как низкомолекулярными соединениями, так и регуляторами пептидной природы (пепдуцины).

Сокращения: RAMPs – Receptor-activity-modifying proteins; RTPs – Receptor-transporting proteins; REEPs – Receptor expression-enhancing proteins; RCPs – Receptor-component proteins; MRAPs – Melanocortin receptor-accessory proteins; MBP – myelin basic protein; 5-HT modulin – 5-Hydroxytryptamine modulin.

 $\Pi\Gamma/X\GammaЧ$, а также по основным, известным в настоящее время их аллостерическим регуляторам. Как и в случае рецептора ТТГ, множественность аллостерических сайтов в рецепторе $\Pi\Gamma/X\GammaЧ$ является основой для тонкой регуляции $\Pi\Gamma$ -зависимых сигнальных каскадов в клетках-мишенях. К этому необходимо добавить возможность трансактивации рецептора $\Pi\Gamma/X\GammaЧ$ в комплексе с рецептором $\Phi C\Gamma$, что также является одним из важнейших механизмов регуляции, сочетающей в себе как ортостерические, так и аллостерические влияния.

На рис. 4 представлены разработанные в настоящее время синтетические аллостерические регуляторы рецептора $Л\Gamma/X\Gamma$ Ч с активностью полных или частичных агонистов, в том числе пептидной природы (пепдуцин 562–572 и его димерный конструкт), нейтральных антагонистов, инверсионных агонистов, NAM, а также соединений со смешанным профилем фармакологической активности (инверсионный агонист/NAM). В трансмембранном домене рецептора $Л\Gamma/X\Gamma$ Ч показаны основные локусы, AS-1, AS-2 и AS-3, являющиеся мишенями для аллостерических регуляторов, причем в каждом локусе может быть локализовано несколько топологически различающихся аллостерических сайтов. В локусе AS-2 аллостерические сайты могут быть расположены внутри трансмембранного канала (предпочтительная локализация) или снаружи его, на границе трансмембранного домена с липидной фазой мембраны. Показаны возможные мишени действия аутоантител к рецептору ЛГ/ХГЧ, наделенных активностью стимуляторов ЛГ-зависимого сигналинга. Подробности см. в табл. 4 и в соответствующих подразделах раздела X.

ЗАКЛЮЧЕНИЕ

Прогресс, достигнутый в последние годы в изучении аллостерических сайтов GPCR и их эндогенных лигандов, отчетливо демонстрирует, что регуляторные механизмы, определяющие функциональную активность GPCR, гораздо богаче и сложнее, чем предполагали ранее. Перед удивленным взором ученых, работающих в области изучения сигнальных систем клетки, предстала целая Вселенная аллостерической регуляции GPCR, которая включает как множество аллостерических сайтов, локализованных в различных локусах ре-

цепторов, взаимосвязанных между собой и взаимодействующих с ортостерическим сайтом, так и множество эндогенных аллостерических регуляторов, наделенных как модулирующей, так и собственной активностью, которые с различной степенью специфичности взаимодействуют с этими сайтами. Ситуация усложняется тем, что аллостерические влияния реализуются не только на уровне функционирования отдельной молекулы рецептора, но и на уровне рецепторных комплексов и комплексов GPCR с другими компонентами сигнальной трансдукции. Тем самым информационная емкость системы передачи сигнала через GPCR, паттерн функциональных состояний рецепторов и диапазон возможных физиологических ответов на активацию рецептора различными по природе и механизмам действия агонистами повышаются в очень большой степени. Отсюда кажущаяся "непредсказуемость" сигнальной трансдукции, которая в реальности отражает широкий спектр аллостерических влияний, которые, накладываясь друг на друга, осуществляют тонкую настройку GPCR на определенную внутриклеточную мишень с вполне определенной силой воздействия.

Основы аллостерической регуляции закладывались на самых ранних стадиях эволюции GPCR, поскольку аллостерические сайты, являющиеся мишенями для простых ионов, липидов и аминокислот, сформировались еще в GPCR одноклеточных эукариот, грибов и растений. Более того, основы такой регуляции могли сформироваться еще на уровне сенсорных белков прокариот, предшественников GPCR, активность которых во многом определялась кислотностью среды (рН), простыми ионами и некоторыми липидами. Фактически, паттерн аллостерической регуляции является первичным для ортостерической регуляции, хотя в дальнейшем обе эти формы регуляции эволюционировали совместно. При этом имеются все основания полагать, что, по крайней мере для некоторых представителей GPCR, происходила смена ролей одного и того же по топологии и структурной организации сайта, который на одних этапах эволюции функционировал как аллостерический, а в дальнейшем становился ортостерическим сайтом, и наоборот. К сожалению, этот вопрос в настоящее время остается малоисследованным.

Многообразие аллостерических влияний можно обобщить в виде схемы, на которой представлены как разнообразные эндогенные аллостерические регуляторы, включая аутоантитела к GPCR и белки, компоненты GPCR-опосредуемого сигналинга (G-белки, β -аррестины, RAMP), так и синтетические аллостерические регуляторы, которые сейчас интенсивно разрабатываются и уже оказались в фокусе внимания фармацевтической индустрии (рис. 4). При этом перечень аллостерических регуляторов постоянно пополняется, как и уточняются механизмы их действия на GPCR и сигнальные си-

стемы в целом, что особенно важно для разработки молекулярных основ предвзятого агонизма.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Работа выполнена при поддержке Российского научного фонда (проект № 19-75-20122).

КОНФЛИКТ ИНТЕРЕСОВ

Автор декларирует отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией данного обзора.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Sriram K, Insel PA* (2018) G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? Mol Pharmacol 93: 251–258. https://doi.org/10.1124/mol.117.111062
- Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, Yuliantie E, Xie L, Tao H, Cheng J, Liu Q, Zhao S, Shui W, Jiang Y, Wang MW (2021) G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct Target Ther 6: 7. https://doi.org/10.1038/s41392-020-00435-w
- 3. *Mirzadegan T, Benkö G, Filipek S, Palczewski K* (2003) Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. Biochemistry 42: 2759–2767. https://doi.org/10.1021/bi027224+
- 4. *Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB* (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63: 1256–1272. https://doi.org/10.1124/mol.63.6.1256
- Schiöth HB, Fredriksson R (2005) The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen Comp Endocrinol 142: 94–101. https://doi.org/10.1016/j.ygcen.2004.12.018
- Erlandson SC, McMahon C, Kruse AC (2018) Structural Basis for G Protein-Coupled Receptor Signaling. Ann Rev Biophys 47: 1–18. https://doi.org/10.1146/annurev-biophys-070317-032931
- Congreve M, de Graaf C, Swain NA, Tate CG (2020) Impact of GPCR Structures on Drug Discovery. Cell 181: 81–91. https://doi.org/10.1016/j.cell.2020.03.003
- 8. *Pelé J, Abdi H, Moreau M, Thybert D, Chabbert M* (2011) Multidimensional scaling reveals the main evolutionary pathways of class A G-protein-coupled receptors. PLoS One 6: e19094.

https://doi.org/10.1371/journal.pone.0019094

 Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289: 739–745. https://doi.org/10.1126/science.289.5480.739

- Schwartz TW, Frimurer TM, Holst B, Rosenkilde MM, Elling CE (2006) Molecular mechanism of 7TM receptor activation—a global toggle switch model. Ann Rev Pharmacol Toxicol 46: 481–519. https://doi.org/10.1146/annurev.pharmtox.46.120604.141218
- 11. *Kobilka BK* (2007) G protein coupled receptor structure and activation. Biochim Biophys Acta 1768: 794–807. https://doi.org/10.1016/j.bbamem.2006.10.021
- Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318: 1258–1265. https://doi.org/10.1126/science.1150577
- Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450: 383– 387.

https://doi.org/10.1038/nature06325

- Liang YL, Khoshouei M, Radjainia M, Zhang Y, Glukhova A, Tarrasch J, Thal DM, Furness SGB, Christopoulos G, Coudrat T, Danev R, Baumeister W, Miller LJ, Christopoulos A, Kobilka BK, Wootten D, Skiniotis G, Sexton PM (2017) Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 2017 546: 118–123. https://doi.org/10.1038/nature22327
- 15. Yang S, Wu Y, Xu TH, de Waal PW, He Y, Pu M, Chen Y, DeBruine ZJ, Zhang B, Zaidi SA, Popov P, Guo Y, Han GW, Lu Y, Suino-Powell K, Dong S, Harikumar KG, Miller LJ, Katritch V, Xu HE, Shui W, Stevens RC, Melcher K, Zhao S, Xu F (2018) Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature 560: 666–670. https://doi.org/10.1038/s41586-018-0447-x
- Liessmann F, Künze G, Meiler J (2023) Improving the Modeling of Extracellular Ligand Binding Pockets in RosettaGPCR for Conformational Selection. Int J Mol Sci 24: 7788.
 - https://doi.org/10.3390/ijms24097788
- An K, Zhu X, Bai C (2022) The Nature of Functional Features of Different Classes of G-Protein-Coupled Receptors. Biology (Basel) 11: 1839. https://doi.org/10.3390/biology11121839
- Noonan T, Denzinger K, Talagayev V, Chen Y, Puls K, Wolf CA, Liu S, Nguyen TN, Wolber G (2022) Mind the Gap-Deciphering GPCR Pharmacology Using 3D Pharmacophores and Artificial Intelligence. Pharmaceuticals (Basel) 15: 1304. https://doi.org/10.3390/ph15111304
- Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85: 1159–1204. https://doi.org/10.1152/physrev.00003.2005
- McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS (2005) G-protein signaling: back to the future. Cell Mol Life Sci 62: 551–577. https://doi.org/10.1007/s00018-004-4462-3

- Dohlman HG, Jones JC (2012) Signal activation and inactivation by the Gα helical domain: a long-neglected partner in G protein signaling. Sci Signal 5: re2. https://doi.org/10.1126/scisignal.2003013
- 22. Schappi JM, Krbanjevic A, Rasenick MM (2014) Tubulin, actin and heterotrimeric G proteins: coordination of signaling and structure. Biochim Biophys Acta 1838: 674–681.

https://doi.org/10.1016/j.bbamem.2013.08.026

- 23. *Shpakov AO* (2003) Participation of charged amino acid residues of cytoplasmic loops of serpentine type receptors in the process of transmission of hormonal signal. J Evol Biochem Physiol 39: 266–280. https://doi.org/10.1023/A:1026135522916
- Probst WC, Snyder LA, Schuster DI, Brosius J, Sealfon SC (1992) Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol 11: 1–20. https://doi.org/10.1089/dna.1992.11.1
- Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21: 90–113. https://doi.org/10.1210/edrv.21.1.0390
- LeBlanc MG, Lehmann R (2017) Domain-specific control of germ cell polarity and migration by multifunction Tre1 GPCR. J Cell Biol 216: 2945–2958. https://doi.org/10.1083/jcb.201612053
- Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S (2012) Action of molecular switches in GPCRs-theoretical and experimental studies. Curr Med Chem 19: 1090–10109. https://doi.org/10.2174/092986712799320556
- Venkatakrishnan AJ, Deupi X, Lebon G, Heydenreich FM, Flock T, Miljus T, Balaji S, Bouvier M, Veprintsev DB, Tate CG, Schertler GF, Babu MM (2016) Diverse activation pathways in class A GPCRs converge near the Gprotein-coupling region. Nature 536: 484–487. https://doi.org/10.1038/nature19107
- Mitchell R, McCulloch D, Lutz E, Johnson M, MacKenzie C, Fennell M, Fink G, Zhou W, Sealfon SC (1998) Rhodopsin-family receptors associate with small G proteins to activate phospholipase D. Nature 392: 411–414. https://doi.org/10.1038/32937
- Brzostowski JA, Kimmel AR (2001) Signaling at zero G: Gprotein-independent functions for 7-TM receptors. Trends Biochem Sci 26: 291–297. https://doi.org/10.1016/s0968-0004(01)01804-7
- Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308: 512–517. https://doi.org/10.1126/science.1109237
- 32. *Rajagopal S, Rajagopal K, Lefkowitz RJ* (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9: 373–386. https://doi.org/10.1038/nrd3024
- 33. *Magalhaes AC, Dunn H, Ferguson SS* (2012) Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol 165: 1717–1736. https://doi.org/10.1111/j.1476-5381.2011.01552.x
- 34. *Aydin Y, Coin I* (2021) Biochemical insights into structure and function of arrestins. FEBS J 288: 2529–2549. https://doi.org/10.1111/febs.15811

- Kim K, Han Y, Duan L, Chung KY (2022) Scaffolding of Mitogen-Activated Protein Kinase Signaling by β-Arrestins. Int J Mol Sci 23: 1000. https://doi.org/10.3390/ijms23021000
- 36. Smith JS, Pack TF (2021) Noncanonical interactions of G proteins and β-arrestins: from competitors to companions. FEBS J 288: 2550–2561. https://doi.org/10.1111/febs.15749
- Alvarez CE (2008) On the origins of arrestin and rhodopsin. BMC Evol Biol 8: 222. https://doi.org/10.1186/1471-2148-8-222
- Peterson YK, Luttrell LM (2017) The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 69: 256–297. https://doi.org/10.1124/pr.116.013367
- Dores MR, Trejo J (2015) GPCR sorting at multivesicular endosomes. Methods Cell Biol 130: 319–332. https://doi.org/10.1016/bs.mcb.2015.05.006
- 40. *Li X, Rosciglione S, Laniel A, Lavoie C* (2019) Combining RNAi and Immunofluorescence Approaches to Investigate Post-endocytic Sorting of GPCRs into Multivesicular Bodies. Methods Mol Biol 1947: 303–322. https://doi.org/10.1007/978-1-4939-9121-1 17
- Daaka Y, Luttrell LM, Ahn S, Della Rocca GJ, Ferguson SS, Caron MG, Lefkowitz RJ (1998) Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J Biol Chem 273: 685–688.
 - https://doi.org/10.1074/jbc.273.2.685
- 42. *Ma L, Pei G* (2007) Beta-arrestin signaling and regulation of transcription. J Cell Sci 120: 213–228. https://doi.org/10.1242/jcs.03338
- 43. *Tian X, Kang DS, Benovic JL* (2014) β-arrestins and G protein-coupled receptor trafficking. Handb Exp Pharmacol 219: 173–186. https://doi.org/10.1007/978-3-642-41199-1_9
- 44. *Seyedabadi M, Ghahremani MH, Albert PR* (2019) Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 200: 148–178. https://doi.org/10.1016/j.pharmthera.2019.05.006
- 45. Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV (2022) Structural basis of GPCR coupling to distinct signal transducers: implications for biased signaling. Trends Biochem Sci 47: 570–581. https://doi.org/10.1016/j.tibe.2022.02.000

https://doi.org/10.1016/j.tibs.2022.03.009

- 46. Apostolakou AE, Baltoumas FA, Stravopodis DJ, Iconomidou VA (2020) Extended Human G-Protein Coupled Receptor Network: Cell-Type-Specific Analysis of G-Protein Coupled Receptor Signaling Pathways. J Proteome Res 19: 511–524. https://doi.org/10.1021/acs.jproteome.9b00754
- 47. *Ma TL, Zhou Y, Zhang CY, Gao ZA, Duan JX* (2021) The role and mechanism of β -arrestin2 in signal transduction. Life Sci 275: 119364. https://doi.org/10.1016/j.lfs.2021.119364
- 48. *Chen Q, Tesmer JJG* (2022) G protein-coupled receptor interactions with arrestins and GPCR kinases: The unresolved issue of signal bias. J Biol Chem 298 (9): 102279. https://doi.org/10.1016/j.jbc.2022.102279

- 49. Jiang H, Galtes D, Wang J, Rockman HA (2022) G protein-coupled receptor signaling: transducers and effectors. Am J Physiol Cell Physiol 323: C731–C748. https://doi.org/10.1152/ajpcell.00210.2022
- DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Betaarrestins and cell signaling. Annu Rev Physiol 69: 483– 510. https://doi.org/10.1146/annurev.physi-

01.69.022405.154749

- Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283: 655–661. https://doi.org/10.1126/science.283.5402.655
- 52. Barlic J, Andrews JD, Kelvin AA, Bosinger SE, DeVries ME, Xu L, Dobransky T, Feldman RD, Ferguson SS, Kelvin DJ (2000) Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. Nat Immunol 1: 227–233. https://doi.org/10.1038/79767
- 53. Mazzi P, Caveggion E, Lapinet-Vera JA, Lowell CA, Berton G (2015) The Src-Family Kinases Hck and Fgr Regulate Early Lipopolysaccharide-Induced Myeloid Cell Recruitment into the Lung and Their Ability To Secrete Chemokines. J Immunol 195: 2383–2395. https://doi.org/10.4049/jimmunol.1402011
- 54. Perez I, Berndt S, Agarwal R, Castro MA, Vishnivetskiy SA, Smith JC, Sanders CR, Gurevich VV, Iverson TM (2022) A Model for the Signal Initiation Complex Between Arrestin-3 and the Src Family Kinase Fgr. J Mol Biol 434: 167400.
 - https://doi.org/10.1016/j.jmb.2021.167400
- 55. Kim IM, Wang Y, Park KM, Tang Y, Teoh JP, Vinson J, Traynham CJ, Pironti G, Mao L, Su H, Johnson JA, Koch WJ, Rockman HA (2014) β-arrestin1-biased β1-adrenergic receptor signaling regulates microRNA processing. Circ Res 114: 833–844. https://doi.org/10.1161/CIRCRESAHA.114.302766
- 56. Teoh JP, Bayoumi AS, Aonuma T, Xu Y, Johnson JA, Su H, Weintraub NL, Tang Y, Kim IM (2018) β -arrestin-biased agonism of β -adrenergic receptor regulates Dicer-mediated microRNA maturation to promote cardioprotective signaling. J Mol Cell Cardiol 118: 225–236. https://doi.org/10.1016/j.yjmcc.2018.04.001
- 57. Wang J, Pani B, Gokhan I, Xiong X, Kahsai AW, Jiang H, Ahn S, Lefkowitz RJ, Rockman HA (2021) β-Arrestin-Biased Allosteric Modulator Potentiates Carvedilol-Stimulated β Adrenergic Receptor Cardioprotection. Mol Pharmacol 100: 568–579. https://doi.org/10.1124/molpharm.121.000359
- 58. Saulière A, Bellot M, Paris H, Denis C, Finana F, Hansen JT, Altié MF, Seguelas MH, Pathak A, Hansen JL, Sénard JM, Galés C (2012) Deciphering biased-agonism complexity reveals a new active AT1 receptor entity. Nat Chem Biol 8: 622–630. https://doi.org/10.1038/nchembio.961
- 59. Strachan RT, Sun JP, Rominger DH, Violin JD, Ahn S, Rojas Bie Thomsen A, Zhu X, Kleist A, Costa T, Lefkowitz RJ (2014) Divergent transducer-specific molecular efficacies generate biased agonism at a G protein-cou-

pled receptor (GPCR). J Biol Chem 289: 14211-14224. https://doi.org/10.1074/jbc.M114.548131

- 60. O'Hayre M, Eichel K, Avino S, Zhao X, Steffen DJ, Feng X, Kawakami K, Aoki J, Messer K, Sunahara R, Inoue A, von Zastrow M, Gutkind JS (2017) Genetic evidence that β arrestins are dispensable for the initiation of β_2 -adrenergic receptor signaling to ERK. Sci Signal 10: eaal3395. https://doi.org/10.1126/scisignal.aal3395
- 61. Grundmann M, Merten N, Malfacini D, Inoue A, Preis P, Simon K, Rüttiger N, Ziegler N, Benkel T, Schmitt NK, Ishida S, Müller I, Reher R, Kawakami K, Inoue A, Rick U, Kühl T, Imhof D, Aoki J, König GM, Hoffmann C, Gomeza J, Wess J, Kostenis E (2018) Lack of beta-arrestin signaling in the absence of active G proteins. Nat Commun 9: 341.

https://doi.org/10.1038/s41467-017-02661-3

- 62. Haider RS, Matthees ESF, Drube J, Reichel M, Zabel U, Inoue A, Chevigné A, Krasel C, Deupi X, Hoffmann C (2022) β -arrestin1 and 2 exhibit distinct phosphorylation-dependent conformations when coupling to the same GPCR in living cells. Nat Commun 13: 5638. https://doi.org/10.1038/s41467-022-33307-8
- 63. Oesterhelt D (1998) The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr Opin Struct Biol 8: 489-500. https://doi.org/10.1016/s0959-440x(98)80128-0
- 64. Fuhrman JA, Schwalbach MS, Stingl U (2008) Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol 6: 488-494. https://doi.org/10.1038/nrmicro1893
- 65. Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H (2014) Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 114: 126-163. https://doi.org/10.1021/cr4003769
- 66. Mackin KA, Roy RA, Theobald DL (2014) An empirical test of convergent evolution in rhodopsins. Mol Biol Evol 31:85-95.
 - https://doi.org/10.1093/molbev/mst171
- 67. Zhang Z, Jin Z, Zhao Y, Zhang Z, Li R, Xiao J, Wu J (2014) Systematic study on G-protein couple receptor prototypes: did they really evolve from prokaryotic genes? IET Syst Biol 2014 8: 154-161. https://doi.org/10.1049/iet-syb.2013.0037
- 68. O'Hara PJ, Sheppard PO, Thøgersen H, Venezia D, Haldeman BA, McGrane V, Houamed KM, Thomsen C, Gilbert TL, Mulvihill ER (1993) The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11: 41-52.

https://doi.org/10.1016/0896-6273(93)90269-w

69. Taylor EW, Agarwal A (1993) Sequence homology between bacteriorhodopsin and G-protein coupled receptors: exon shuffling or evolution by duplication? FEBS Lett 325: 161-166.

https://doi.org/10.1016/0014-5793(93)81065-8

70. Soppa J (1994) Two hypotheses—one answer. Sequence comparison does not support an evolutionary link between halobacterial retinal proteins including bacteriorhodopsin and eukaryotic G-protein-coupled receptors. FEBS Lett 342: 7-11.

https://doi.org/10.1016/0014-5793(94)80573-3

- 71. Larusso ND, Ruttenberg BE, Singh AK, Oakley TH (2008) Type II opsins: evolutionary origin by internal domain duplication? J Mol Evol 66: 417-423. https://doi.org/10.1007/s00239-008-9076-6
- 72. Kojima K, Sudo Y (2023) Convergent evolution of animal and microbial rhodopsins. RSC Adv 13: 5367-5381. https://doi.org/10.1039/d2ra07073a
- 73. Zhai Y, Heijne WH, Smith DW, Saier MH Jr (2001) Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein. Biochim Biophys Acta 1511: 206-223. https://doi.org/10.1016/s0005-2736(00)00389-8
- 74. Feuda R, Hamilton SC, McInerney JO, Pisani D (2012)
- Metazoan opsin evolution reveals a simple route to animal vision. Proc Natl Acad Sci U S A 109: 18868-18872. https://doi.org/10.1073/pnas.1204609109
- 75. Krishnan A, Almén MS, Fredriksson R, Schiöth HB (2012) The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS One 7: e29817. https://doi.org/10.1371/journal.pone.0029817
- 76. Shpakov AO, Pertseva MN (2008) Signaling systems of lower eukaryotes and their evolution. Int Rev Cell Mol Biol 269: 151-282. https://doi.org/10.1016/S1937-6448(08)01004-6
- 77. Xue C, Hsueh YP, Heitman J (2008) Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32: 1010–1032. https://doi.org/10.1111/j.1574-6976.2008.00131.x
- 78. Brown NA, Schrevens S, van Dijck P, Goldman GH (2018) Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control. Nat Microbiol 3: 402-414. https://doi.org/10.1038/s41564-018-0127-5
- 79. Li L, Wright SJ, Krystofova S, Park G, Borkovich KA (2007) Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61: 423-452. https://doi.org/10.1146/annurev.micro.61.080706.093432
- 80. Overton MC, Chinault SL, Blumer KJ (2005) Oligomerization of G-protein-coupled receptors: lessons from the yeast Saccharomyces cerevisiae. Eukaryot Cell 4: 1963-1970.

https://doi.org/10.1128/EC.4.12.1963-1970.2005

81. Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O'Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68: 1–108. https://doi.org/10.1128/MMBR.68.1.1-108.2004

- Lafon A, Han KH, Seo JA, Yu JH, d'Enfert C (2006) G-protein and cAMP-mediated signaling in aspergilli: a genomic perspective. Fungal Genet Biol 43: 490–502. https://doi.org/10.1016/j.fgb.2006.02.001
- Prabhu Y, Mondal S, Eichinger L, Noegel AA (2007) A GPCR involved in post aggregation events in Dictyostelium discoideum. Dev Biol 312: 29–43. https://doi.org/10.1016/j.ydbio.2007.08.055
- 84. Dilks T, Halsey K, De Vos RP, Hammond-Kosack KE, Brown NA (2019) Non-canonical fungal G-protein coupled receptors promote Fusarium head blight on wheat. PLoS Pathog 15: e1007666. https://doi.org/10.1371/journal.ppat.1007666
- 85. Kou Y, Tan YH, Ramanujam R, Naqvi NI (2016) Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast. New Phytol 214: 330–342. https://doi.org/10.1111/nph.14347
- 86. van den Hoogen J, Govers F (2018) GPCR-bigrams: Enigmatic signaling components in oomycetes. PLoS Pathog 14: e1007064. https://doi.org/10.1371/journal.ppat.1007064

- van den Hoogen DJ, Meijer HJG, Seidl MF, Govers F (2018) The Ancient Link between G-Protein-Coupled Receptors and C-Terminal Phospholipid Kinase Domains. mBio. 9: e02119-17. https://doi.org/10.1128/mBio.02119-17
- 88. Riyahi TY, Frese F, Steinert M, Omosigho NN, Glöckner G, Eichinger L, Orabi B, Williams RS, Noegel AA (2011) RpkA, a highly conserved GPCR with a lipid kinase domain, has a role in phagocytosis and anti-bacterial defense. PLoS One 6: e27311. https://doi.org/10.1371/journal.pong.0027311

https://doi.org/10.1371/journal.pone.0027311

- 89. Hua C, Meijer HJ, de Keijzer J, Zhao W, Wang Y, Govers F (2013) GK4, a G-protein-coupled receptor with a phosphatidylinositol phosphate kinase domain in Phytophthora infestans, is involved in sporangia development and virulence. Mol Microbiol 88: 352–370. https://doi.org/10.1111/mmi.12190
- 90. Yang X, Zhao W, Hua C, Zheng X, Jing M, Li D, Govers F, Meijer HJ, Wang Y (2013) Chemotaxis and oospore formation in Phytophthora sojae are controlled by G-protein-coupled receptors with a phosphatidylinositol phosphate kinase domain. Mol Microbiol 88: 382–394. https://doi.org/10.1111/mmi.12191
- Шпаков AO (2009) Пептидные аутоиндукторы бактерий. Микробиология 78: 291–303. [Shpakov AO (2009) [Bacterial autoinducing peptides]. Mikrobiologiia 78: 291–303. (In Russ)].
- 92. Шпаков AO (2009) Сигнальные молекулы бактерий непептидной природы QS-типа. Микробиология 78: 163–175. [Shpakov AO (2009) [Bacterial nonpeptide quorum-sensing signal molecules]. Mikrobiologiia 78: 163–175. (In Russ).]
- 93. Liu Y, Wang X, Dong D, Guo L, Dong X, Leng J, Zhao B, Guo YD, Zhang N (2021) Research Advances in Heterotrimeric G-Protein α Subunits and Uncanonical G-Protein Coupled Receptors in Plants. Int J Mol Sci 22: 8678. https://doi.org/10.3390/ijms22168678

- 94. Pandey S, Assmann SM (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16: 1616–1632. https://doi.org/10.1105/tpc.020321
- 95. Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315: 1712–1716. https://doi.org/10.1126/science.1135882
- 96. Wei J, Li DX, Zhang JR, Shan C, Rengel Z, Song ZB, Chen Q (2018) Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J Pineal Res 65: e12500. https://doi.org/10.1111/jpi.12500
- 97. Chakraborty N, Kanyuka K, Jaiswal DK, Kumar A, Arora V, Malik A, Gupta N, Hooley R, Raghuram N (2019) GCR1 and GPA1 coupling regulates nitrate, cell wall, immunity and light responses in Arabidopsis. Sci Rep 9: 5838.

https://doi.org/10.1038/s41598-019-42084-2

- Chen JG, Pandey S, Huang J, Alonso JM, Ecker JR, Assmann SM, Jones AM (2004) GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol 135: 907–915. https://doi.org/10.1104/pp.104.038992
- 99. Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K (2015) COLD1 confers chilling tolerance in rice. Cell 160: 1209–1221. https://doi.org/10.1016/j.cell.2015.01.046
- 100. *Reboul J, Ewbank JJ* (2016) GPCRs in invertebrate innate immunity. Biochem Pharmacol 114: 82–87. https://doi.org/10.1016/j.bcp.2016.05.015
- 101. Gupta A, Singh V (2017) GPCR Signaling in C. elegans and Its Implications in Immune Response. Adv Immunol 136: 203–226. https://doi.org/10.1016/bs.ai.2017.05.002
- 102. Liu N, Wang Y, Li T, Feng X (2021) G-Protein Coupled Receptors (GPCRs): Signaling Pathways, Characterization, and Functions in Insect Physiology and Toxicology. Int J Mol Sci 22: 5260. https://doi.org/10.3390/ijms22105260
- 103. Guo S, Zhao T, Yun Y, Xie X (2022) Recent progress in assays for GPCR drug discovery. Am J Physiol Cell Physiol 323: C583–C594. https://doi.org/10.1152/ajpcell.00464.2021
- 104. Anctil M, Hayward DC, Miller DJ, Ball EE (2007) Sequence and expression of four coral G protein-coupled receptors distinct from all classifiable members of the rhodopsin family. Gene 392: 14–21. https://doi.org/10.1016/j.gene.2006.10.025
- 105. Carre-Pierrat M, Baillie D, Johnsen R, Hyde R, Hart A, Granger L, Ségalat L (2006) Characterization of the Caenorhabditis elegans G protein-coupled serotonin receptors. Invert Neurosci 6: 189–205. https://doi.org/10.1007/s10158-006-0033-z
106. Fernandez RW, Wei K, Wang EY, Mikalauskaite D, Olson A, Pepper J, Christie N, Kim S, Weissenborn S, Sarov M, Koelle MR (2020) Cellular Expression and Functional Roles of All 26 Neurotransmitter GPCRs in the C. elegans Egg-Laying Circuit. J Neurosci 40: 7475– 7488.

https://doi.org/10.1523/JNEUROSCI.1357-20.2020

- 107. Phan P, Liang D, Zhao M, Wyeth RC, Fogarty C, Duke MG, McManus DP, Wang T, Cummins SF (2022) Analysis of rhodopsin G protein-coupled receptor orthologs reveals semiochemical peptides for parasite (Schistosoma mansoni) and host (Biomphalaria glabrata) interplay. Sci Rep 12: 8243. https://doi.org/10.1038/s41598-022-11996-x
- 108. Olson AC, Butt AM, Christie NTM, Shelar A, Koelle MR (2023) Multiple Subthreshold GPCR Signals Combined by the G-Proteins $G\alpha_q$ and $G\alpha_s$ Activate the *Caenorhabditis elegans* Egg-Laying Muscles. J Neurosci 43: 3789– 3806.

https://doi.org/10.1523/JNEUROSCI.2301-22.2023

- 109. Stafflinger E, Hansen KK, Hauser F, Schneider M, Cazzamali G, Williamson M, Grimmelikhuijzen CJ (2008) Cloning and identification of an oxytocin/vasopressinlike receptor and its ligand from insects. Proc Natl Acad Sci U S A 105: 3262–3267. https://doi.org/10.1073/pnas.0710897105
- 110. Muratspahić E, Monjon E, Duerrauer L, Rogers SM, Cullen DA, Vanden Broeck J, Gruber CW (2020) Oxytocin/vasopressin-like neuropeptide signaling in insects. Vitam Horm 113: 29–53. https://doi.org/10.1016/bs.vh.2019.08.011
- 111. *Tu S, Xu R, Wang M, Xie X, Bao C, Zhu D* (2021) Identification and characterization of expression profiles of neuropeptides and their GPCRs in the swimming crab, *Portunus trituberculatus*. PeerJ 9: e12179.

https://doi.org/10.7717/peerj.12179

112. *Ritschard EA, Fitak RR, Simakov O, Johnsen S* (2019) Genomic signatures of G-protein-coupled receptor expansions reveal functional transitions in the evolution of cephalopod signal transduction. Proc Biol Sci 286: 20182929.

https://doi.org/10.1098/rspb.2018.2929

- 113. Fu H, Tian J, Shi C, Li Q, Liu S (2022) Ecological significance of G protein-coupled receptors in the Pacific oyster (Crassostrea gigas): Pervasive gene duplication and distinct transcriptional response to marine environmental stresses. Mar Pollut Bull 185: 114269. https://doi.org/10.1016/j.marpolbul.2022.114269
- 114. Hauser F, Koch TL, Grimmelikhuijzen CJP (2022) Review: The evolution of peptidergic signaling in Cnidaria and Placozoa, including a comparison with Bilateria. Front Endocrinol (Lausanne) 13: 973862. https://doi.org/10.3389/fendo.2022.973862
- 115. Bock A, Bermudez M (2021) Allosteric coupling and biased agonism in G protein-coupled receptors. FEBS J 288: 2513–2528. https://doi.org/10.1111/febs.15783
- 116. Shpakov AO (2023) Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Li-

gands. Int J Mol Sci 24: 6187. https://doi.org/10.3390/ijms24076187

- 117. Grundmann M, Bender E, Schamberger J, Eitner F (2021) Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. Int J Mol Sci 22: 1763. https://doi.org/10.3390/ijms22041763
- 118. Kenakin T, Strachan RT (2018) PAM-Antagonists: A Better Way to Block Pathological Receptor Signaling? Trends Pharmacol Sci 39: 748–765. https://doi.org/10.1016/j.tips.2018.05.001
- 119. Christopoulos A, Kenakin T (2002) G protein-coupled receptor allosterism and complexing. Pharmacol Rev 54: 323–374. https://doi.org/10.1124/pr.54.2.323
- 120. Reinecke BA, Wang H, Zhang Y (2019) Recent Advances in the Drug Discovery and Development of Dualsteric/ Bitopic Activators of G Protein-Coupled Receptors. Curr Top Med Chem 19: 2378–2392. https://doi.org/10.2174/1568026619666191009164609
- 121. Jakubík J, Randáková A, Chetverikov N, El-Fakahany EE, Doležal V (2020) The operational model of allosteric modulation of pharmacological agonism. Sci Rep 10: 14421.

https://doi.org/10.1038/s41598-020-71228-y

- 122. *Kamal M, Jockers R* (2009) Bitopic ligands: all-in-one orthosteric and allosteric. F1000 Biol Rep 1: 77. https://doi.org/10.3410/B1-77
- 123. Valant C, Sexton PM, Christopoulos A (2009) Orthosteric/allosteric bitopic ligands: going hybrid at GPCRs. Mol Interv 9: 125–135. https://doi.org/10.1124/mi.9.3.6
- 124. Valant C, Robert Lane J, Sexton PM, Christopoulos A (2012) The best of both worlds? Bitopic orthosteric/allosteric ligands of g protein-coupled receptors. Annu Rev Pharmacol Toxicol 52: 153–178. https://doi.org/10.1146/annurev-pharmtox-010611-134514
- 125. Lane JR, Sexton PM, Christopoulos A (2013) Bridging the gap: bitopic ligands of G-protein-coupled receptors. Trends Pharmacol Sci 34: 59–66. https://doi.org/10.1016/j.tips.2012.10.003
- 126. Fronik P, Gaiser BI, Sejer Pedersen D (2017) Bitopic Ligands and Metastable Binding Sites: Opportunities for G Protein-Coupled Receptor (GPCR) Medicinal Chemistry. J Med Chem 60: 4126–4134. https://doi.org/10.1021/acs.jmedchem.6b01601
- 127. Egyed A, Kiss DJ, Keserű GM (2022) The Impact of the Secondary Binding Pocket on the Pharmacology of Class A GPCRs. Front Pharmacol 13: 847788. https://doi.org/10.3389/fphar.2022.847788
- 128. Ferrisi R, Gado F, Polini B, Ricardi C, Mohamed KA, Stevenson LA, Ortore G, Rapposelli S, Saccomanni G, Pertwee RG, Laprairie RB, Manera C, Chiellini G (2022) Design, synthesis and biological evaluation of novel orthosteric-allosteric ligands of the cannabinoid receptor type 2 (CB₂R). Front Chem 10: 984069. https://doi.org/10.3389/fchem.2022.984069
- 129. Newman AH, Battiti FO, Bonifazi A (2020) 2016 Philip S. Portoghese Medicinal Chemistry Lectureship: Designing Bivalent or Bitopic Molecules for G-Protein Cou-

pled Receptors. The Whole Is Greater Than the Sum of Its Parts. J Med Chem 63: 1779–1797. https://doi.org/10.1021/acs.jmedchem.9b01105

130. Schrage R, Kostenis E (2017) Functional selectivity and dualsteric/bitopic GPCR targeting. Curr Opin Pharmacol 32: 85-90.

https://doi.org/10.1016/j.coph.2016.12.001

- 131. Steinfeld T, Mammen M, Smith JA, Wilson RD, Jasper JR (2007) A novel multivalent ligand that bridges the allosteric and orthosteric binding sites of the M2 muscarinic receptor. Mol Pharmacol 72: 291-302. https://doi.org/10.1124/mol.106.033746
- 132. Antony J, Kellershohn K, Mohr-Andrä M, Kebig A, Prilla S, Muth M, Heller E, Disingrini T, Dallanoce C, Bertoni S, Schrobang J, Tränkle Č, Kostenis E, Christopoulos A, Höltje HD, Barocelli E, De Amici M, Holzgrabe U, Mohr K (2009) Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. FASEB J 23: 442-450.

https://doi.org/10.1096/fj.08-114751

133. Jakubík J, El-Fakahanv EE (2021) Allosteric Modulation of GPCRs of Class A by Cholesterol. Int J Mol Sci 22: 1953.

https://doi.org/10.3390/ijms22041953

- 134. Liu L, Fan Z, Rovira X, Xue L, Roux S, Brabet I, Xin M, Pin JP, Rondard P, Liu J (2021) Allosteric ligands control the activation of a class C GPCR heterodimer by acting at the transmembrane interface. Elife 10: e70188. https://doi.org/10.7554/eLife.70188
- 135. Hedderich JB, Persechino M, Becker K, Heydenreich FM, Gutermuth T, Bouvier M, Bünemann M, Kolb P (2022) The pocketome of G-protein-coupled receptors reveals previously untargeted allosteric sites. Nat Commun 13: 2567.

https://doi.org/10.1038/s41467-022-29609-6

- 136. Persechino M, Hedderich JB, Kolb P, Hilger D (2022) Allosteric modulation of GPCRs: From structural insights to in silico drug discovery. Pharmacol Ther 237: 108242. https://doi.org/10.1016/j.pharmthera.2022.108242
- 137. Vuckovic Z, Gentry PR, Berizzi AE, Hirata K, Varghese S, Thompson G, van der Westhuizen ET, Burger WAC, Rahmani R, Valant C, Langmead CJ, Lindsley CW, Baell JB, Tobin AB, Sexton PM, Christopoulos A, Thal DM (2019) Crystal structure of the M₅ muscarinic acetylcholine receptor. Proc Natl Acad Sci U S A 116: 26001-26007. https://doi.org/10.1073/pnas.1914446116
- 138. Felder CC, Goldsmith PJ, Jackson K, Sanger HE, Evans DA, Mogg AJ, Broad LM (2018) Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases. Neuropharmacology 136: 449-458. https://doi.org/10.1016/j.neuropharm.2018.01.028
- 139. Christopoulos A (2014) Advances in G protein-coupled receptor allostery: from function to structure. Mol Pharmacol 86: 463-478. https://doi.org/10.1124/mol.114.094342
- 140. Congreve M, Oswald C, Marshall FH (2017) Applying Structure-Based Drug Design Approaches to Allosteric Modulators of GPCRs. Trends Pharmacol Sci 38: 837-847.

https://doi.org/10.1016/j.tips.2017.05.010

- 141. Lu S, Shen Q, Zhang J (2019) Allosteric Methods and Their Applications: Facilitating the Discovery of Allosteric Drugs and the Investigation of Allosteric Mechanisms. Acc Chem Res 52: 492-500. https://doi.org/10.1021/acs.accounts.8b00570
- 142. Thal DM, Glukhova A, Sexton PM, Christopoulos A (2018) Structural insights into G-protein-coupled receptor allostery. Nature 559: 45-53. https://doi.org/10.1038/s41586-018-0259-z
- 143. Ahn S. Kahsai AW. Pani B. Wang OT. Zhao S. Wall AL. Strachan RT, Staus DP, Wingler LM, Sun LD, Sinnaeve J, Choi M, Cho T, Xu TT, Hansen GM, Burnett MB, Lamerdin JE, Bassoni DL, Gavino BJ, Husemoen G, Olsen EK, Franch T, Costanzi S, Chen X, Lefkowitz RJ (2017) Allosteric "beta-blocker" isolated from a DNA-encoded small molecule library. Proc Natl Acad Sci U S A 114: 1708-1713.

https://doi.org/10.1073/pnas.1620645114

- 144. Liu X, Ahn S, Kahsai AW, Meng KC, Latorraca NR, Pani B, Venkatakrishnan AJ, Masoudi A, Weis WI, Dror RO, Chen X, Lefkowitz RJ, Kobilka BK (2017) Mechanism of intracellular allosteric $\beta_2 AR$ antagonist revealed by X-ray crystal structure. Nature 548: 480-484. https://doi.org/10.1038/nature23652
- 145. Song G, Yang D, Wang Y, de Graaf C, Zhou Q, Jiang S, Liu K, Cai X, Dai A, Lin G, Liu D, Wu F, Wu Y, Zhao S, Ye L, Han GW, Lau J, Wu B, Hanson MA, Liu ZJ, Wang MW, Stevens RC (2017) Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546: 312–315. https://doi.org/10.1038/nature22378
- 146. Oswald C, Rappas M, Kean J, Doré AS, Errey JC, Bennett K, Deflorian F, Christopher JA, Jazayeri A, Mason JS, Congreve M, Cooke RM, Marshall FH (2016) Intracellular allosteric antagonism of the CCR9 receptor. Nature 540: 462-465. https://doi.org/10.1038/nature20606
- 147. Zheng Y, Qin L, Zacarías NV, de Vries H, Han GW, Gustavsson M, Dabros M, Zhao C, Cherney RJ, Carter P, Stamos D, Abagyan R, Cherezov V, Stevens RC, IJzerman AP, Heitman LH, Tebben A, Kufareva I, Handel TM (2016) Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540: 458-461. https://doi.org/10.1038/nature20605
- 148. Wakefield AE, Mason JS, Vajda S, Keserű GM (2019) Analysis of tractable allosteric sites in G protein-coupled receptors. Sci Rep 9: 6180. https://doi.org/10.1038/s41598-019-42618-8
- 149. Renault P, Giraldo J (2020) Dynamical Correlations Reveal Allosteric Sites in G Protein-Coupled Receptors. Int J Mol Sci 22: 187. https://doi.org/10.3390/ijms22010187
- 150. Covic L, Gresser AL, Talavera J, Swift S, Kuliopulos A (2002) Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc Natl Acad Sci U S A 99: 643-648. https://doi.org/10.1073/pnas.022460899
- 151. Kuliopulos A. Covic L (2003) Blocking receptors on the inside: pepducin-based intervention of PAR signaling and thrombosis. Life Sci 74: 255-262. https://doi.org/10.1016/j.lfs.2003.09.012

- 152. Miller J, Agarwal A, Devi LA, Fontanini K, Hamilton JA, Pin JP, Shields DC, Spek CA, Sakmar TP, Kuliopulos A, Hunt SW 3rd (2009) Insider access: pepducin symposium explores a new approach to GPCR modulation. Ann N Y Acad Sci 1180 Suppl 1: E1–E12. https://doi.org/10.1111/j.1749-6632.2009.05326.x
- 153. Tressel SL, Koukos G, Tchernychev B, Jacques SL, Covic L, Kuliopulos A (2011) Pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models. Methods Mol Biol 683: 259–275. https://doi.org/10.1007/978-1-60761-919-2_19
- 154. van Straten NC, Schoonus-Gerritsma GG, van Someren RG, Draaijer J, Adang AE, Timmers CM, Hanssen RG, van Boeckel CA (2002) The first orally active low molecular weight agonists for the LH receptor: thienopyr (im)idines with therapeutic potential for ovulation induction. Chembiochem 3: 1023–1026. https://doi.org/10.1002/1439-7633 (20021004)3: 10<1023: : AID-CBIC1023>3.0.CO;2-9
- 155. Moore S, Jaeschke H, Kleinau G, Neumann S, Costanzi S, Jiang JK, Childress J, Raaka BM, Colson A, Paschke R, Krause G, Thomas CJ, Gershengorn MC (2006) Evaluation of small-molecule modulators of the luteinizing hormone/choriogonadotropin and thyroid stimulating hormone receptors: structure-activity relationships and selective binding patterns. J Med Chem 49: 3888–3896. https://doi.org/10.1021/jm060247s
- 156. Yanofsky SD, Shen ES, Holden F, Whitehorn E, Aguilar B, Tate E, Holmes CP, Scheuerman R, MacLean D, Wu MM, Frail DE, López FJ, Winneker R, Arey BJ, Barrett RW (2006) Allosteric activation of the follicle-stimulating hormone (FSH) receptor by selective, nonpeptide agonists. J Biol Chem 281: 13226–13233. https://doi.org/10.1074/jbc.M600601200
- 157. Arey BJ, Yanofsky SD, Claudia Pérez M, Holmes CP, Wrobel J, Gopalsamy A, Stevis PE, López FJ, Winneker RC (2008) Differing pharmacological activities of thiazolidinone analogs at the FSH receptor. Biochem Biophys Res Commun 368: 723–728. https://doi.org/10.1016/j.bbrc.2008.01.119
- 158. van Koppen CJ, Zaman GJ, Timmers CM, Kelder J, Mosselman S, van de Lagemaat R, Smit MJ, Hanssen RG (2008) A signaling-selective, nanomolar potent allosteric low molecular weight agonist for the human luteinizing hormone receptor. Naunyn Schmiedebergs Arch Pharmacol 378: 503–514. https://doi.org/10.1007/s00210-008-0318-3
- 159. Ivetac A, McCammon JA (2010) Mapping the druggable allosteric space of G-protein coupled receptors: a fragment-based molecular dynamics approach. Chem Biol Drug Des 76: 201–217. https://doi.org/10.1111/j.1747-0285.2010.01012.x
- 160. Miao Y, Nichols SE, McCammon JA (2014) Mapping of allosteric druggable sites in activation-associated conformers of the M2 muscarinic receptor. Chem Biol Drug Des 83: 237–246. https://doi.org/10.1111/cbdd.12233
- 161. Caliman AD, Miao Y, McCammon JA (2018) Mapping the allosteric sites of the A2A adenosine receptor. Chem Biol Drug Des 91: 5–16. https://doi.org/10.1111/cbdd.13053

162. Wakefield AE, Bajusz D, Kozakov D, Keserű GM, Vajda S (2022) Conservation of Allosteric Ligand Binding Sites in G-Protein Coupled Receptors. J Chem Inf Model 62: 4937–4954.

https://doi.org/10.1021/acs.jcim.2c00209

- 163. Zhang D, Gao ZG, Zhang K, Kiselev E, Crane S, Wang J, Paoletta S, Yi C, Ma L, Zhang W, Han GW, Liu H, Cherezov V, Katritch V, Jiang H, Stevens RC, Jacobson KA, Zhao Q, Wu B (2015) Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520: 317–321. https://doi.org/10.1038/nature14287
- 164. Cheng RKY, Fiez-Vandal C, Schlenker O, Edman K, Aggeler B, Brown DG, Brown GA, Cooke RM, Dumelin CE, Doré AS, Geschwindner S, Grebner C, Hermansson NO, Jazayeri A, Johansson P, Leong L, Prihandoko R, Rappas M, Soutter H, Snijder A, Sundström L, Tehan B, Thornton P, Troast D, Wiggin G, Zhukov A, Marshall FH, Dekker N (2017) Structural insight into allosteric modulation of protease-activated receptor 2. Nature 545: 112– 115.

https://doi.org/10.1038/nature22309

- 165. Ciancetta A, O'Connor RD, Paoletta S, Jacobson KA (2017) Demystifying P2Y₁ Receptor Ligand Recognition through Docking and Molecular Dynamics Analyses. J Chem Inf Model 57: 3104–3123. https://doi.org/10.1021/acs.jcim.7b00528
- 166. Ciancetta A, Gill AK, Ding T, Karlov DS, Chalhoub G, McCormick PJ, Tikhonova IG (2021) Probe Confined Dynamic Mapping for G Protein-Coupled Receptor Allosteric Site Prediction. ACS Cent Sci 7: 1847–1862. https://doi.org/10.1021/acscentsci.1c00802
- 167. Jiménez-Rosés M, Matsoukas MT, Caltabiano G, Cordomí A (2018) Ligand-Triggered Structural Changes in the M₂ Muscarinic Acetylcholine Receptor. J Chem Inf Model 58: 1074–1082. https://doi.org/10.1021/acs.jcim.8b00108
- 168. Shao Z, Yan W, Chapman K, Ramesh K, Ferrell AJ, Yin J, Wang X, Xu Q, Rosenbaum DM (2019) Structure of an allosteric modulator bound to the CB1 cannabinoid receptor. Nat Chem Biol 15: 1199–1205. https://doi.org/10.1038/s41589-019-0387-2
- 169. Atanasio S, Deganutti G, Reynolds CA (2020) Addressing free fatty acid receptor 1 (FFAR1) activation using supervised molecular dynamics. J Comput Aided Mol Des 34: 1181–1193.

https://doi.org/10.1007/s10822-020-00338-6

- 170. Bueno AB, Sun B, Willard FS, Feng D, Ho JD, Wainscott DB, Showalter AD, Vieth M, Chen Q, Stutsman C, Chau B, Ficorilli J, Agejas FJ, Cumming GR, Jiménez A, Rojo I, Kobilka TS, Kobilka BK, Sloop KW (2020) Structural insights into probe-dependent positive allosterism of the GLP-1 receptor. Nat Chem Biol 16: 1105–1110. https://doi.org/10.1038/s41589-020-0589-7
- 171. Teng D, Chen J, Li D, Wu Z, Li W, Tang Y, Liu G (2020) Computational Insights into Molecular Activation and Positive Cooperative Mechanisms of FFAR1 Modulators. J Chem Inf Model 60: 3214–3230. https://doi.org/10.1021/acs.jcim.0c00030
- 172. Ding T, Karlov DS, Pino-Angeles A, Tikhonova IG (2022) Intermolecular Interactions in G Protein-Coupled Receptor Allosteric Sites at the Membrane Interface from

Molecular Dynamics Simulations and Quantum Chemical Calculations. J Chem Inf Model 62: 4736–4747. https://doi.org/10.1021/acs.jcim.2c00788

173. Jazayeri A, Doré AS, Lamb D, Krishnamurthy H, Southall SM, Baig AH, Bortolato A, Koglin M, Robertson NJ, Errey JC, Andrews SP, Teobald I, Brown AJ, Cooke RM, Weir M, Marshall FH (2016) Extra-helical binding site of a glucagon receptor antagonist. Nature 533: 274–277.

https://doi.org/10.1038/nature17414

- 174. Lu J, Byrne N, Wang J, Bricogne G, Brown FK, Chobanian HR, Colletti SL, Di Salvo J, Thomas-Fowlkes B, Guo Y, Hall DL, Hadix J, Hastings NB, Hermes JD, Ho T, Howard AD, Josien H, Kornienko M, Lumb KJ, Miller MW, Patel SB, Pio B, Plummer CW, Sherborne BS, Sheth P, Souza S, Tummala S, Vonrhein C, Webb M, Allen SJ, Johnston JM, Weinglass AB, Sharma S, Soisson SM (2017) Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat Struct Mol Biol 24: 570–577. https://doi.org/10.1038/nsmb.3417
- 175. Liu H, Kim HR, Deepak RNVK, Wang L, Chung KY, Fan H, Wei Z, Zhang C (2018) Orthosteric and allosteric action of the C5a receptor antagonists. Nat Struct Mol Biol 25: 472–481. https://doi.org/10.1028/c41504.018.00(7.p.

https://doi.org/10.1038/s41594-018-0067-z

176. Robertson N, Rappas M, Doré AS, Brown J, Bottegoni G, Koglin M, Cansfield J, Jazayeri A, Cooke RM, Marshall FH (2018) Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727. Nature 553: 111–114.

https://doi.org/10.1038/nature25025

- 177. Liu X, Kaindl J, Korczynska M, Stößel A, Dengler D, Stanek M, Hübner H, Clark MJ, Mahoney J, Matt RA, Xu X, Hirata K, Shoichet BK, Sunahara RK, Kobilka BK, Gmeiner P (2020) An allosteric modulator binds to a conformational hub in the β_2 adrenergic receptor. Nat Chem Biol 16: 749–755. https://doi.org/10.1038/s41589-020-0549-2
- 178. Zhuang Y, Krumm B, Zhang H, Zhou XE, Wang Y, Huang XP, Liu Y, Cheng X, Jiang Y, Jiang H, Zhang C, Yi W, Roth BL, Zhang Y, Xu HE (2021) Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Res 31: 593–596. https://doi.org/10.1038/s41422-021-00482-0
- 179. Draper-Joyce CJ, Bhola R, Wang J, Bhattarai A, Nguyen ATN, Cowie-Kent I, O'Sullivan K, Chia LY, Venugopal H, Valant C, Thal DM, Wootten D, Panel N, Carlsson J, Christie MJ, White PJ, Scammells P, May LT, Sexton PM, Danev R, Miao Y, Glukhova A, Imlach WL, Christopoulos A (2021) Positive allosteric mechanisms of adenosine A₁ receptor-mediated analgesia. Nature 597: 571–576.

https://doi.org/10.1038/s41586-021-03897-2

- 180. Dawaliby R, Trubbia C, Delporte C, Masureel M, Van Antwerpen P, Kobilka BK, Govaerts C (2016) Allosteric regulation of G protein-coupled receptor activity by phospholipids. Nat Chem Biol 12: 35–39. https://doi.org/10.1038/nchembio.1960
- 181. Yen HY, Hoi KK, Liko I, Hedger G, Horrell MR, Song W, Wu D, Heine P, Warne T, Lee Y, Carpenter B, Plück-

thun A, Tate CG, Sansom MSP, Robinson CV (2018) PtdIns $(4,5)P_2$ stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559: 423–427.

https://doi.org/10.1038/s41586-018-0325-6

- 182. Jafurulla M, Aditya Kumar G, Rao BD, Chattopadhyay A (2019) A Critical Analysis of Molecular Mechanisms Underlying Membrane Cholesterol Sensitivity of GP-CRs. Adv Exp Med Biol 1115: 21–52. https://doi.org/10.1007/978-3-030-04278-3_2
- 183. Lu S, He X, Yang Z, Chai Z, Zhou S, Wang J, Rehman AU, Ni D, Pu J, Sun J, Zhang J (2021) Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat Commun 12: 4721. https://doi.org/10.1038/s41467-021-25020-9
- 184. Chan WKB, Carlson HA, Traynor JR (2023) Application of Mixed-Solvent Molecular Dynamics Simulations for Prediction of Allosteric Sites on G Protein-Coupled Receptors. Mol Pharmacol 103: 274–285. https://doi.org/10.1124/molpharm.122.000612
- 185. Shen S, Zhao C, Wu C, Sun S, Li Z, Yan W, Shao Z (2023) Allosteric modulation of G protein-coupled receptor signaling. Front Endocrinol (Lausanne) 14: 1137604.

https://doi.org/10.3389/fendo.2023.1137604

- 186. Chaturvedi M, Maharana J, Shukla AK (2020) Terminating G-Protein Coupling: Structural Snapshots of GPCR-β-Arrestin Complexes. Cell 180: 1041– 1043.
 - https://doi.org/10.1016/j.cell.2020.02.047
- 187. DeVree BT, Mahoney JP, Vélez-Ruiz GA, Rasmussen SG, Kuszak AJ, Edwald E, Fung JJ, Manglik A, Masureel M, Du Y, Matt RA, Pardon E, Steyaert J, Kobilka BK, Sunahara RK (2016) Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature 535: 182– 186.

https://doi.org/10.1038/nature18324

- 188. Ahn D, Chung KY (2022) The Conformational Dynamics of Heterotrimeric G Proteins During GPCR-Mediated Activation. Subcell Biochem 99: 271–284. https://doi.org/10.1007/978-3-031-00793-4_8
- 189. Mafi A, Kim SK, Goddard WA 3rd (2022) The mechanism for ligand activation of the GPCR-G protein complex. Proc Natl Acad Sci U S A 119: e2110085119. https://doi.org/10.1073/pnas.2110085119
- 190. Bourne HR (1997) How receptors talk to trimeric G proteins. Curr Opin Cell Biol 9: 134–142. https://doi.org/10.1016/s0955-0674(97)80054-3
- 191. *Quist E, Satumtira N, Vasan R* (1999) Regulation of guanine nucleotide turnover on Gi/Go by agonist-stimulated and spontaneously active muscarinic receptors in cardiac membranes. Arch Biochem Biophys 361: 57–64. https://doi.org/10.1006/abbi.1998.0945
- 192. *Hamm HE* (2001) How activated receptors couple to G proteins. Proc Natl Acad Sci U S A 98: 4819–4821. https://doi.org/10.1073/pnas.011099798
- 193. Vetter IR, Wittinghofer A (2001) The guanine nucleotidebinding switch in three dimensions. Science 294: 1299–

1304.

https://doi.org/10.1126/science.1062023

- 194. Hein P, Frank M, Hoffmann C, Lohse MJ, Bünemann M (2005) Dynamics of receptor/G protein coupling in living cells. EMBO J 24: 4106-4114. https://doi.org/10.1038/sj.emboj.7600870
- 195. Leurs R, Smit MJ, Alewijnse AE, Timmerman H (1998) Agonist-independent regulation of constitutively active G-protein-coupled receptors. Trends Biochem Sci 23: 418-422.

https://doi.org/10.1016/s0968-0004(98)01287-0

- 196. Seifert R, Wenzel-Seifert K (2002) Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch Pharmacol 366: 381-416. https://doi.org/10.1007/s00210-002-0588-0
- 197. Zhou B, Hall DA, Giraldo J (2019) Can Adding Constitutive Receptor Activity Redefine Biased Signaling Quantification? Trends Pharmacol Sci 40: 156-160. https://doi.org/10.1016/j.tips.2019.01.002
- 198. Ceraudo E, Horioka M, Mattheisen JM, Hitchman TD, Moore AR, Kazmi MA, Chi P, Chen Y, Sakmar TP, Huber T (2021) Direct evidence that the GPCR CysLTR2 mutant causative of uveal melanoma is constitutively active with highly biased signaling. J Biol Chem 296: 100163.

https://doi.org/10.1074/jbc.RA120.015352

- 199. Nobles M, Benians A, Tinker A (2005) Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc Natl Acad Sci U S A 102: 18706–18711. https://doi.org/10.1073/pnas.0504778102
- 200. Ayoub MA, Maurel D, Binet V, Fink M, Prézeau L, Ansanay H, Pin JP (2007) Real-time analysis of agonist-induced activation of protease-activated receptor 1/Galphail protein complex measured by bioluminescence resonance energy transfer in living cells. Mol Pharmacol 71: 1329-1340. https://doi.org/10.1124/mol.106.030304
- 201. Qin K, Dong C, Wu G, Lambert NA (2011) Inactive-state preassembly of G (q)-coupled receptors and G (q) heterotrimers. Nat Chem Biol 7: 740-747. https://doi.org/10.1038/nchembio.642
- 202. García-Nafría J, Tate CG (2019) Cryo-EM structures of GPCRs coupled to G_s, G_i and G_o. Mol Cell Endocrinol 488: 1-13. https://doi.org/10.1016/j.mce.2019.02.006
- 203. Ulsund AH, Dahl M, Frimurer TM, Manfra O, Schwartz TW, Levy FO, Andressen KW (2019) Preassociation between the 5-HT₇ serotonin receptor and G protein G_s: molecular determinants and association with low potency activation of adenylyl cyclase. FASEB J 33: 3870-3886.

https://doi.org/10.1096/fj.201800805RR

204. Jang W, Adams CE, Liu H, Zhang C, Levy FO, Andressen KW, Lambert NA (2020) An inactive receptor-G protein complex maintains the dynamic range of agonist-induced signaling. Proc Natl Acad Sci U S A 117: 30755-30762. https://doi.org/10.1073/pnas.2010801117

- 205. Andressen KW, Ulsund AH, Krobert KA, Lohse MJ, Bünemann M, Levy FO (2018) Related GPCRs couple differently to G_s: preassociation between G protein and 5-HT₇ serotonin receptor reveals movement of $G\alpha_s$ upon receptor activation. FASEB J 32: 1059-1069. https://doi.org/10.1096/fj.201700486R
- 206. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011) Structure of a nanobody-stabilized active state of the β (2) adrenoceptor. Nature 2011 469: 175–180. https://doi.org/10.1038/nature09648
- 207. Ring AM, Manglik A, Kruse AC, Enos MD, Weis WI, Garcia KC, Kobilka BK (2013) Adrenaline-activated structure of β 2-adrenoceptor stabilized by an engineered nanobody. Nature 502: 575-579. https://doi.org/10.1038/nature12572
- 208. Staus DP, Strachan RT, Manglik A, Pani B, Kahsai AW, Kim TH, Wingler LM, Ahn S, Chatterjee A, Masoudi A, Kruse AC, Pardon E, Steyaert J, Weis WI, Prosser RS, Kobilka BK, Costa T, Lefkowitz RJ (2016) Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535: 448-452. https://doi.org/10.1038/nature18636
- 209. Lee Y, Warne T, Nehmé R, Pandey S, Dwivedi-Agnihotri H, Chaturvedi M, Edwards PC, García-Nafría J, Leslie AGW, Shukla AK, Tate CG (2020) Molecular basis of β -arrestin coupling to formoterol-bound β_1 -adrenoceptor. Nature 583: 862-866. https://doi.org/10.1038/s41586-020-2419-1
- 210. Gurevich VV, Pals-Rylaarsdam R, Benovic JL, Hosey MM, Onorato JJ (1997) Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity. J Biol Chem 272: 28849-28852. https://doi.org/10.1074/jbc.272.46.28849
- 211. Gurevich VV, Dion SB, Onorato JJ, Ptasienski J, Kim CM, Sterne-Marr R, Hosey MM, Benovic J (1995) Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors. J Biol Chem 270: 720-731. https://doi.org/10.1074/jbc.270.2.720
- 212. Kumari P, Srivastava A, Banerjee R, Ghosh E, Gupta P, Ranjan R, Chen X, Gupta B, Gupta C, Jaiman D, Shukla AK (2016) Functional competence of a partially engaged GPCR-β-arrestin complex. Nat Commun 7: 13416. https://doi.org/10.1038/ncomms13416
- 213. Cahill TJ 3rd, Thomsen AR, Tarrasch JT, Plouffe B, Nguyen AH, Yang F, Huang LY, Kahsai AW, Bassoni DL, Gavino BJ, Lamerdin JE, Triest S, Shukla AK, Berger B, Little J 4th, Antar A, Blanc A, Qu CX, Chen X, Kawakami K, Inoue A, Aoki J, Steyaert J, Sun JP, Bouvier M, Skiniotis G, Lefkowitz RJ (2017) Distinct conformations of GP-CR-\beta-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc Natl Acad Sci U S A 114: 2562-2567.

https://doi.org/10.1073/pnas.1701529114

214. Nguyen AH, Lefkowitz RJ (2021) Signaling at the endosome: cryo-EM structure of a GPCR-G protein-beta-

arrestin megacomplex. FEBS J 288: 2562–2569. https://doi.org/10.1111/febs.15773

- 215. Wehbi VL, Stevenson HP, Feinstein TN, Calero G, Romero G, Vilardaga JP (2013) Noncanonical GPCR signaling arising from a PTH receptor-arrestin-Gβγ complex. Proc Natl Acad Sci U S A 110: 1530–1535. https://doi.org/10.1073/pnas.1205756110
- 216. Thomsen ARB, Plouffe B, Cahill TJ 3rd, Shukla AK, Tarrasch JT, Dosey AM, Kahsai AW, Strachan RT, Pani B, Mahoney JP, Huang L, Breton B, Heydenreich FM, Sunahara RK, Skiniotis G, Bouvier M, Lefkowitz RJ (2016) GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling. Cell 166: 907–919. https://doi.org/10.1016/j.cell.2016.07.004
- 217. Cheloha RW, Gellman SH, Vilardaga JP, Gardella TJ (2015) PTH receptor-1 signalling-mechanistic insights and therapeutic prospects. Nat Rev Endocrinol 11: 712– 724.

https://doi.org/10.1038/nrendo.2015.139

- 218. Baidya M, Chaturvedi M, Dwivedi-Agnihotri H, Ranjan A, Devost D, Namkung Y, Stepniewski TM, Pandey S, Baruah M, Panigrahi B, Sarma P, Yadav MK, Maharana J, Banerjee R, Kawakami K, Inoue A, Selent J, Laporte SA, Hébert TE, Shukla AK (2022) Allosteric modulation of GPCR-induced β-arrestin trafficking and signaling by a synthetic intrabody. Nat Commun 13: 4634. https://doi.org/10.1038/s41467-022-32386-x
- 219. Dwivedi-Agnihotri H, Chaturvedi M, Baidya M, Stepniewski TM, Pandey S, Maharana J, Srivastava A, Caengprasath N, Hanyaloglu AC, Selent J, Shukla AK (2020) Distinct phosphorylation sites in a prototypical GPCR differently orchestrate β-arrestin interaction, trafficking, and signaling. Sci Adv 6: eabb8368. https://doi.org/10.1126/sciadv.abb8368
- 220. Beautrait A, Paradis JS, Zimmerman B, Giubilaro J, Nikolajev L, Armando S, Kobayashi H, Yamani L, Namkung Y, Heydenreich FM, Khoury E, Audet M, Roux PP, Veprintsev DB, Laporte SA, Bouvier M (2017) A new inhibitor of the β -arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. Nat Commun 8: 15054.

https://doi.org/10.1038/ncomms15054

- 221. Violin JD, Dewire SM, Barnes WG, Lefkowitz RJ (2006) G protein-coupled receptor kinase and beta-arrestinmediated desensitization of the angiotensin II type 1A receptor elucidated by diacylglycerol dynamics. J Biol Chem 281: 36411–36419. https://doi.org/10.1074/jbc.M607956200
- 222. *Smith JS, Lefkowitz RJ, Rajagopal S* (2018) Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov 17: 243–260. https://doi.org/10.1038/nrd.2017.229
- 223. *Li A, Liu S, Huang R, Ahn S, Lefkowitz RJ* (2023) Loss of biased signaling at a G protein-coupled receptor in over-expressed systems. PLoS One 18: e0283477. https://doi.org/10.1371/journal.pone.0283477
- 224. *Kotliar IB, Lorenzen E, Schwenk JM, Hay DL, Sakmar TP* (2023) Elucidating the Interactome of G Protein-Coupled Receptors and Receptor Activity-Modifying Proteins. Pharmacol Rev 75: 1–34. https://doi.org/10.1124/pharmrev.120.000180

225. *Klein KR, Matson BC, Caron KM* (2016) The expanding repertoire of receptor activity modifying protein (RAMP) function. Crit Rev Biochem Mol Biol 51: 65–71.

https://doi.org/10.3109/10409238.2015.1128875

- 226. *Pioszak AA, Hay DL* (2020) RAMPs as allosteric modulators of the calcitonin and calcitonin-like class B G protein-coupled receptors. Adv Pharmacol 88: 115–141. https://doi.org/10.1016/bs.apha.2020.01.001
- 227. *Bouschet T, Martin S, Henley JM* (2005) Receptor-activity-modifying proteins are required for forward trafficking of the calcium-sensing receptor to the plasma membrane. J Cell Sci 118 (Pt 20): 4709–4720. https://doi.org/10.1242/jcs.02598
- 228. Hay DL, Pioszak AA (2016) Receptor Activity-Modifying Proteins (RAMPs): New Insights and Roles. Annu Rev Pharmacol Toxicol 56: 469–487. https://doi.org/10.1146/annurev-pharmtox-010715-103120
- 229. Udawela M, Christopoulos G, Tilakaratne N, Christopoulos A, Albiston A, Sexton PM (2006) Distinct receptor activity-modifying protein domains differentially modulate interaction with calcitonin receptors. Mol Pharmacol 69: 1984–1989. https://doi.org/10.1124/mol.105.021915
- 230. Sexton PM, Poyner DR, Simms J, Christopoulos A, Hay DL (2009) Modulating receptor function through RAMPs: can they represent drug targets in themselves? Drug Discov Today 14: 413–419. https://doi.org/10.1016/j.drudis.2008.12.009
- 231. Arrigoni S, Le Foll C, Cabak A, Lundh S, Raun K, John LM, Lutz TA (2021) A selective role for receptor activitymodifying proteins in subchronic action of the amylin selective receptor agonist NN1213 compared with salmon calcitonin on body weight and food intake in male mice. Eur J Neurosci 54: 4863–4876. https://doi.org/10.1111/ejn.15376
- 232. Wootten D, Lindmark H, Kadmiel M, Willcockson H, Caron KM, Barwell J, Drmota T, Poyner DR (2013) Receptor activity modifying proteins (RAMPs) interact with the VPAC2 receptor and CRF1 receptors and modulate their function. Br J Pharmacol 168: 822–834. https://doi.org/10.1111/j.1476-5381.2012.02202.x
- 233. Christopoulos A, Christopoulos G, Morfis M, Udawela M, Laburthe M, Couvineau A, Kuwasako K, Tilakaratne N, Sexton PM (2003) Novel receptor partners and function of receptor activity-modifying proteins. J Biol Chem 278: 3293–3297. https://doi.org/10.1074/jbc.C200629200
- 234. Morfis M, Tilakaratne N, Furness SG, Christopoulos G, Werry TD, Christopoulos A, Sexton PM (2008) Receptor activity-modifying proteins differentially modulate the G protein-coupling efficiency of amylin receptors. Endocrinology 149: 5423–5431. https://doi.org/10.1210/en.2007-1735
- 235. *Shao L, Chen Y, Zhang S, Zhang Z, Cao Y, Yang D, Wang MW* (2022) Modulating effects of RAMPs on signaling profiles of the glucagon receptor family. Acta Pharm Sin B 12: 637–650. https://doi.org/10.1016/j.apsb.2021.07.028

- 236. Krishna Kumar K, O'Brien ES, Habrian CH, Latorraca NR, Wang H, Tuneew I, Montabana E, Marqusee S, Hilger D, Isacoff EY, Mathiesen JM, Kobilka BK (2023) Negative allosteric modulation of the glucagon receptor by RAMP2. Cell 186: 1465–1477.e18. https://doi.org/10.1016/j.cell.2023.02.028
- 237. *Kadmiel M, Fritz-Six KL, Caron KM* (2012) Understanding RAMPs through genetically engineered mouse models. Adv Exp Med Biol 744: 49–60. https://doi.org/10.1007/978-1-4614-2364-5 5
- 238. Lenhart PM, Broselid S, Barrick CJ, Leeb-Lundberg LM, Caron KM (2013) G-protein-coupled receptor 30 interacts with receptor activity-modifying protein 3 and confers sex-dependent cardioprotection. J Mol Endocrinol 51: 191–202. https://doi.org/10.1530/JME-13-0021
- 239. Li M, Wetzel-Strong SE, Hua X, Tilley SL, Oswald E, Krummel MF, Caron KM (2014) Deficiency of RAMP1 attenuates antigen-induced airway hyperresponsiveness in mice. PLoS One 9: e102356. https://doi.org/10.1371/journal.pone.0102356
- 240. *Pawlak JB, Wetzel-Strong SE, Dunn MK, Caron KM* (2017) Cardiovascular effects of exogenous adrenomedullin and CGRP in Ramp and Calcrl deficient mice. Peptides 88: 1–7. https://doi.org/10.1016/j.peptides.2016.12.002
- 241. Shindo T, Tanaka M, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Yamauchi A, Sakurai T (2019) Regulation of cardiovascular development and homeostasis by the adrenomedullin-RAMP system. Peptides 111: 55–61. https://doi.org/10.1016/j.peptides.2018.04.004
- 242. Cui N, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Tanaka M, Tanaka M, Wei Y, Kakihara S, Zhao Y, Aruga K, Kawagishi H, Nakada T, Yamada M, Shindo T (2021) Adrenomedullin-RAMP2 and -RAMP3 Systems Regulate Cardiac Homeostasis during Cardiovascular Stress. Endocrinology 162 (3): bqab001. https://doi.org/10.1210/endocr/bqab001
- 243. Wootten DL, Simms J, Hay DL, Christopoulos A, Sexton PM (2010) Receptor activity modifying proteins and their potential as drug targets. Prog Mol Biol Transl Sci 91: 53–79.

https://doi.org/10.1016/S1877-1173(10)91003-X

- 244. Sexton PM, Poyner DR, Simms J, Christopoulos A, Hay DL (2012) RAMPs as drug targets. Adv Exp Med Biol 744: 61–74. https://doi.org/10.1007/978-1-4614-2364-5 6
- 245. Sixt ML, Messlinger K, Fischer MJ (2009) Calcitonin gene-related peptide receptor antagonist olcegepant acts in the spinal trigeminal nucleus. Brain 132: 3134–3141. https://doi.org/10.1093/brain/awp168
- 246. ter Haar E, Koth CM, Abdul-Manan N, Swenson L, Coll JT, Lippke JA, Lepre CA, Garcia-Guzman M, Moore JM (2010) Crystal structure of the ectodomain complex of the CGRP receptor, a class-B GPCR, reveals the site of drug antagonism. Structure 18: 1083–1093. https://doi.org/10.1016/j.str.2010.05.014
- 247. Greco R, Demartini C, Francavilla M, Zanaboni AM, Tassorelli C (2022) Antagonism of CGRP Receptor: Central and Peripheral Mechanisms and Mediators in an Animal

Model of Chronic Migraine. Cells 11: 3092. https://doi.org/10.3390/cells11193092

- 248. *Russo AF, Hay DL* (2023) CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 103: 1565–1644. https://doi.org/10.1152/physrev.00059.2021
- 249. Cooray SN, Chan L, Webb TR, Metherell L, Clark AJ (2009) Accessory proteins are vital for the functional expression of certain G protein-coupled receptors. Mol Cell Endocrinol 300: 17–24. https://doi.org/10.1016/j.mce.2008.10.004
- 250. *Roux BT, Cottrell GS* (2014) G protein-coupled receptors: what a difference a 'partner' makes. Int J Mol Sci 15: 1112–1142. https://doi.org/10.3390/ijms15011112
- 251. *Tao YX* (2020) Molecular chaperones and G proteincoupled receptor maturation and pharmacology. Mol Cell Endocrinol 511: 110862. https://doi.org/10.1016/j.mce.2020.110862
- 252. Yu T, Su X, Pan Y, Zhuang H (2017) Receptor-transporting protein (RTP) family members play divergent roles in the functional expression of odorant receptors. PLoS One 12 (6): e0179067. https://doi.org/10.1371/journal.pone.0179067
- 253. Fukutani Y, Tamaki R, Inoue R, Koshizawa T, Sakashita S, Ikegami K, Ohsawa I, Matsunami H, Yohda M (2019) The N-terminal region of RTP1S plays important roles in dimer formation and odorant receptor-trafficking. J Biol Chem 294: 14661–14673. https://doi.org/10.1074/jbc.RA118.007110
- 254. Behrens M, Bartelt J, Reichling C, Winnig M, Kuhn C, Meyerhof W (2006) Members of RTP and REEP gene families influence functional bitter taste receptor expression. J Biol Chem 281: 20650–20659. https://doi.org/10.1074/jbc.M513637200
- 255. Décaillot FM, Rozenfeld R, Gupta A, Devi LA (2008) Cell surface targeting of mu-delta opioid receptor heterodimers by RTP4. Proc Natl Acad Sci U S A 105: 16045– 16050. https://doi.org/10.1073/pnas.0804106105
- 256. Wu L, Pan Y, Chen GQ, Matsunami H, Zhuang H (2012) Receptor-transporting protein 1 short (RTP1S) mediates translocation and activation of odorant receptors by acting through multiple steps. J Biol Chem 287: 22287– 22294.

https://doi.org/10.1074/jbc.M112.345884

- 257. *Björk S, Hurt CM, Ho VK, Angelotti T* (2013) REEPs are membrane shaping adapter proteins that modulate specific g protein-coupled receptor trafficking by affecting ER cargo capacity. PLoS One 8: e76366. https://doi.org/10.1371/journal.pone.0076366
- 258. *Fan S, Liu H, Li L* (2022) The REEP family of proteins: Molecular targets and role in pathophysiology. Pharmacol Res 185: 106477. https://doi.org/10.1016/j.phrs.2022.106477
- 259. Routledge SJ, Simms J, Clark A, Yeung HY, Wigglesworth MJ, Dickerson IM, Kitchen P, Ladds G, Poyner DR (2020) Receptor component protein, an endogenous allosteric modulator of family B G protein coupled receptors. Bio-

chim Biophys Acta Biomembr 1862: 183174. https://doi.org/10.1016/j.bbamem.2019.183174

260. Hay DL, Garelja ML, Poyner DR, Walker CS (2018) Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br J Pharmacol 175: 3-17.

https://doi.org/10.1111/bph.14075

- 261. Egea SC, Dickerson IM (2012) Direct interactions between calcitonin-like receptor (CLR) and CGRP-receptor component protein (RCP) regulate CGRP receptor signaling. Endocrinology 153: 1850-1860. https://doi.org/10.1210/en.2011-1459
- 262. Berruien NNA, Smith CL (2020) Emerging roles of melanocortin receptor accessory proteins (MRAP and MRAP2) in physiology and pathophysiology. Gene 757: 144949.

https://doi.org/10.1016/j.gene.2020.144949

- 263. Metherell LA, Chapple JP, Cooray S, David A, Becker C, Rüschendorf F, Naville D, Begeot M, Khoo B, Nürnberg P, Huebner A, Cheetham ME, Clark AJ (2005) Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2. Nat Genet 37: 166-170. https://doi.org/10.1038/ng1501
- 264. Chan LF, Webb TR, Chung TT, Meimaridou E, Cooray SN, Guasti L, Chapple JP, Egertová M, Elphick MR, Cheetham ME, Metherell LA, Clark AJ (2009) MRAP and MRAP2 are bidirectional regulators of the melanocortin receptor family. Proc Natl Acad Sci U S A 106: 6146-6151.

https://doi.org/10.1073/pnas.0809918106

- 265. Sebag JA, Hinkle PM (2007) Melanocortin-2 receptor accessory protein MRAP forms antiparallel homodimers. Proc Natl Acad Sci U S A 104: 20244-20249. https://doi.org/10.1073/pnas.0708916105
- 266. Ji RL, Jiang SS, Tao YX (2022) Modulation of Canine Melanocortin-3 and -4 Receptors by Melanocortin-2 Receptor Accessory Protein 1 and 2. Biomolecules 12: 1608.
 - https://doi.org/10.3390/biom12111608
- 267. van der Westhuizen ET, Valant C, Sexton PM, Christopoulos A (2015) Endogenous allosteric modulators of G protein-coupled receptors. J Pharmacol Exp Ther 353: 246-260.

https://doi.org/10.1124/jpet.114.221606

268. White KL, Eddy MT, Gao ZG, Han GW, Lian T, Deary A, Patel N, Jacobson KA, Katritch V, Stevens RC (2018) Structural Connection between Activation Microswitch and Allosteric Sodium Site in GPCR Signaling. Structure 26: 259-269.e5.

https://doi.org/10.1016/j.str.2017.12.013

- 269. Ye L, Neale C, Sljoka A, Lyda B, Pichugin D, Tsuchimura N, Larda ST, Pomès R, García AE, Ernst OP, Sunahara RK, Prosser RS (2018) Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations. Nat Commun 9: 1372. https://doi.org/10.1038/s41467-018-03314-9
- 270. Satała G, Duszyńska B, Stachowicz K, Rafalo A, Pochwat B, Luckhart C, Albert PR, Daigle M, Tanaka KF, Hen R, Lenda T, Nowak G, Bojarski AJ, Szewczyk B (2016) Con-

centration-Dependent Dual Mode of Zn Action at Serotonin 5-HT1A Receptors: In Vitro and In Vivo Studies. Mol Neurobiol 53: 6869-6881. https://doi.org/10.1007/s12035-015-9586-3

271. Link R, Veiksina S, Tahk MJ, Laasfeld T, Paiste P, Kopanchuk S, Rinken A (2020) The constitutive activity of melanocortin-4 receptors in cAMP pathway is allosterically modulated by zinc and copper ions. J Neurochem 153: 346-361.

https://doi.org/10.1111/jnc.14933

- 272. Jiang W, Zheng S (2022) Structural insights into galanin receptor signaling. Proc Natl Acad Sci U S A 119: e2121465119. https://doi.org/10.1073/pnas.2121465119
- 273. Pert CB, Snyder SH (1973) Properties of opiate-receptor binding in rat brain. Proc Natl Acad Sci U S A 70: 2243-2247.

https://doi.org/10.1073/pnas.70.8.2243

- 274. Appelmans N, Carroll JA, Rance MJ, Simon EJ, Traynor JR (1986) Sodium ions increase the binding of the antagonist peptide ICI 174864 to the delta-opiate receptor. Neuropeptides 7: 139-143. https://doi.org/10.1016/0143-4179(86)90089-2
- 275. Simon EJ, Groth J (1975) Kinetics of opiate receptor inactivation by sulfhydryl reagents: evidence for conformational change in presence of sodium ions. Proc Natl Acad Sci U S A 72: 2404–2407. https://doi.org/10.1073/pnas.72.6.2404
- 276. Fraser CM. Wang CD. Robinson DA. Gocavne JD. Venter JC (1989) Site-directed mutagenesis of m1 muscarinic acetylcholine receptors: conserved aspartic acids play important roles in receptor function. Mol Pharmacol 36: 840-847.
- 277. Horstman DA, Brandon S, Wilson AL, Guyer CA, Cragoe EJ Jr, Limbird LE (1990) An aspartate conserved among G-protein receptors confers allosteric regulation of alpha 2-adrenergic receptors by sodium. J Biol Chem 265: 21590-21595.
- 278. Neve KA (1991) Regulation of dopamine D2 receptors by sodium and pH. Mol Pharmacol 39: 570-578.
- 279. Strader CD, Fong TM, Tota MR, Underwood D, Dixon RA (1994) Structure and function of G protein-coupled receptors. Annu Rev Biochem 63: 101-132. https://doi.org/10.1146/annurev.bi.63.070194.000533
- 280. Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC (2014) Allosteric sodium in class A GPCR signaling. Trends Biochem Sci 39: 233–244. https://doi.org/10.1016/j.tibs.2014.03.002
- 281. Massink A, Gutiérrez-de-Terán H, Lenselink EB, Ortiz Zacarías NV, Xia L, Heitman LH, Katritch V, Stevens RC, IJzerman AP (2015) Sodium ion binding pocket mutations and adenosine A2A receptor function. Mol Pharmacol 87: 305-313. https://doi.org/10.1124/mol.114.095737
- 282. Zarzycka B, Zaidi SA, Roth BL, Katritch V (2019) Harnessing Ion-Binding Sites for GPCR Pharmacology. Pharmacol Rev 71: 571-595. https://doi.org/10.1124/pr.119.017863
- 283. Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, Cherezov V, Roth BL, Stevens RC

(20114) Molecular control of δ -opioid receptor signalling. Nature 506: 191–196. https://doi.org/10.1038/nature12944

- 284. Sun X, Laroche G, Wang X, Ågren H, Bowman GR, Giguère PM, Tu Y (2017) Propagation of the Allosteric Modulation Induced by Sodium in the δ-Opioid Receptor. Chemistry 23: 4615–4624. https://doi.org/10.1002/chem.201605575
- 285. Mohamud AO, Zeghal M, Patel S, Laroche G, Blgacim N, Giguère PM (2022) Functional Characterization of Sodium Channel Inhibitors at the Delta-Opioid Receptor. ACS Omega 7: 16939–16951. https://doi.org/10.1021/acsomega.1c07226
- 286. Selent J, Sanz F, Pastor M, De Fabritiis G (2010) Induced effects of sodium ions on dopaminergic G-protein coupled receptors. PLoS Comput Biol 6: e1000884. https://doi.org/10.1371/journal.pcbi.1000884
- 287. Miller-Gallacher JL, Nehmé R, Warne T, Edwards PC, Schertler GF, Leslie AG, Tate CG (2014) The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor. PLoS One 9: e92727. https://doi.org/10.1371/journal.pone.0092727
- 288. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP, Cherezov V, Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337: 232–236.

https://doi.org/10.1126/science.1219218

- 289. Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE, Weis WI, Coughlin SR, Kobilka BK (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492: 387–392. https://doi.org/10.1038/nature11701
- 290. Agasid MT, Sørensen L, Urner LH, Yan J, Robinson CV (2021) The Effects of Sodium Ions on Ligand Binding and Conformational States of G Protein-Coupled Receptors-Insights from Mass Spectrometry. J Am Chem Soc 143: 4085–4089. https://doi.org/10.1021/jacs.0c11837
- 291. Vickery ON, Carvalheda CA, Zaidi SA, Pisliakov AV, Katritch V, Zachariae U (2018) Intracellular Transfer of Na⁺ in an Active-State G-Protein-Coupled Receptor. Structure 26: 171-180.e2. https://doi.org/10.1016/j.str.2017.11.013
- 292. Zhorov BS, Ananthanarayanan VS (1998) Signal transduction within G-protein coupled receptors via an ion tunnel: a hypothesis. J Biomol Struct Dyn 15: 631–637. https://doi.org/10.1080/07391102.1998.10508980
- 293. *Zhorov BS, Ananthanarayanan VS* (2000) Homology models of mu-opioid receptor with organic and inorganic cations at conserved aspartates in the second and third transmembrane domains. Arch Biochem Biophys 375: 31–49.

https://doi.org/10.1006/abbi.1999.1529

294. *Chauhan A, Singh J, Sangwan N, Dhawan R, Avti PK* (2023) An Atomic Level Investigation of Sodium Ions Regulating Agonist and Antagonist Binding in the Active Site of a Novel Target 5HT_{2B}R Against Drug-Resistant

Epilepsy. Cell Biochem Biophys 81: 253–267. https://doi.org/10.1007/s12013-023-01143-2

- 295. *Chan HCS, Xu Y, Tan L, Vogel H, Cheng J, Wu D, Yuan S* (2020) Enhancing the Signaling of GPCRs via Orthosteric Ions. ACS Cent Sci 6: 274–282. https://doi.org/10.1021/acscentsci.9b01247
- 296. Ericksen SS, Cummings DF, Weinstein H, Schetz JA (2009) Ligand selectivity of D2 dopamine receptors is modulated by changes in local dynamics produced by sodium binding. J Pharmacol Exp Ther 328: 40–54. https://doi.org/10.1124/jpet.108.141531
- 297. *Livingston KE, Traynor JR* (2014) Disruption of the Na⁺ ion binding site as a mechanism for positive allosteric modulation of the mu-opioid receptor. Proc Natl Acad Sci U S A 111: 18369–18374. https://doi.org/10.1073/pnas.1415013111
- 298. Draper-Joyce CJ, Verma RK, Michino M, Shonberg J, Kopinathan A, Klein Herenbrink C, Scammells PJ, Capuano B, Abramyan AM, Thal DM, Javitch JA, Christopoulos A, Shi L, Lane JR (2018) The action of a negative allosteric modulator at the dopamine D₂ receptor is dependent upon sodium ions. Sci Rep 8: 1208. https://doi.org/10.1038/s41598-018-19642-1
- 299. Wang S, Wacker D, Levit A, Che T, Betz RM, McCorvy JD, Venkatakrishnan AJ, Huang XP, Dror RO, Shoichet BK, Roth BL (2017) D4 dopamine receptor high-resolution structures enable the discovery of selective agonists. Science 358: 381–386. https://doi.org/10.1126/science.aan5468
- 300. *Tauber M, Ben Chaim Y* (2022) The activity of the serotonergic 5-HT1A receptor is modulated by voltage and sodium levels. J Biol Chem 298: 101978. https://doi.org/10.1016/j.jbc.2022.101978
- 301. Friedman S, Tauber M, Ben-Chaim Y (2020) Sodium ions allosterically modulate the M2 muscarinic receptor. Sci Rep 10: 11177. https://doi.org/10.1038/s41598-020-68133-9
- 302. Hishinuma S, Kosaka K, Akatsu C, Uesawa Y, Fukui H, Shoji M (2017) Asp73-dependent and -independent regulation of the affinity of ligands for human histamine H₁ receptors by Na. Biochem Pharmacol 128: 46–54. https://doi.org/10.1016/j.bcp.2016.12.021
- 303. Schiffmann A, Gimpl G (2018) Sodium functions as a negative allosteric modulator of the oxytocin receptor. Biochim Biophys Acta Biomembr 1860: 1301–1308. https://doi.org/10.1016/j.bbamem.2018.03.003
- 304. Koshimizu TA, Kashiwazaki A, Taniguchi J (2016) Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors. Sci Rep 6: 25327.

https://doi.org/10.1038/srep25327

- 305. Ferré G, Gomes AAS, Louet M, Damian M, Bisch PM, Saurel O, Floquet N, Milon A, Banères JL (2023) Sodium is a negative allosteric regulator of the ghrelin receptor. Cell Rep 42: 112320. https://doi.org/10.1016/j.celrep.2023.112320
- 306. Cong X, Golebiowski J (2018) Allosteric Na⁺-binding site modulates CXCR4 activation. Phys Chem Chem Phys 20: 24915–24920. https://doi.org/10.1039/c8cp04134b

- 307. Shihoya W, Nishizawa T, Yamashita K, Inoue A, Hirata K, Kadji FMN, Okuta A, Tani K, Aoki J, Fujiyoshi Y, Doi T, Nureki O (2017) X-ray structures of endothelin ET_B receptor bound to clinical antagonist bosentan and its analog. Nat Struct Mol Biol 24: 758–764. https://doi.org/10.1038/nsmb.3450
- 308. Hori T, Okuno T, Hirata K, Yamashita K, Kawano Y, Yamamoto M, Hato M, Nakamura M, Shimizu T, Yokomizo T, Miyano M, Yokoyama S (2018) Na⁺-mimicking ligands stabilize the inactive state of leukotriene B₄ receptor BLT1. Nat Chem Biol 14: 262–269. https://doi.org/10.1038/nchembio.2547
- 309. Luginina A, Gusach A, Marin E, Mishin A, Brouillette R, Popov P, Shiriaeva A, Besserer-Offroy É, Longpré JM, Lyapina E, Ishchenko A, Patel N, Polovinkin V, Safronova N, Bogorodskiy A, Edelweiss E, Hu H, Weierstall U, Liu W, Batyuk A, Gordeliy V, Han GW, Sarret P, Katritch V, Borshchevskiy V, Cherezov V (2019) Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs. Sci Adv 5: eaax2518. https://doi.org/10.1126/sciadv.aax2518
- 310. *Prasad AS* (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 4: 176–190.

https://doi.org/10.3945/an.112.003210

- 311. Cherasse Y, Urade Y (2017) Dietary Zinc Acts as a Sleep Modulator. Int J Mol Sci 18: 2334. https://doi.org/10.3390/ijms18112334
- 312. Stengaard-Pedersen K, Fredens K, Larsson LI (1981) Inhibition of opiate receptor binding by zinc ions: possible physiological importance in the hippocampus. Peptides 2 Suppl 1: 27–35. https://doi.org/10.1016/0196-9781(81)90052-8
- 313. *Tejwani GA, Hanissian SH* (1990) Modulation of mu, delta and kappa opioid receptors in rat brain by metal ions and histidine. Neuropharmacology 29: 445–452. https://doi.org/10.1016/0028-3908(90)90166-0
- 314. *Rodriguez FD, Bardaji E, Traynor JR* (1992) Differential effects of Mg²⁺ and other divalent cations on the binding of tritiated opioid ligands. J Neurochem 59: 467–472. https://doi.org/10.1111/j.1471-4159.1992.tb09393.x
- 315. Schetz JA, Sibley DR (1997) Zinc allosterically modulates antagonist binding to cloned D1 and D2 dopamine receptors. J Neurochem 68: 1990–1997. https://doi.org/10.1046/j.1471-4159.1997.68051990.x
- 316. Schetz JA, Chu A, Sibley DR (1999) Zinc modulates antagonist interactions with D2-like dopamine receptors through distinct molecular mechanisms. J Pharmacol Exp Ther 289: 956–964.
- Schetz JA, Sibley DR (2001) The binding-site crevice of the D4 dopamine receptor is coupled to three distinct sites of allosteric modulation. J Pharmacol Exp Ther 296: 359–363.
- 318. Swaminath G, Steenhuis J, Kobilka B, Lee TW (2002) Allosteric modulation of beta2-adrenergic receptor by Zn (2+). Mol Pharmacol 61: 65–72. https://doi.org/10.1124/mol.61.1.65
- 319. Swaminath G, Lee TW, Kobilka B (2003) Identification of an allosteric binding site for Zn^{2+} on the beta2 adren-

ergic receptor. J Biol Chem 278: 352–356. https://doi.org/10.1074/jbc.M206424200

- 320. Ciolek J, Maïga A, Marcon E, Servent D, Gilles N (2011) Pharmacological characterization of zinc and copper interaction with the human alpha (1A)-adrenoceptor. Eur J Pharmacol 655: 1–8. https://doi.org/10.1016/j.aiphar.2010.12.042
 - https://doi.org/10.1016/j.ejphar.2010.12.042
- 321. Oda S, Nishiyama K, Furumoto Y, Yamaguchi Y, Nishimura A, Tang X, Kato Y, Numaga-Tomita T, Kaneko T, Mangmool S, Kuroda T, Okubo R, Sanbo M, Hirabayashi M, Sato Y, Nakagawa Y, Kuwahara K, Nagata R, Iribe G, Mori Y, Nishida M (2022) Myocardial TRPC6-mediated Zn²⁺ influx induces beneficial positive inotropy through β-adrenoceptors. Nat Commun 13: 6374. https://doi.org/10.1038/s41467-022-34194-9
- 322. *Holst B, Elling CE, Schwartz TW* (2002) Metal ion-mediated agonism and agonist enhancement in melanocortin MC1 and MC4 receptors. J Biol Chem 277: 47662– 47670. https://doi.org/10.1074/jbc.M202103200
- 323. Lagerström MC, Klovins J, Fredriksson R, Fridmanis D, Haitina T, Ling MK, Berglund MM, Schiöth HB (2003) High affinity agonistic metal ion binding sites within the melanocortin 4 receptor illustrate conformational change of transmembrane region 3. J Biol Chem 278: 51521–51526. https://doi.org/10.1074/jbc.M307683200
- 324. *Holst B, Schwartz TW* (2003) Molecular mechanism of agonism and inverse agonism in the melanocortin receptors: Zn ⁽²⁺⁾ as a structural and functional probe. Ann N Y Acad Sci 994: 1–11. https://doi.org/10.1111/j.1749-6632.2003.tb03156.x
- 325. Park PS, Sapra KT, Koliński M, Filipek S, Palczewski K, Muller DJ (2007) Stabilizing effect of Zn2+ in native bovine rhodopsin. J Biol Chem 282: 11377–11385. https://doi.org/10.1074/jbc.M610341200
- 326. Barrondo S, Sallés J (2009) Allosteric modulation of 5-HT (1A) receptors by zinc: Binding studies. Neuropharmacology 56: 455–462. https://doi.org/10.1016/j.neuropharm.2008.09.018
- 327. Satała G, Duszyńska B, Lenda T, Nowak G, Bojarski AJ (2018) Allosteric Inhibition of Serotonin 5-HT₇ Receptors by Zinc Ions. Mol Neurobiol 55: 2897–2910. https://doi.org/10.1007/s12035-017-0536-0
- 328. Duan J, Shen DD, Zhao T, Guo S, He X, Yin W, Xu P, Ji Y, Chen LN, Liu J, Zhang H, Liu Q, Shi Y, Cheng X, Jiang H, Eric Xu H, Zhang Y, Xie X, Jiang Y (2022) Molecular basis for allosteric agonism and G protein subtype selectivity of galanin receptors. Nat Commun 13: 1364.
 - https://doi.org/10.1038/s41467-022-29072-3
- 329. Anderson CT, Radford RJ, Zastrow ML, Zhang DY, Apfel UP, Lippard SJ, Tzounopoulos T (2015) Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc. Proc Natl Acad Sci U S A 112: E2705–E2714. https://doi.org/10.1073/pnas.1503348112
- 330. *Kalappa BI, Anderson CT, Goldberg JM, Lippard SJ, Tzounopoulos T* (2015) AMPA receptor inhibition by synaptically released zinc. Proc Natl Acad Sci U S A 112:

15749-15754.

https://doi.org/10.1073/pnas.1512296112

331. Sato S, Huang XP, Kroeze WK, Roth BL (2016) Discovery and Characterization of Novel GPR39 Agonists Allosterically Modulated by Zinc. Mol Pharmacol 90: 726–737.

https://doi.org/10.1124/mol.116.106112

332. Starowicz G, Siodłak D, Nowak G, Mlyniec K (2023) The role of GPR39 zinc receptor in the modulation of glutamatergic and GABAergic transmission. Pharmacol Rep 75: 609–622.

https://doi.org/10.1007/s43440-023-00478-0

- 333. Müller A, Kleinau G, Piechowski CL, Müller TD, Finan B, Pratzka J, Grüters A, Krude H, Tschöp M, Biebermann H (2013) G-protein coupled receptor 83 (GPR83) signaling determined by constitutive and zinc (II)-induced activity. PLoS One 8: e53347. https://doi.org/10.1371/journal.pone.0053347
 - https://doi.org/10.1371/journal.pone.0053347
- 334. Mack SM, Gomes I, Fakira AK, Duarte ML, Gupta A, Fricker L, Devi LA (2022) GPR83 engages endogenous peptides from two distinct precursors to elicit differential signaling. Mol Pharmacol 102: 29–38. https://doi.org/10.1124/molpharm.122.000487
- 335. Birnbaumer L, Zurita AR (2010) On the roles of Mg in the activation of G proteins. J Recept Signal Transduct Res 30: 372–375. https://doi.org/10.3109/10799893.2010.508165
- 336. *Williams LT, Mullikin D, Lefkowitz RJ* (1978) Magnesium dependence of agonist binding to adenylate cyclase-coupled hormone receptors. J Biol Chem 253: 2984–2989.
- 337. *Pasternak GW, Snowman AM, Snyder SH* (1975) Selective enhancement of [3H]opiate agonist binding by divalent cations. Mol Pharmacol 11: 735–744.
- 338. *Sibley DR, Creese I* (1983) Regulation of ligand binding to pituitary D-2 dopaminergic receptors. Effects of divalent cations and functional group modification. J Biol Chem 258: 4957–4965.
- 339. Burgmer U, Schulz U, Tränkle C, Mohr K (1998) Interaction of Mg²⁺ with the allosteric site of muscarinic M2 receptors. Naunyn Schmiedebergs Arch Pharmacol 357: 363–370.

https://doi.org/10.1007/p100005180

- 340. Schröter A, Tränkle C, Mohr K (2000) Modes of allosteric interactions with free and [3H]N-methylscopolamineoccupied muscarinic M2 receptors as deduced from buffer-dependent potency shifts. Naunyn Schmiedebergs Arch Pharmacol 362: 512–519. https://doi.org/10.1007/s002100000316
- 341. Hu X, Provasi D, Ramsey S, Filizola M (2020) Mechanism of μ-Opioid Receptor-Magnesium Interaction and Positive Allosteric Modulation. Biophys J 118: 909–921. https://doi.org/10.1016/j.bpj.2019.10.007
- 342. *Kim J, Jiang Q, Glashofer M, Yehle S, Wess J, Jacobson KA* (1996) Glutamate residues in the second extracellular loop of the human A2a adenosine receptor are required for ligand recognition. Mol Pharmacol 49: 683–691.
- 343. Jiang JY, Nagaraju M, Meyer RC, Zhang L, Hamelberg D, Hall RA, Brown EM, Conn PJ, Yang JJ (2014) Extracellular calcium modulates actions of orthosteric and al-

losteric ligands on metabotropic glutamate receptor 1α. J Biol Chem 289: 1649–1661. https://doi.org/10.1074/jbc.M113.507665

344. *Zou J, Jiang JY, Yang JJ* (2017) Molecular Basis for Modulation of Metabotropic Glutamate Receptors and Their Drug Actions by Extracellular Ca². Int J Mol Sci 18: 672.

https://doi.org/10.3390/ijms18030672

- 345. Mazina O, Reinart-Okugbeni R, Kopanchuk S, Rinken A (2012) BacMam system for FRET-based cAMP sensor expression in studies of melanocortin MC1 receptor activation. J Biomol Screen 17: 1096–1101. https://doi.org/10.1177/1087057112449862
- 346. Yu J, Gimenez LE, Hernandez CC, Wu Y, Wein AH, Han GW, McClary K, Mittal SR, Burdsall K, Stauch B, Wu L, Stevens SN, Peisley A, Williams SY, Chen V, Millhauser GL, Zhao S, Cone RD, Stevens RC (2020) Determination of the melanocortin-4 receptor structure identifies Ca²⁺ as a cofactor for ligand binding. Science 368: 428–433. https://doi.org/10.1126/science.aaz8995

347. *Ma S, Chen Y, Dai A, Yin W, Guo J, Yang D, Zhou F, Jiang Y, Wang MW, Xu HE* (2021) Structural mechanism of calcium-mediated hormone recognition and Gβ interaction by the human melanocortin-1 receptor. Cell Res 31: 1061–1071.

https://doi.org/10.1038/s41422-021-00557-y

- 348. *Eriksen L, Thomsen C* (1995) [3H]-L-2-amino-4-phosphonobutyrate labels a metabotropic glutamate receptor, mGluR4a. Br J Pharmacol 116: 3279–3287. https://doi.org/10.1111/j.1476-5381.1995.tb15136.x
- 349. *Kuang D, Hampson DR* (2006) Ion dependence of ligand binding to metabotropic glutamate receptors. Biochem Biophys Res Commun 345: 1–6. https://doi.org/10.1016/j.bbrc.2006.04.064
- 350. Tora AS, Rovira X, Dione I, Bertrand HO, Brabet I, De Koninck Y, Doyon N, Pin JP, Acher F, Goudet C (2015) Allosteric modulation of metabotropic glutamate receptors by chloride ions. FASEB J 29: 4174–4188. https://doi.org/10.1096/fj.14-269746
- 351. DiRaddo JO, Miller EJ, Bowman-Dalley C, Wroblewska B, Javidnia M, Grajkowska E, Wolfe BB, Liotta DC, Wroblewski JT (2015) Chloride is an Agonist of Group II and III Metabotropic Glutamate Receptors. Mol Pharmacol 88: 450–459. https://doi.org/10.1124/mol.114.096420
- 352. Tora AS, Rovira X, Cao AM, Cabayé A, Olofsson L, Malhaire F, Scholler P, Baik H, Van Eeckhaut A, Smolders I, Rondard P, Margeat E, Acher F, Pin JP, Goudet C (2018) Chloride ions stabilize the glutamate-induced active state of the metabotropic glutamate receptor 3. Neuropharmacology 140: 275–286. https://doi.org/10.1016/j.neuropharm.2018.08.011
- 353. *Liu H, Yi P, Zhao W, Wu Y, Acher F, Pin JP, Liu J, Rondard P* (2020) Illuminating the allosteric modulation of the calcium-sensing receptor. Proc Natl Acad Sci U S A 117: 21711–21722. https://doi.org/10.1073/pnas.1922231117
- 354. Nuemket N, Yasui N, Kusakabe Y, Nomura Y, Atsumi N, Akiyama S, Nango E, Kato Y, Kaneko MK, Takagi J, Ho-

sotani M, Yamashita A (2017) Structural basis for perception of diverse chemical substances by T1r taste receptors. Nat Commun 8: 15530. https://doi.org/10.1038/ncomms15530

355. Atsumi N, Yasumatsu K, Takashina Y, Ito C, Yasui N, Margolskee RF, Yamashita A (2023) Chloride ions evoke taste sensations by binding to the extracellular ligandbinding domain of sweet/umami taste receptors. Elife 12: e84291.

https://doi.org/10.7554/eLife.84291

- 356. Mitchell DC, Niu SL, Litman BJ (2001) Optimization of receptor-G protein coupling by bilayer lipid composition I: kinetics of rhodopsin-transducin binding. J Biol Chem 276: 42801–42806. https://doi.org/10.1074/jbc.M105772200
- 357. Soubias O, Teague WE Jr, Hines KG, Mitchell DC, Gawrisch K (2010) Contribution of membrane elastic energy to rhodopsin function. Biophys J 99: 817–824. https://doi.org/10.1016/j.bpj.2010.04.068
- 358. *Soubias O, Gawrisch K* (2012) The role of the lipid matrix for structure and function of the GPCR rhodopsin. Biochim Biophys Acta 1818: 234–240. https://doi.org/10.1016/j.bbamem.2011.08.034
- 359. Soubias O, Sodt AJ, Teague WE, Hines KG, Gawrisch K (2023) Physiological changes in bilayer thickness induced by cholesterol control GPCR rhodopsin function. Biophys J 122: 973–983. https://doi.org/10.1016/j.bpj.2022.11.2937
- 360. *Kubatova N, Schmidt T, Schwieters CD, Clore GM* (2023) Quantitative analysis of sterol-modulated monomer-dimer equilibrium of the β 1-adrenergic receptor by DEER spectroscopy. Proc Natl Acad Sci U S A 120: e2221036120.

https://doi.org/10.1073/pnas.2221036120

- 361. *Poudel B, Rajeshwar T R, Vanegas JM* (2023) Membrane mediated mechanical stimuli produces distinct activelike states in the AT1 receptor. Nat Commun 14: 4690. https://doi.org/10.1038/s41467-023-40433-4
- 362. *Ray AP, Thakur N, Pour NG, Eddy MT* (2023) Dual mechanisms of cholesterol-GPCR interactions that depend on membrane phospholipid composition. Structure 31: 836-847.e6. https://doi.org/10.1016/j.str.2023.05.001
- 363. Ostrom RS, Insel PA (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 143: 235–245. https://doi.org/10.1038/sj.bjp.0705930
- 364. *Patel HH, Murray F, Insel PA* (2008) G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains. Handb Exp Pharmacol (186): 167–184.

https://doi.org/10.1007/978-3-540-72843-6_7

- 365. *Kunselman JM, Lott J, Puthenveedu MA* (2021) Mechanisms of selective G protein-coupled receptor localization and trafficking. Curr Opin Cell Biol 71: 158–165. https://doi.org/10.1016/j.ceb.2021.03.002
- 366. *Kimura T, Ohta T, Watanabe K, Yoshimura H, Yamamoto I* (1998) Anandamide, an endogenous cannabinoid receptor ligand, also interacts with 5-hydroxytryptamine

(5-HT) receptor. Biol Pharm Bull 21: 22422–22426. https://doi.org/10.1248/bpb.21.224

- 367. Christopoulos A, Wilson K (2001) Interaction of anandamide with the M (1) and M (4) muscarinic acetylcholine receptors. Brain Res 915: 70–78. https://doi.org/10.1016/s0006-8993(01)02825-6
- 368. Lanzafame AA, Guida E, Christopoulos A (2004) Effects of anandamide on the binding and signaling properties of M1 muscarinic acetylcholine receptors. Biochem Pharmacol 68: 2207–2219. https://doi.org/10.1016/j.bcp.2004.08.005
- 369. Lane JR, Beukers MW, Mulder-Krieger T, Ijzerman AP (2010) The endocannabinoid 2-arachidonylglycerol is a negative allosteric modulator of the human A3 adenosine receptor. Biochem Pharmacol 79: 48–56. https://doi.org/10.1016/j.bcp.2009.07.024
- 370. Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y (2012) Endocannabinoid signaling and synaptic function. Neuron 76: 70–81. https://doi.org/10.1016/j.neuron.2012.09.020
- 371. Pamplona FA, Ferreira J, Menezes de Lima O Jr, Duarte FS, Bento AF, Forner S, Villarinho JG, Bellocchio L, Wotjak CT, Lerner R, Monory K, Lutz B, Canetti C, Matias I, Calixto JB, Marsicano G, Guimarães MZ, Takahashi RN (2012) Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor. Proc Natl Acad Sci U S A 109: 21134–21139. https://doi.org/10.1073/pnas.1202906109
- 372. Pertwee RG (2012) Lipoxin A4 is an allosteric endocannabinoid that strengthens anandamide-induced CB1 receptor activation. Proc Natl Acad Sci U S A 109: 20781– 20782. https://doi.org/10.1073/pnas.1218529110
- 373. Khurana L, Mackie K, Piomelli D, Kendall DA (2017) Modulation of CB1 cannabinoid receptor by allosteric ligands: Pharmacology and therapeutic opportunities. Neuropharmacology 124: 3–12. https://doi.org/10.1016/j.neuropharm.2017.05.018
- 374. Thomas EA, Carson MJ, Sutcliffe JG (1998) Oleamideinduced modulation of 5-hydroxytryptamine receptormediated signaling. Ann N Y Acad Sci 861: 183–189. https://doi.org/10.1111/j.1749-6632.1998.tb10190.x
- 375. Hedlund PB, Carson MJ, Sutcliffe JG, Thomas EA (1999) Allosteric regulation by oleamide of the binding properties of 5-hydroxytryptamine7 receptors. Biochem Pharmacol 58: 1807–1813. https://doi.org/10.1016/s0006-2952(99)00274-9
- 376. Hiley CR, Hoi PM (2007) Oleamide: a fatty acid amide signaling molecule in the cardiovascular system? Cardiovasc Drug Rev 25: 46–60. https://doi.org/10.1111/j.1527-3466.2007.00004.x
- 377. *Grazzini E, Guillon G, Mouillac B, Zingg HH* (1998) Inhibition of oxytocin receptor function by direct binding of progesterone. Nature 392: 509–512. https://doi.org/10.1038/33176
- 378. Yallampalli C, Kondapaka SB, Lanlua P, Wimalawansa SJ, Gangula PR (2004) Female sex steroid hormones and pregnancy regulate receptors for calcitonin gene-related peptide in rat mesenteric arteries, but not in aorta.

Biol Reprod 70: 1055–1062. https://doi.org/10.1095/biolreprod.103.022467

- 379. Rossi M, Dimida A, Ferrarini E, Silvano E, De Marco G, Agretti P, Aloisi G, Simoncini T, Di Bari L, Tonacchera M, Giorgi F, Maggio R (2009) Presence of a putative steroidal allosteric site on glycoprotein hormone receptors. Eur J Pharmacol 623: 155–159. https://doi.org/10.1016/j.ejphar.2009.09.029
- 380. Vallée M, Vitiello S, Bellocchio L, Hébert-Chatelain E, Monlezun S, Martin-Garcia E, Kasanetz F, Baillie GL, Panin F, Cathala A, Roullot-Lacarrière V, Fabre S, Hurst DP, Lynch DL, Shore DM, Deroche-Gamonet V, Spampinato U, Revest JM, Maldonado R, Reggio PH, Ross RA, Marsicano G, Piazza PV (2014) Pregnenolone can protect the brain from cannabis intoxication. Science 343: 94–98. https://doi.org/10.1120/jaienee.1242085

https://doi.org/10.1126/science.1243985

- 381. Busquets-Garcia A, Soria-Gómez E, Redon B, Mackenbach Y, Vallée M, Chaouloff F, Varilh M, Ferreira G, Piazza PV, Marsicano G (2017) Pregnenolone blocks cannabinoid-induced acute psychotic-like states in mice. Mol Psychiatry 22: 1594–1603. https://doi.org/10.1038/mp.2017.4
- 382. Kolatorova L, Vitku J, Suchopar J, Hill M, Parizek A (2022) Progesterone: A Steroid with Wide Range of Effects in Physiology as Well as Human Medicine. Int J Mol Sci 23: 7989. https://doi.org/10.3390/ijms23147989
- 383. *Paila YD, Kombrabail M, Krishnamoorthy G, Chattopadhyay A* (2011) Oligomerization of the serotonin (1A) receptor in live cells: a time-resolved fluorescence anisot-

ropy approach. J Phys Chem B 115: 11439–11447. https://doi.org/10.1021/jp201458h

- 384. Sejdiu BI, Tieleman DP (2020) Lipid-Protein Interactions Are a Unique Property and Defining Feature of G Protein-Coupled Receptors. Biophys J 118: 1887–1900. https://doi.org/10.1016/j.bpj.2020.03.008
- 385. Janetzko J, Kise R, Barsi-Rhyne B, Siepe DH, Heydenreich FM, Kawakami K, Masureel M, Maeda S, Garcia KC, von Zastrow M, Inoue A, Kobilka BK (2022) Membrane phosphoinositides regulate GPCR-β-arrestin complex assembly and dynamics. Cell 185: 4560-4573.e19. https://doi.org/10.1016/j.cell.2022.10.018
- 386. *Tzortzini E, Kolocouris A* (2023) Molecular Biophysics of Class A G Protein Coupled Receptors-Lipids Interactome at a Glance-Highlights from the A_{2A} Adenosine Receptor. Biomolecules 13: 957. https://doi.org/10.3390/biom13060957
- 387. Fantini J, Barrantes FJ (2013) How cholesterol interacts with membrane proteins: an exploration of cholesterolbinding sites including CRAC, CARC, and tilted domains. Front Physiol 4: 31. https://doi.org/10.3389/fphys.2013.00031
- 388. Krishna Kumar K, Shalev-Benami M, Robertson MJ, Hu H, Banister SD, Hollingsworth SA, Latorraca NR, Kato HE, Hilger D, Maeda S, Weis WI, Farrens DL, Dror RO, Malhotra SV, Kobilka BK, Skiniotis G (2019) Structure of a Signaling Cannabinoid Receptor 1-G Protein Complex. Cell 176: 448-458.e12. https://doi.org/10.1016/j.cell.2018.11.040

- 389. Xing C, Zhuang Y, Xu TH, Feng Z, Zhou XE, Chen M, Wang L, Meng X, Xue Y, Wang J, Liu H, McGuire TF, Zhao G, Melcher K, Zhang C, Xu HE, Xie XQ (2020) Cryo-EM Structure of the Human Cannabinoid Receptor CB2-G_i Signaling Complex. Cell 180: 645-654.e13. https://doi.org/10.1016/j.cell.2020.01.007
- 390. Gimpl G, Burger K, Fahrenholz F (1997) Cholesterol as modulator of receptor function. Biochemistry 36: 10959–10974. https://doi.org/10.1021/bi963138w
- 391. Eroglu C, Brugger B, Wieland F, Sinning I (2003) Glutamate-binding affinity of Drosophila metabotropic glutamate receptor is modulated by association with lipid rafts. Proc Natl Acad Sci U S A 100: 10219–10224. https://doi.org/10.1073/pnas.1737042100
- 392. *Prasad R, Paila YD, Chattopadhyay A* (2009) Membrane cholesterol depletion enhances ligand binding function of human serotonin1A receptors in neuronal cells. Biochem Biophys Res Commun 390: 93–96. https://doi.org/10.1016/j.bbrc.2009.09.072
- 393. *Potter RM, Harikumar KG, Wu SV, Miller LJ* (2012) Differential sensitivity of types 1 and 2 cholecystokinin receptors to membrane cholesterol. J Lipid Res 53: 137–148.

https://doi.org/10.1194/jlr.M020065

- 394. Navratil AM, Bliss SP, Berghorn KA, Haughian JM, Farmerie TA, Graham JK, Clay CM, Roberson MS (2003) Constitutive localization of the gonadotropin-releasing hormone (GnRH) receptor to low density membrane microdomains is necessary for GnRH signaling to ERK. J Biol Chem 278: 31593–31602. https://doi.org/10.1074/jbc.M304273200
- 395. Levitt ES, Clark MJ, Jenkins PM, Martens JR, Traynor JR (2009) Differential effect of membrane cholesterol removal on mu- and delta-opioid receptors: a parallel comparison of acute and chronic signaling to adenylyl cyclase. J Biol Chem 284: 22108–22122. https://doi.org/10.1074/jbc.M109.030411
- 396. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16: 897–905. https://doi.org/10.1016/j.str.2008.05.001
- 397. *Jafurulla M, Tiwari S, Chattopadhyay A* (2011) Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem Biophys Res Commun 404: 569–573. https://doi.org/10.1016/j.bbrc.2010.12.031
- 398. Thal DM, Sun B, Feng D, Nawaratne V, Leach K, Felder CC, Bures MG, Evans DA, Weis WI, Bachhawat P, Kobilka TS, Sexton PM, Kobilka BK, Christopoulos A (2016) Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531: 335–340. https://doi.org/10.1038/nature17188
- 399. Maeda S, Xu J, N Kadji FM, Clark MJ, Zhao J, Tsutsumi N, Aoki J, Sunahara RK, Inoue A, Garcia KC, Kobilka BK (2020) Structure and selectivity engineering of the M₁ muscarinic receptor toxin complex. Science 369: 161–167. https://doi.org/10.1126/science.aax2517

- 400. Randáková A, Dolejší E, Rudajev V, Zimčík P, Doležal V, El-Fakahany EE, Jakubík J (2018) Role of membrane cholesterol in differential sensitivity of muscarinic receptor subtypes to persistently bound xanomeline. Neuropharmacology 133: 129–144. https://doi.org/10.1016/j.neuropharm.2018.01.027
- 401. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC (2012) Structure of the human κ-opioid receptor in complex with JDTic. Nature 485 (7398): 327–332. https://doi.org/10.1038/nature10939
- 402. Wacker D, Wang S, McCorvy JD, Betz RM, Venkatakrishnan AJ, Levit A, Lansu K, Schools ZL, Che T, Nichols DE, Shoichet BK, Dror RO, Roth BL (2017) Crystal Structure of an LSD-Bound Human Serotonin Receptor. Cell 168: 377-389.e12. https://doi.org/10.1016/j.cell.2016.12.033
- 403. McCorvy JD, Wacker D, Wang S, Agegnehu B, Liu J, Lansu K, Tribo AR, Olsen RHJ, Che T, Jin J, Roth BL (2018) Structural determinants of 5-HT_{2B} receptor activation and biased agonism. Nat Struct Mol Biol 25: 787–796. https://doi.org/10.1038/s41594-018-0116-7
- 404. Wingler LM, Skiba MA, McMahon C, Staus DP, Kleinhenz ALW, Suomivuori CM, Latorraca NR, Dror RO, Lefkowitz RJ, Kruse AC (2020) Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science 367: 888–892. https://doi.org/10.1126/science.aay9813
- 405. Segala E, Guo D, Cheng RK, Bortolato A, Deflorian F, Doré AS, Errey JC, Heitman LH, IJzerman AP, Marshall FH, Cooke RM (2016) Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge Strength. J Med Chem 59: 6470– 6479.

https://doi.org/10.1021/acs.jmedchem.6b00653

406. Che T, English J, Krumm BE, Kim K, Pardon E, Olsen RHJ, Wang S, Zhang S, Diberto JF, Sciaky N, Carroll FI, Steyaert J, Wacker D, Roth BL (2020) Nanobody-enabled monitoring of kappa opioid receptor states. Nat Commun 11: 1145.

https://doi.org/10.1038/s41467-020-14889-7

- 407. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485: 321–326. https://doi.org/10.1038/nature10954
- 408. Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weis WI, Steyaert J, Dror RO, Kobilka BK (2015) Structural insights into μ-opioid receptor activation. Nature 524: 315–321. https://doi.org/10.1038/nature14886
- 409. Zhang K, Zhang J, Gao ZG, Zhang D, Zhu L, Han GW, Moss SM, Paoletta S, Kiselev E, Lu W, Fenalti G, Zhang W, Müller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q (2014) Structure of the human P2Y12 receptor in complex with an

antithrombotic drug. Nature 509: 115–118. https://doi.org/10.1038/nature13083

410. *Liu K, Wu L, Yuan S, Wu M, Xu Y, Sun Q, Li S, Zhao S, Hua T, Liu ZJ* (2020) Structural basis of CXC chemokine receptor 2 activation and signalling. Nature 585: 135–140.

https://doi.org/10.1038/s41586-020-2492-5

- 411. Zhuang Y, Liu H, Edward Zhou X, Kumar Verma R, de Waal PW, Jang W, Xu TH, Wang L, Meng X, Zhao G, Kang Y, Melcher K, Fan H, Lambert NA, Eric Xu H, Zhang C (2020) Structure of formylpeptide receptor 2-G_i complex reveals insights into ligand recognition and signaling. Nat Commun 11: 885. https://doi.org/10.1038/s41467-020-14728-9
- 412. Claff T, Yu J, Blais V, Patel N, Martin C, Wu L, Han GW, Holleran BJ, Van der Poorten O, White KL, Hanson MA, Sarret P, Gendron L, Cherezov V, Katritch V, Ballet S, Liu ZJ, Müller CE, Stevens RC (2019) Elucidating the active δ-opioid receptor crystal structure with peptide and small-molecule agonists. Sci Adv 5: eaax9115. https://doi.org/10.1126/sciadv.aax9115
- 413. Miles TF, Spiess K, Jude KM, Tsutsumi N, Burg JS, Ingram JR, Waghray D, Hjorto GM, Larsen O, Ploegh HL, Rosenkilde MM, Garcia KC (2018) Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy. Elife 7: e35850. https://doi.org/10.7554/eLife.35850
- 414. Waltenspühl Y, Schöppe J, Ehrenmann J, Kummer L, Plückthun A (2020) Crystal structure of the human oxytocin receptor. Sci Adv 6: eabb5419. https://doi.org/10.1126/sciadv.abb5419
- 415. Gusach A, Luginina A, Marin E, Brouillette RL, Besserer-Offroy É, Longpré JM, Ishchenko A, Popov P, Patel N, Fujimoto T, Maruyama T, Stauch B, Ergasheva M, Romanovskaia D, Stepko A, Kovalev K, Shevtsov M, Gordeliy V, Han GW, Katritch V, Borshchevskiy V, Sarret P, Mishin A, Cherezov V (2019) Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors. Nat Commun 10: 5573. https://doi.org/10.1038/s41467-019-13348-2
- 416. Chen T, Xiong M, Zong X, Ge Y, Zhang H, Wang M, Won Han G, Yi C, Ma L, Ye RD, Xu Y, Zhao Q, Wu B (2020) Structural basis of ligand binding modes at the human formyl peptide receptor 2. Nat Commun 11: 1208. https://doi.org/10.1038/s41467-020-15009-1
- 417. *Babcock GJ, Farzan M, Sodroski J* (2003) Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J Biol Chem 278: 3378–3385. https://doi.org/10.1074/jbc.M210140200
- 418. Calmet P, Cullin C, Cortès S, Vang M, Caudy N, Baccouch R, Dessolin J, Maamar NT, Lecomte S, Tillier B, Alves ID (2020) Cholesterol impacts chemokine CCR5 receptor ligand-binding activity. FEBS J 287: 2367–2385. https://doi.org/10.1111/febs.15145
- 419. Ruthirakuhan M, Herrmann N, Andreazza AC, Verhoeff NPLG, Gallagher D, Black SE, Kiss A, Lanctôt KL (2019) 24S-Hydroxycholesterol Is Associated with Agitation Severity in Patients with Moderate-to-Severe Alzheimer's Disease: Analyses from a Clinical Trial with Nabilone. J Alzheimers Dis 71: 21–31. https://doi.org/10.3233/JAD-190202

- 420. Guixà-González R, Albasanz JL, Rodriguez-Espigares I, Pastor M, Sanz F, Martí-Solano M, Manna M, Martinez-Seara H, Hildebrand PW, Martín M, Selent J (2017) Membrane cholesterol access into a G-protein-coupled receptor. Nat Commun 8: 14505. https://doi.org/10.1038/ncomms14505
- 421. McGraw C, Yang L, Levental I, Lyman E, Robinson AS (2019) Membrane cholesterol depletion reduces downstream signaling activity of the adenosine A2A receptor. Biochim Biophys Acta Biomembr 1861: 760-767. https://doi.org/10.1016/j.bbamem.2019.01.001
- 422. Szczurowska E, Szánti-Pintér E, Randáková A, Jakubík J, Kudova E (2022) Allosteric Modulation of Muscarinic Receptors by Cholesterol, Neurosteroids and Neuroactive Steroids. Int J Mol Sci 23: 13075. https://doi.org/10.3390/ijms232113075
- 423. Michal P, Rudajev V, El-Fakahany EE, Dolezal V (2009) Membrane cholesterol content influences binding properties of muscarinic M2 receptors and differentially impacts activation of second messenger pathways. Eur J Pharmacol 606: 50-60. https://doi.org/10.1016/j.ejphar.2009.01.028
- 424. Michal P, El-Fakahany EE, Doležal V(2015) Changes in Membrane Cholesterol Differentially Influence Preferential and Non-preferential Signaling of the M1 and M3 Muscarinic Acetylcholine Receptors. Neurochem Res 40:2068-2077.
 - https://doi.org/10.1007/s11064-014-1325-z
- 425. Jakubik J, El-Fakahany EE (2020) Current Advances in Allosteric Modulation of Muscarinic Receptors. Biomolecules 10: 325. https://doi.org/10.3390/biom10020325
- 426. Oates J, Watts A (2011) Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol 21: 802-807. https://doi.org/10.1016/j.sbi.2011.09.007
- 427. Geiger J, Sexton R, Al-Sahouri Z, Lee MY, Chun E, Harikumar KG, Miller LJ, Beckstein O, Liu W (2021) Evidence that specific interactions play a role in the cholesterol sensitivity of G protein-coupled receptors. Biochim Biophys Acta Biomembr 1863: 183557. https://doi.org/10.1016/j.bbamem.2021.183557
- 428. Prasanna X, Chattopadhyay A, Sengupta D (2014) Cholesterol modulates the dimer interface of the β_2 -adrenergic receptor via cholesterol occupancy sites. Biophys J 106: 1290-1300. https://doi.org/10.1016/j.bpj.2014.02.002
- 429. Dainese E, Oddi S, Maccarrone M (2008) Lipid-mediated dimerization of beta2-adrenergic receptor reveals important clues for cannabinoid receptors. Cell Mol Life Sci 65: 2277–2279. https://doi.org/10.1007/s00018-008-8139-6
- 430. Wang J, He L, Combs CA, Roderiquez G, Norcross MA (2006) Dimerization of CXCR4 in living malignant cells: control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions. Mol Cancer Ther 5: 2474-2483. https://doi.org/10.1158/1535-7163.MCT-05-0261
- 431. Ganguly S, Clayton AH, Chattopadhyay A (2011) Organization of higher-order oligomers of the serotonin₁ (A)

receptor explored utilizing homo-FRET in live cells. Biophys J 100: 361-368.

- https://doi.org/10.1016/j.bpj.2010.12.3692
- 432. Sarkar P, Mozumder S, Bej A, Mukherjee S, Sengupta J, Chattopadhyay A (2020) Structure, dynamics and lipid interactions of serotonin receptors: excitements and challenges. Biophys Rev 13: 101-122. https://doi.org/10.1007/s12551-020-00772-8
- 433. Mahesh G, Jaiswal P, Dey S, Sengupta J, Mukherjee S (2018) Cloning, Expression, Purification and Characterization of Oligomeric States of the Native 5HT2A G-Protein-Coupled Receptor. Protein Pept Lett 25: 390-397.
 - https://doi.org/10.2174/0929866525666180207110137
- 434. Massaccesi L, Laudadio E, Mobbili G, Minnelli C, Galeazzi R (2020) Cholesterol-mediated oligomerization pathways of serotonin G-coupled receptor 5-HT2C. Int J Biol Macromol 160: 1090-1100. https://doi.org/10.1016/j.ijbiomac.2020.05.231
- 435. Liste MJ, Caltabiano G, Ward RJ, Alvarez-Curto E, Marsango S, Milligan G (2015) The molecular basis of oligomeric organization of the human M3 muscarinic acetylcholine receptor. Mol Pharmacol 87: 936-953. https://doi.org/10.1124/mol.114.096925
- 436. Milligan G, Ward RJ, Marsango S (2019) GPCR homooligomerization. Curr Opin Cell Biol 57: 40-47. https://doi.org/10.1016/j.ceb.2018.10.007
- 437. Isu UH, Badiee SA, Khodadadi E, Moradi M (2023) Cholesterol in Class C GPCRs: Role, Relevance, and Localization. Membranes (Basel) 13: 301. https://doi.org/10.3390/membranes13030301
- 438. Park J, Zuo H, Frangaj A, Fu Z, Yen LY, Zhang Z, Mosyak L, Slavkovich VN, Liu J, Ray KM, Cao B, Vallese F, Geng Y, Chen S, Grassucci R, Dandey VP, Tan YZ, Eng E, Lee Y, Kloss B, Liu Z, Hendrickson WA, Potter CS, Carragher B, Graziano J, Conigrave AD, Frank J, Clarke OB, Fan QR (2021) Symmetric activation and modulation of the human calcium-sensing receptor. Proc Natl Acad Sci U S A 118: e2115849118. https://doi.org/10.1073/pnas.2115849118
- 439. Patil DN, Singh S, Laboute T, Strutzenberg TS, Qiu X, Wu D, Novick SJ, Robinson CV, Griffin PR, Hunt JF, Izard T, Singh AK, Martemyanov KA (2022) Cryo-EM structure of human GPR158 receptor coupled to the RGS7-G β 5 signaling complex. Science 375: 86–91. https://doi.org/10.1126/science.abl4732
- 440. Kim Y, Jeong E, Jeong JH, Kim Y, Cho Y (2020) Structural Basis for Activation of the Heterodimeric GABAB Receptor. J Mol Biol 432: 5966-5984. https://doi.org/10.1016/j.jmb.2020.09.023
- 441. Moreau CJ, Audic G, Lemel L, García-Fernández MD, Nieścierowicz K (2023) Interactions of cholesterol molecules with GPCRs in different states: A comparative analysis of GPCRs' structures. Biochim Biophys Acta Biomembr 1865: 184100. https://doi.org/10.1016/j.bbamem.2022.184100
- 442. Vance JE (2012) Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech 5: 746-755. https://doi.org/10.1242/dmm.010124

- 443. *Ridker PM* (2014) LDL cholesterol: controversies and future therapeutic directions. Lancet 384: 607–617. https://doi.org/10.1016/S0140-6736(14)61009-6
- 444. *Baccouch R, Rascol E, Stoklosa K, Alves ID* (2022) The role of the lipid environment in the activity of G protein coupled receptors. Biophys Chem 285: 106794. https://doi.org/10.1016/j.bpc.2022.106794
- 445. Eichel K, Jullié D, Barsi-Rhyne B, Latorraca NR, Masureel M, Sibarita JB, Dror RO, von Zastrow M (2018) Catalytic activation of β-arrestin by GPCRs. Nature 557: 381–386. https://doi.org/10.1038/s41586-018-0079-1
- 446. Gaidarov I, Krupnick JG, Falck JR, Benovic JL, Keen JH (1999) Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J 18: 871–881. https://doi.org/10.1093/emboj/18.4.871
- 447. *Kadlecova Z, Spielman SJ, Loerke D, Mohanakrishnan A, Reed DK, Schmid SL* (2017) Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2. J Cell Biol 216: 167–179. https://doi.org/10.1083/jcb.201608071
- 448. Huang W, Masureel M, Qu Q, Janetzko J, Inoue A, Kato HE, Robertson MJ, Nguyen KC, Glenn JS, Skiniotis G, Kobilka BK (2020) Structure of the neurotensin receptor 1 in complex with β-arrestin 1. Nature 579: 303–308. https://doi.org/10.1038/s41586-020-1953-1
- 449. Song W, Yen HY, Robinson CV, Sansom MSP (2019) State-dependent Lipid Interactions with the A2a Receptor Revealed by MD Simulations Using In Vivo-Mimetic Membranes. Structure 27: 392-403.e3. https://doi.org/10.1016/j.str.2018.10.024
- 450. White AD, Jean-Alphonse FG, Fang F, Peña KA, Liu S, König GM, Inoue A, Aslanoglou D, Gellman SH, Kostenis E, Xiao K, Vilardaga JP (2020) G_{q/11}-dependent regulation of endosomal cAMP generation by parathyroid hormone class B GPCR. Proc Natl Acad Sci U S A 117: 7455–7460.

https://doi.org/10.1073/pnas.1918158117

451. Ehrenmann J, Schöppe J, Klenk C, Rappas M, Kummer L, Doré AS, Plückthun A (2018) High-resolution crystal structure of parathyroid hormone 1 receptor in complex with a peptide agonist. Nat Struct Mol Biol 25: 1086– 1092.

https://doi.org/10.1038/s41594-018-0151-4

- 452. Zhao LH, Ma S, Sutkeviciute I, Shen DD, Zhou XE, de Waal PW, Li CY, Kang Y, Clark LJ, Jean-Alphonse FG, White AD, Yang D, Dai A, Cai X, Chen J, Li C, Jiang Y, Watanabe T, Gardella TJ, Melcher K, Wang MW, Vilardaga JP, Xu HE, Zhang Y (2019) Structure and dynamics of the active human parathyroid hormone receptor-1. Science 364: 148–153. https://doi.org/10.1126/science.aav7942
- 453. *Sutkeviciute I, Vilardaga JP* (2020) Structural insights into emergent signaling modes of G protein-coupled receptors. J Biol Chem 295: 11626–11642. https://doi.org/10.1074/jbc.REV120.009348
- 454. Conigrave AD, Quinn SJ, Brown EM (2000) L-amino acid sensing by the extracellular Ca2+-sensing receptor.

Proc Natl Acad Sci U S A 97: 4814–4819. https://doi.org/10.1073/pnas.97.9.4814

- 455. Mun HC, Culverston EL, Franks AH, Collyer CA, Clifton-Bligh RJ, Conigrave AD (2005) A double mutation in the extracellular Ca²⁺-sensing receptor's venus flytrap domain that selectively disables L-amino acid sensing. J Biol Chem 280: 29067–29072. https://doi.org/10.1074/jbc.M500002200
- 456. Lee HJ, Mun HC, Lewis NC, Crouch MF, Culverston EL, Mason RS, Conigrave AD (2007) Allosteric activation of the extracellular Ca2+-sensing receptor by L-amino acids enhances ERK1/2 phosphorylation. Biochem J 404: 141–149. https://doi.org/10.1042/BJ20061826
- 457. Davey AE, Leach K, Valant C, Conigrave AD, Sexton PM, Christopoulos A (2012) Positive and negative allosteric modulators promote biased signaling at the calciumsensing receptor. Endocrinology 153: 1232–1241. https://doi.org/10.1210/en.2011-1426
- 458. *Kerr DI, Ong J* (2003) Potentiation of metabotropic GABAB receptors by L-amino acids and dipeptides in rat neocortex. Eur J Pharmacol 468: 103–108. https://doi.org/10.1016/s0014-2999(03)01675-3
- 459. Urwyler S, Gjoni T, Kaupmann K, Pozza MF, Mosbacher J (2004) Selected amino acids, dipeptides and arylalkylamine derivatives do not act as allosteric modulators at GABAB receptors. Eur J Pharmacol 483: 147– 153.

https://doi.org/10.1016/j.ejphar.2003.10.024

- 460. Agnati LF, Ferré S, Genedani S, Leo G, Guidolin D, Filaferro M, Carriba P, Casadó V, Lluis C, Franco R, Woods AS, Fuxe K (2006) Allosteric modulation of dopamine D2 receptors by homocysteine. J Proteome Res 5: 3077–3083. https://doi.org/10.1021/pr0601382
- 461. Hu XW, Qin SM, Li D, Hu LF, Liu CF (2013) Elevated homocysteine levels in levodopa-treated idiopathic Parkinson's disease: a meta-analysis. Acta Neurol Scand 128: 73–82. https://doi.org/10.1111/ane.12106
- 462. Fasciani I, Petragnano F, Aloisi G, Marampon F, Carli M, Scarselli M, Maggio R, Rossi M (2020 Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: A New Class of Atypical Antipsychotics. Pharmaceuticals (Basel) 13: 388. https://doi.org/10.3390/ph13110388
- 463. *Molderings GJ, Menzel S, Kathmann M, Schlicker E, Göthert M* (2000) Dual interaction of agmatine with the rat alpha (2D)-adrenoceptor: competitive antagonism and allosteric activation. Br J Pharmacol 130: 1706-1712. https://doi.org/10.1038/sj.bjp.0703495
- 464. Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues AL, Satriano J, Seong GJ, Wilcox G, Wu N, Gilad GM (2013) Agmatine: clinical applications after 100 years in translation. Drug Discov Today 18: 880–893. https://doi.org/10.1016/j.drudis.2013.05.017
- 465. *Maltsev AV* (2018) Agmatine modulates calcium handling in cardiomyocytes of hibernating ground squirrels

through calcium-sensing receptor signaling. Cell Signal 51: 1-12.

https://doi.org/10.1016/j.cellsig.2018.07.004

- 466. *Shin S, Awuah Boadi E, Shah S, Ezell M, Li P, Bandyopadhyay BC* (2023) Anti-inflammatory role of extracellular l-arginine through calcium sensing receptor in human renal proximal tubular epithelial (HK-2) cells. Int Immunopharmacol 117: 109853. https://doi.org/10.1016/j.intimp.2023.109853
- 467. Massot O, Rousselle JC, Fillion MP, Grimaldi B, Cloëz-Tayarani I, Fugelli A, Prudhomme N, Seguin L, Rousseau B, Plantefol M, Hen R, Fillion G (1996) 5-hydroxytryptamine-moduline, a new endogenous cerebral peptide, controls the serotonergic activity via its specific interaction with 5-hydroxytryptamine1B/1D receptors. Mol Pharmacol 50: 752–762.
- 468. Massot O, Rousselle JC, Grimaldi B, Cloëz-Tayarani I, Fillion MP, Plantefol M, Bonnin A, Prudhomme N, Fillion G (1998) Molecular, cellular and physiological characteristics of 5-HT-moduline, a novel endogenous modulator of 5-HT1B receptor subtype. Ann N Y Acad Sci 861: 174–182.

https://doi.org/10.1111/j.1749-6632.1998.tb10189.x

- 469. *Fillion G* (2000) Potential of 5-HT-moduline as a drug target for affective disorders. Curr Opin Investig Drugs 1: 104–109.
- 470. *Bonnin A, Grimaldi B, Fillion MP, Fillion G* (1999) Acute stress induces a differential increase of 5-HT-moduline (LSAL) tissue content in various rat brain areas. Brain Res 825: 152–160. https://doi.org/10.1016/s0006-8993(99)01265-2
- 471. Gomes I, Grushko JS, Golebiewska U, Hoogendoorn S, Gupta A, Heimann AS, Ferro ES, Scarlata S, Fricker LD, Devi LA (2009) Novel endogenous peptide agonists of cannabinoid receptors. FASEB J 23: 3020–3029. https://doi.org/10.1096/fj.09-132142
- 472. Bauer M, Chicca A, Tamborrini M, Eisen D, Lerner R, Lutz B, Poetz O, Pluschke G, Gertsch J (2012) Identification and quantification of a new family of peptide endocannabinoids (Pepcans) showing negative allosteric modulation at CB1 receptors. J Biol Chem 287: 36944– 36967.

https://doi.org/10.1074/jbc.M112.382481

- 473. Petrucci V, Chicca A, Glasmacher S, Paloczi J, Cao Z, Pacher P, Gertsch J (2017) Pepcan-12 (RVD-hemopressin) is a CB2 receptor positive allosteric modulator constitutively secreted by adrenals and in liver upon tissue damage. Sci Rep 7: 9560. https://doi.org/10.1038/s41598-017-09808-8
- 474. Straiker A, Mitjavila J, Yin D, Gibson A, Mackie K (2015) Aiming for allosterism: Evaluation of allosteric modulators of CB1 in a neuronal model. Pharmacol Res 99: 370–376.

https://doi.org/10.1016/j.phrs.2015.07.017

475. Heimann AS, Gomes I, Dale CS, Pagano RL, Gupta A, de Souza LL, Luchessi AD, Castro LM, Giorgi R, Rioli V, Ferro ES, Devi LA (2007) Hemopressin is an inverse agonist of CB1 cannabinoid receptors. Proc Natl Acad Sci U S A 104: 20588–20593. https://doi.org/10.1073/pnas.0706980105

- 476. *de Kloet AD, Woods SC* (2009) Minireview: Endocannabinoids and their receptors as targets for obesity therapy. Endocrinology 150: 2531–2536. https://doi.org/10.1210/en.2009-0046
- 477. *Macedonio G, Stefanucci A, Maccallini C, Mirzaie S, Novellino E, Mollica A* (2016) Hemopressin Peptides as Modulators of the Endocannabinoid System and their Potential Applications as Therapeutic Tools. Protein Pept Lett 23: 1045–1051. https://doi.org/10.2174/0929866523666161007152435
- 478. Glasmacher S, Gertsch J (2021) Characterization of pepcan-23 as pro-peptide of RVD-hemopressin (pepcan-12) and stability of hemopressins in mice. Adv Biol Regul 80: 100808. https://doi.org/10.1016/j.jbior.2021.100808
- 479. Han ZL, Fang Q, Wang ZL, Li XH, Li N, Chang XM, Pan JX, Tang HZ, Wang R (2014) Antinociceptive effects of central administration of the endogenous cannabinoid receptor type 1 agonist VDPVNFKLLSH-OH [(m)VD-hemopressin (α)], an N-terminally extended hemopressin peptide. J Pharmacol Exp Ther 348: 316–323.

https://doi.org/10.1124/jpet.113.209866

- 480. Zheng T, Zhang T, Zhang R, Wang ZL, Han ZL, Li N, Li XH, Zhang MN, Xu B, Yang XL, Fang Q, Wang R (2017) Pharmacological characterization of rat VD-hemopressin (α), an α-hemoglobin-derived peptide exhibiting cannabinoid agonist-like effects in mice. Neuropeptides 63: 83–90. https://doi.org/10.1016/j.npep.2016.12.006
- 481. Yuan J, Jiang C, Wang J, Chen CJ, Hao Y, Zhao G, Feng Z, Xie XQ (2022) In Silico Prediction and Validation of CB2 Allosteric Binding Sites to Aid the Design of Allosteric Modulators. Molecules 27: 453. https://doi.org/10.3390/molecules27020453
- 482. Raphael-Mizrahi B, Attar-Namdar M, Chourasia M, Cascio MG, Shurki A, Tam J, Neuman M, Rimmerman N, Vogel Z, Shteyer A, Pertwee RG, Zimmer A, Kogan NM, Bab I, Gabet Y (2022) Osteogenic growth peptide is a potent anti-inflammatory and bone preserving hormone via cannabinoid receptor type 2. Elife 11: e65834. https://doi.org/10.7554/eLife.65834
- 483. *Martinez Ramirez CE, Ruiz-Pérez G, Stollenwerk TM, Behlke C, Doherty A, Hillard CJ* (2023) Endocannabinoid signaling in the central nervous system. Glia 71: 5–35.

https://doi.org/10.1002/glia.24280

- 484. Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR, Pan AC, Arlow DH, Canals M, Lane JR, Rahmani R, Baell JB, Sexton PM, Christopoulos A, Shaw DE (2013) Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503: 295–299. https://doi.org/10.1038/nature12595
- 485. *Hu J, Wang SZ, Forray C, el-Fakahany EE* (1992) Complex allosteric modulation of cardiac muscarinic receptors by protamine: potential model for putative endogenous ligands. Mol Pharmacol 42: 311–321.
- 486. *Hu J, el-Fakahany EE* (1993) Allosteric interaction of dynorphin and myelin basic protein with muscarinic receptors. Pharmacology 47 (6): 351–359. https://doi.org/10.1159/000139118

- 487. Karlsson E, Jolkkonen M, Mulugeta E, Onali P, Adem A (2000) Snake toxins with high selectivity for subtypes of muscarinic acetylcholine receptors. Biochimie 8: 793– 806. https://doi.org/10.1016/s0300-9084(00)01176-7
- 488. Jacoby DB, Gleich GJ, Fryer AD (993) Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor. J Clin Invest 91: 1314–1318. https://doi.org/10.1172/JCI116331
- 489. Yost BL, Gleich GJ, Fryer AD (1999) Ozone-induced hyperresponsiveness and blockade of M2 muscarinic receptors by eosinophil major basic protein. J Appl Physiol (1985) 87: 1272–1278. https://doi.org/10.1152/jappl.1999.87.4.1272
- 490. Wang M, Yao Y, Kuang D, Hampson DR (2006) Activation of family C G-protein-coupled receptors by the tripeptide glutathione. J Biol Chem 281: 8864–8870. https://doi.org/10.1074/jbc.M512865200
- 491. Broadhead GK, Mun HC, Avlani VA, Jourdon O, Church WB, Christopoulos A, Delbridge L, Conigrave AD (2011) Allosteric modulation of the calcium-sensing receptor by gamma-glutamyl peptides: inhibition of PTH secretion, suppression of intracellular cAMP levels, and a common mechanism of action with L-amino acids. J Biol Chem 286: 8786–8797. https://doi.org/10.1074/jbc.M110.149724
- 492. *Ward DT, Riccardi D* (2012) New concepts in calciumsensing receptor pharmacology and signalling. Br J Pharmacol 165: 35–48. https://doi.org/10.1111/j.1476-5381.2011.01511.x
- 493. *Tschammer N* (2016) Allosteric Modulators of the Class A G Protein Coupled Receptors. Adv Exp Med Biol 917: 185–207. https://doi.org/10.1007/978-3-319-32805-8_9
- 494. Skiba MA, Kruse AC (2021) Autoantibodies as Endogenous Modulators of GPCR Signaling. Trends Pharmacol Sci 42: 135–150. https://doi.org/10.1016/j.tips.2020.11.013
- 495. Dahl L, Kotliar IB, Bendes A, Dodig-Crnković T, Fromm S, Elofsson A, Uhlén M, Sakmar TP, Schwenk JM (2023) Multiplexed selectivity screening of anti-GPCR antibodies. Sci Adv 9: eadf9297. https://doi.org/10.1126/sciadv.adf9297
- 496. *Morshed SA, Ando T, Latif R, Davies TF* (2010) Neutral antibodies to the TSH receptor are present in Graves' disease and regulate selective signaling cascades. Endocrinology 151: 5537–5549. https://doi.org/10.1210/en.2010-0424
- 497. Sanders P, Young S, Sanders J, Kabelis K, Baker S, Sullivan A, Evans M, Clark J, Wilmot J, Hu X, Roberts E, Powell M, Núñez Miguel R, Furmaniak J, Rees Smith B (2011) Crystal structure of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody. J Mol Endocrinol 46: 81–99. https://doi.org/10.1530/JME-10-0127

- 498. *Kifor O, McElduff A, LeBoff MS, Moore FD Jr, Butters R, Gao P, Cantor TL, Kifor I, Brown EM* (2004) Activating antibodies to the calcium-sensing receptor in two patients with autoimmune hypoparathyroidism. J Clin Endocrinol Metab 89: 548–556. https://doi.org/10.1210/jc.2003-031054
- 499. Fu ML, Herlitz H, Wallukat G, Hilme E, Hedner T, Hoebeke J, Hjalmarson A (1994) Functional autoimmune epitope on alpha 1-adrenergic receptors in patients with malignant hypertension. Lancet 344: 1660–1663. https://doi.org/10.1016/s0140-6736(94)90456-1
- 500. Wallukat G, Wollenberger A, Morwinski R, Pitschner HF (1995) Anti-beta 1-adrenoceptor autoantibodies with chronotropic activity from the serum of patients with dilated cardiomyopathy: mapping of epitopes in the first and second extracellular loops. J Mol Cell Cardiol 27: 397–406.

https://doi.org/10.1016/s0022-2828(08)80036-3

- 501. *Li H, Zuccolo J, Kem DC, Zillner C, Lee J, Smith K, James JA, Cunningham MW, Yu X* (2013) Implications of a vasodilatory human monoclonal autoantibody in postural hypotension. J Biol Chem 288: 30734–30741. https://doi.org/10.1074/jbc.M113.477869
- 502. Wallukat G, Fu HM, Matsui S, Hjalmarson A, Fu ML (1999) Autoantibodies against M2 muscarinic receptors in patients with cardiomyopathy display non-desensitized agonist-like effects. Life Sci 64: 465–469. https://doi.org/10.1016/s0024-3205(98)00589-x
- 503. Tsuboi H, Matsumoto I, Wakamatsu E, Nakamura Y, Iizuka M, Hayashi T, Goto D, Ito S, Sumida T (2010) New epitopes and function of anti-M3 muscarinic acetylcholine receptor antibodies in patients with Sjögren's syndrome. Clin Exp Immunol 162: 53–61. https://doi.org/10.1111/j.1365-2249.2010.04188.x
- 504. Wallukat G, Homuth V, Fischer T, Lindschau C, Horstkamp B, Jüpner A, Baur E, Nissen E, Vetter K, Neichel D, Dudenhausen JW, Haller H, Luft FC (1999) Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest 103: 945– 952.
- https://doi.org/10.1172/JCI4106
 505. Velloso EP, Pimentel RL, Braga JF, Cabral AC, Reis ZS, Bader M, Santos RA, Wallukat G (2016) Identification of a Novel Agonist-Like Autoantibody in Preeclamptic Patients. Am J Hypertens 29: 405–412.

https://doi.org/10.1093/ajh/hpv099

- 506. Eftekhari P, Sallé L, Lezoualc'h F, Mialet J, Gastineau M, Briand JP, Isenberg DA, Fournié GJ, Argibay J, Fischmeister R, Muller S, Hoebeke J (2000) Anti-SSA/Ro52 autoantibodies blocking the cardiac 5-HT4 serotoninergic receptor could explain neonatal lupus congenital heart block. Eur J Immunol 30: 2782–2790. https://doi.org/10.1002/1521-4141(200010)30:10<2782::AID-IMMU2782>3.0.CO;2-9
- 507. *Karczewski P, Hempel P, Kunze R, Bimmler M* (2012) Agonistic autoantibodies to the α (1) -adrenergic receptor and the β (2) -adrenergic receptor in Alzheimer's and vascular dementia. Scand J Immunol 75: 524–530. https://doi.org/10.1111/j.1365-3083.2012.02684.x
- 508. *Macé G, Blanpied C, Emorine LJ, Druet P, Dietrich G* (1999) Morphine-like activity of natural human IgG au-

toantibodies is because of binding to the first and third extracellular loops of the mu-opioid receptor. J Biol Chem 274: 20079–20082. https://doi.org/10.1074/jbc.274.29.20079

- 509. Koo NY, Li J, Hwang SM, Choi SY, Lee SJ, Oh SB, Kim JS, Lee EB, Song YW, Park K (2008) Functional epitope of muscarinic type 3 receptor which interacts with autoantibodies from Sjogren's syndrome patients. Rheumatology (Oxford) 47: 828–833. https://doi.org/10.1093/rheumatology/ken064
- 510. Cabral-Marques O, Marques A, Giil LM, De Vito R, Rademacher J, Günther J, Lange T, Humrich JY, Klapa S, Schinke S, Schimke LF, Marschner G, Pitann S, Adler S, Dechend R, Müller DN, Braicu I, Sehouli J, Schulze-Forster K, Trippel T, Scheibenbogen C, Staff A, Mertens PR, Löbel M, Mastroianni J, Plattfaut C, Gieseler F, Dragun D, Engelhardt BE, Fernandez-Cabezudo MJ, Ochs HD, Al-Ramadi BK, Lamprecht P, Mueller A, Heidecke H, Riemekasten G (2018) GPCR-specific autoantibody signatures are associated with physiological and pathological immune homeostasis. Nat Commun 9: 5224. https://doi.org/10.1038/s41467-018-07598-9
- 511. Zweck E, Karschnia M, Scheiber D, Heidecke H, Dechend R, Barthuber C, Kaufmann S, Kelm M, Roden M, Westenfeld R, Szendrödi J, Boege F (2023) Receptor autoantibodies: Associations with cardiac markers, histology, and function in human non-ischaemic heart failure. ESC Heart Fail 10: 1258–1269. https://doi.org/10.1002/ehf2.14293
- 512. Bornholz B, Roggenbuck D, Jahns R, Boege F (2014) Diagnostic and therapeutic aspects of β1-adrenergic receptor autoantibodies in human heart disease. Autoimmun Rev 13: 954–962. https://doi.org/10.1016/j.autray.2014.08.021

https://doi.org/10.1016/j.autrev.2014.08.021

- 513. *Tang WHW, Naga Prasad SV* (2022) Autoantibodies and Cardiomyopathy: Focus on Beta-1 Adrenergic Receptor Autoantibodies. J Cardiovasc Pharmacol 80: 354–363. https://doi.org/10.1097/FJC.000000000001264
- 514. Macé G, Jaume M, Blanpied C, Stephan L, Coudert JD, Druet P, Dietrich G (2002) Anti-mu-opioid-receptor IgG antibodies are commonly present in serum from healthy blood donors: evidence for a role in apoptotic immune cell death. Blood 100: 3261–3268. https://doi.org/10.1182/blood-2002-01-0055
- 515. Ranganathan P, Chen H, Adelman MK, Schluter SF (2009) Autoantibodies to the delta-opioid receptor function as opioid agonists and display immunomodulatory activity. J Neuroimmunol 217: 65–73. https://doi.org/10.1016/j.jneuroim.2009.10.007
- 516. Lopalco L, Barassi C, Pastori C, Longhi R, Burastero SE, Tambussi G, Mazzotta F, Lazzarin A, Clerici M, Siccardi AG (2000) CCR5-reactive antibodies in seronegative partners of HIV-seropositive individuals downmodulate surface CCR5 in vivo and neutralize the infectivity of R5 strains of HIV-1 In vitro. J Immunol 164: 3426–3433.

https://doi.org/10.4049/jimmunol.164.6.3426

517. Bouhlal H, Hocini H, Quillent-Grégoire C, Donkova V, Rose S, Amara A, Longhi R, Haeffner-Cavaillon N, Beretta A, Kaveri SV, Kazatchkine MD (2001) Antibodies to C-C chemokine receptor 5 in normal human IgG block infection of macrophages and lymphocytes with primary R5-tropic strains of HIV-1. J Immunol 166: 7606–7611. https://doi.org/10.4049/jimmunol.166.12.7606

518. Bomsel M, Pastori C, Tudor D, Alberti C, Garcia S, Ferrari D, Lazzarin A, Lopalco L (2007) Natural mucosal antibodies reactive with first extracellular loop of CCR5 inhibit HIV-1 transport across human epithelial cells. AIDS 21: 13–22.

https://doi.org/10.1097/QAD.0b013e328011049b

- 519. Pastori C, Weiser B, Barassi C, Uberti-Foppa C, Ghezzi S, Longhi R, Calori G, Burger H, Kemal K, Poli G, Lazzarin A, Lopalco L (2006) Long-lasting CCR5 internalization by antibodies in a subset of long-term nonprogressors: a possible protective effect against disease progression. Blood 107: 4825–4833. https://doi.org/10.1182/blood-2005-06-2463
- 520. Cao N, Chen H, Bai Y, Yang X, Xu W, Hao W, Zhou Y, Chai J, Wu Y, Wang Z, Yin X, Wang L, Wang W, Liu H, Fu MLX (2018) β2-adrenergic receptor autoantibodies alleviated myocardial damage induced by β1-adrenergic receptor autoantibodies in heart failure. Cardiovasc Res 114: 1487–1498. https://doi.org/10.1093/cvr/cvy105
- 521. *Tutor AS, Penela P, Mayor F Jr* (2007) Anti-beta1-adrenergic receptor autoantibodies are potent stimulators of the ERK1/2 pathway in cardiac cells. Cardiovasc Res 76: 51–60.

https://doi.org/10.1016/j.cardiores.2007.05.022

- 522. Zimering MB (2017) Diabetes Autoantibodies Mediate Neural- and Endothelial Cell- Inhibitory Effects Via 5-Hydroxytryptamine- 2 Receptor Coupled to Phospholipase C/Inositol Triphosphate/Ca2+ Pathway. J Endocrinol Diabetes 4: 10.15226/2374–6890/4/4/00184. https://doi.org/10.15226/2374-6890/4/4/00184
- 523. Zimering MB, Nadkarni SG (2019) Schizophrenia Plasma Autoantibodies Promote 'Biased Agonism' at the 5-Hydroxytryptamine 2A Receptor: Neurotoxicity is Positively Modulated by Metabotropic Glutamate 2/3 Receptor Agonism. Endocrinol Diabetes Metab J 3 (4): http: //researchopenworld.com/wp-content/uploads/2019/08/EDMJ-2019-117-Mark-Zimering-USA.pdf. http: //researchopenworld.com/wp-content/uploads/2019/08/EDMJ-2019-117-Mark-Zimering-USA.pdf
- 524. Makita N, Sato J, Manaka K, Shoji Y, Oishi A, Hashimoto M, Fujita T, Iiri T (2007) An acquired hypocalciuric hypercalcemia autoantibody induces allosteric transition among active human Ca-sensing receptor conformations. Proc Natl Acad Sci U S A 104: 5443– 5448.

https://doi.org/10.1073/pnas.0701290104

- 525. Makita N, Ando T, Sato J, Manaka K, Mitani K, Kikuchi Y, Niwa T, Ootaki M, Takeba Y, Matsumoto N, Kawakami A, Ogawa T, Nangaku M, Iiri T (2019) Cinacalcet corrects biased allosteric modulation of CaSR by AHH autoantibody. JCI Insight 4: e126449. https://doi.org/10.1172/jci.insight.126449
- 526. Venuti A, Pastori C, Siracusano G, Riva A, Sciortino MT, Lopalco L (2015) ERK1-Based Pathway as a New Selective Mechanism To Modulate CCR5 with Natural Anti-

bodies. J Immunol 195: 3045-3957. https://doi.org/10.4049/jimmunol.1500708

- 527. Spatola M, Sabater L, Planagumà J, Martínez-Hernandez E, Armangué T, Prüss H, Iizuka T, Caparó Oblitas RL, Antoine JC, Li R, Heaney N, Tubridy N, Munteis Olivas E, Rosenfeld MR, Graus F, Dalmau J (2018) Encephalitis with mGluR5 antibodies: Symptoms and antibody effects. Neurology 90: e1964-e1972. https://doi.org/10.1212/WNL.000000000005614
- 528. Magnusson Y, Marullo S, Hoyer S, Waagstein F, Andersson B. Vahlne A. Guillet JG. Strosberg AD. Hialmarson A. *Hoebeke J* (1990) Mapping of a functional autoimmune epitope on the beta 1-adrenergic receptor in patients with idiopathic dilated cardiomyopathy. J Clin Invest 86: 1658-1663. https://doi.org/10.1172/JCI114888
- 529. Wallukat G, Schimke I (2014) Agonistic autoantibodies directed against G-protein-coupled receptors and their relationship to cardiovascular diseases. Semin Immunopathol 36: 351-363. https://doi.org/10.1007/s00281-014-0425-9

- 530. Wölfel A, Sättele M, Zechmeister C, Nikolaev VO, Lohse MJ, Boege F, Jahns R, Boivin-Jahns V (2020) Unmasking features of the auto-epitope essential for β_1 -adrenoceptor activation by autoantibodies in chronic heart failure. ESC Heart Fail 7: 1830–1841. https://doi.org/10.1002/ehf2.12747
- 531. Boivin V, Beyersdorf N, Palm D, Nikolaev VO, Schlipp A, Müller J, Schmidt D, Kocoski V, Kerkau T, Hünig T, Ertl G, Lohse MJ, Jahns R (2015) Novel receptor-derived cyclopeptides to treat heart failure caused by anti-B1-adrenoceptor antibodies in a human-analogous rat model. PLoS One 10: e0117589. https://doi.org/10.1371/journal.pone.0117589
- 532. Dong Y, Bai Y, Zhang S, Xu W, Xu J, Zhou Y, Zhang S, Wu Y, Yu H, Cao N, Liu H, Wang W (2019) Cyclic peptide RD808 reduces myocardial injury induced by β_1 adrenoreceptor autoantibodies. Heart Vessels 34: 1040-1051.

https://doi.org/10.1007/s00380-018-1321-3

- 533. Derkach KV, Shpakova EA, Zharova OA, Shpakov AO (2014) The metabolic changes in rats immunized with BSA conjugate of peptides derived from the N-terminal region of type 4 melanocortin receptor. Dokl Biochem Biophys 458: 163-166. https://doi.org/10.1134/S1607672914050019
- 534. Деркач КВ, Шпакова ЕА, Жарова ОА, Бондарева ВМ, Шпаков АО (2014) Влияние иммунизации крыс БСА-конъюгированным пептидом 269-280 меланокортинового рецептора 3-го типа на метаболические показатели и функции щитовидной железы. Цитология 56: 850-857. [Derkach KV, Shpakova EA, Zharova OA, Bondareva VM, Shpakov AO (2014) [The influence of immunization of rats with BSA-conjugated peptide 269-280 of type 3 melanocortin receptor on the metabolic parameters and thyroid functions]. Tsitologiia. 56: 850-857. (In Russ)].
- 535. Деркач КВ, Мойсеюк ИВ, Шпакова ЕА, Шпаков АО (2015) Тиреоидный статус у крыс, иммунизированных пептидами, производными внеклеточных участков меланокортиновых рецепторов 3-го и 4-го

типов и серотонинового рецептора 1В-подтипа. Журн эволюц биохим физиол 51: 243-250. [Derkach KV, Moyseuk IV, Shpakova EA, Sphakov AO (2015) [The thyroid status of rats immunized with peptides derived from the extracellular regions of the types 3 and 4 melanocortin receptors and the 1B-subtype 5-hydroxytryptamine receptor]. Zh Evol Biokhim Fiziol 51: 243-250. (In Russ)].

- 536. Hofbauer KG, Lecourt AC, Peter JC (2008) Antibodies as pharmacologic tools for studies on the regulation of energy balance. Nutrition 24: 791-797. https://doi.org/10.1016/j.nut.2008.06.001
- 537. Peter JC, Bekel A, Lecourt AC, Zipfel G, Eftekhari P, Nesslinger M, Breidert M, Muller S, Kessler L, Hofbauer KG (2009) Anti-melanocortin-4 receptor autoantibodies in obesity. J Clin Endocrinol Metab 94: 793-800. https://doi.org/10.1210/jc.2008-1749
- 538. Peter JC, Lecourt AC, Weckering M, Zipfel G, Niehoff ML, Banks WA, Hofbauer KG (2010) A pharmacologically active monoclonal antibody against the human melanocortin-4 receptor: effectiveness after peripheral and central administration. J Pharmacol Exp Ther 333: 478-390.

https://doi.org/10.1124/jpet.109.163279

- 539. Nickols HH, Conn PJ (2014) Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis 61: 55–71. https://doi.org/10.1016/j.nbd.2013.09.013
- 540. Walker LC, Lawrence AJ (2020) Allosteric modulation of muscarinic receptors in alcohol and substance use disorders. Adv Pharmacol 88: 233-275. https://doi.org/10.1016/bs.apha.2020.01.003
- 541. Gregory KJ, Noetzel MJ, Niswender CM (2013) Pharmacology of metabotropic glutamate receptor allosteric modulators: structural basis and therapeutic potential for CNS disorders. Prog Mol Biol Transl Sci 115: 61-121. https://doi.org/10.1016/B978-0-12-394587-7.00002-6

542. Bennett KA, Christopher JA, Tehan BG (2020) Structurebased discovery and development of metabotropic glutamate receptor 5 negative allosteric modulators. Adv Pharmacol 88: 35-58.

https://doi.org/10.1016/bs.apha.2020.03.001

- 543. Orgován Z, Ferenczy GG, Keserű GM (2021) Allosteric Molecular Switches in Metabotropic Glutamate Receptors. ChemMedChem 16: 81-93. https://doi.org/10.1002/cmdc.202000444
- 544. Gómez-Santacana X, Panarello S, Rovira X, Llebaria A (2022) Photoswitchable allosteric modulators for metabotropic glutamate receptors. Curr Opin Pharmacol 66: 102266. https://doi.org/10.1016/j.coph.2022.102266
- 545. Kaczor AA, Wróbel TM, Bartuzi D (2022) Allosteric
- Modulators of Dopamine D2 Receptors for Fine-Tuning of Dopaminergic Neurotransmission in CNS Diseases: Overview, Pharmacology, Structural Aspects and Synthesis. Molecules 28: 178. https://doi.org/10.3390/molecules28010178
- 546. Obeng S, Hiranita T, León F, McMahon LR, McCurdy CR (2021) Novel Approaches, Drug Candidates, and Tar-

gets in Pain Drug Discovery. J Med Chem 64: 6523-6548.

https://doi.org/10.1021/acs.jmedchem.1c00028

547. Dopart R, Lu D, Lichtman AH, Kendall DA (2018) Allosteric modulators of cannabinoid receptor 1: developing compounds for improved specificity. Drug Metab Rev 50: 3–13.

https://doi.org/10.1080/03602532.2018.1428342

- 548. *Gado F, Meini S, Bertini S, Digiacomo M, Macchia M, Manera C* (2019) Allosteric modulators targeting cannabinoid cb1 and cb2 receptors: implications for drug discovery. Future Med Chem 11: 2019–2037. https://doi.org/10.4155/fmc-2019-0005
- 549. *Leo LM, Abood ME* (2021) CB1 Cannabinoid Receptor Signaling and Biased Signaling. Molecules 26: 5413. https://doi.org/10.3390/molecules26175413
- 550. Yuan J, Yang B, Hou G, Xie XQ, Feng Z (2023) Targeting the endocannabinoid system: Structural determinants and molecular mechanism of allosteric modulation. Drug Discov Today 28: 103615. https://doi.org/10.1016/j.drudis.2023.103615
- 551. *Root-Bernstein R* (2022) Biased, Bitopic, Opioid-Adrenergic Tethered Compounds May Improve Specificity, Lower Dosage and Enhance Agonist or Antagonist Function with Reduced Risk of Tolerance and Addiction. Pharmaceuticals (Basel) 15: 214. https://doi.org/10.3390/ph15020214
- 552. Saito A, Alvi S, Valant C, Christopoulos A, Carbone SE, Poole DP (2022) Therapeutic potential of allosteric modulators for the treatment of gastrointestinal motility disorders. Br J Pharmacol . Advance online publication. https://doi.org/10.1111/bph.16023
- 553. Bian Y, Jun JJ, Cuyler J, Xie XQ (2020) Covalent allosteric modulation: An emerging strategy for GPCRs drug discovery. Eur J Med Chem 206: 112690. https://doi.org/10.1016/j.ejmech.2020.112690
- 554. Liu L, Lin L, Shen C, Rondard P, Pin JP, Xu C, Liu J (2023) Asymmetric activation of dimeric GABA_B and metabotropic glutamate receptors. Am J Physiol Cell Physiol 325: C79–C89. https://doi.org/10.1152/ajpcell.00150.2022
- 555. Korkutata M, Agrawal L, Lazarus M (2022) Allosteric Modulation of Adenosine A_{2A} Receptors as a New Therapeutic Avenue. Int J Mol Sci 23: 2101. https://doi.org/10.3390/ijms23042101
- 556. Nguyen ATN, Tran QL, Baltos JA, McNeill SM, Nguyen DTN, May LT (2023) Small molecule allosteric modulation of the adenosine A₁ receptor. Front Endocrinol (Lausanne) 14: 1184360. https://doi.org/10.3389/fendo.2023.1184360
- 557. Blough B, Namjoshi O (2020) Small Molecule Neuropeptide S and Melanocortin 4 Receptor Ligands as Potential Treatments for Substance Use Disorders. Handb Exp Pharmacol 258: 61–87. https://doi.org/10.1007/164_2019_313
- 558. *Singh KD, Karnik SS* (2022) Structural perspectives on the mechanism of signal activation, ligand selectivity and allosteric modulation in angiotensin receptors: IUPHAR Review 34. Br J Pharmacol 179: 4461–4472. https://doi.org/10.1111/bph.15840

- 559. *Malik F, Li Z* (2022) Non-peptide agonists and positive allosteric modulators of glucagon-like peptide-1 receptors: Alternative approaches for treatment of Type 2 diabetes. Br J Pharmacol 179: 511–525. https://doi.org/10.1111/bph.15446
- 560. *Guan HP, Xiong Y* (2022) Learn from failures and stay hopeful to GPR40, a GPCR target with robust efficacy, for therapy of metabolic disorders. Front Pharmacol 13: 1043828.

https://doi.org/10.3389/fphar.2022.1043828

- 561. Przegaliński E, Witek K, Wydra K, Kotlińska JH, Filip M (2023) 5-HT_{2C} Receptor Stimulation in Obesity Treatment: Orthosteric Agonists vs. Allosteric Modulators. Nutrients 15: 1449. https://doi.org/10.3390/nu15061449
- 562. Abouelasrar Salama S, Gouwy M, Van Damme J, Struyf S (2023) Acute-serum amyloid A and A-SAA-derived peptides as formyl peptide receptor (FPR) 2 ligands. Front Endocrinol (Lausanne) 14: 1119227. https://doi.org/10.3389/fendo.2023.1119227
- 563. Borroto-Escuela DO, Cuesta-Marti C, Lopez-Salas A, Chruścicka-Smaga B, Crespo-Ramírez M, Tesoro-Cruz E, Palacios-Lagunas DA, Perez de la Mora M, Schellekens H, Fuxe K (2022) The oxytocin receptor represents a key hub in the GPCR heteroreceptor network: potential relevance for brain and behavior. Front Mol Neurosci 15: 1055344.
 - https://doi.org/10.3389/fnmol.2022.1055344
- 564. Liu X, Lu S, Song K, Shen Q, Ni D, Li Q, He X, Zhang H, Wang Q, Chen Y, Li X, Wu J, Sheng C, Chen G, Liu Y, Lu X, Zhang J (2020) Unraveling allosteric landscapes of allosterome with ASD. Nucleic Acids Res 48: D394– D401.

https://doi.org/10.1093/nar/gkz958

- 565. Cook AE, Mistry SN, Gregory KJ, Furness SG, Sexton PM, Scammells PJ, Conigrave AD, Christopoulos A, Leach K (2015) Biased allosteric modulation at the CaS receptor engendered by structurally diverse calcimimetics. Br J Pharmacol 172: 185–200. https://doi.org/10.1111/bph.12937
- 566. *Li X, Ding W, Zhang H* (2023) Cinacalcet use in secondary hyperparathyroidism: a machine learning-based systematic review. Front Endocrinol (Lausanne) 14: 1146955. https://doi.org/10.3389/fendo.2023.1146955
- 567. Hoffmann K, Lutz DA, Straβburger J, Baqi Y, Müller CE, von Kügelgen I (2014) Competitive mode and site of interaction of ticagrelor at the human platelet P2Y12 -receptor. J Thromb Haemost 12: 1898–1905. https://doi.org/10.1111/jth.12719
- 568. Parodi G, Dossi F, Raccis M, Talanas G, Mura E, Siciliano R, Guarino S, Marini A, Franca P, Saba PS, Sanna GD, Canonico ME (2023) Platelet inhibition with orodispersible ticagrelor in acute coronary syndromes according to morphine use: the TASTER study final results. Eur Heart J Cardiovasc Pharmacother 17: pvad061. https://doi.org/10.1093/ehjcvp/pvad061
- 569. Mandalaywala R, Rana A, Ramos AL, Sampson P, Ashkenas J (2023) Physical and pharmacokinetic characterization of Soluvec[™], a novel, solvent-free aqueous iver-

mectin formulation. Ther Deliv 14: 391–399. https://doi.org/10.4155/tde-2023-0021

- 570. Sagna AB, Zéla L, Ouedraogo COW, Pooda SH, Porciani A, Furnival-Adams J, Lado P, Somé AF, Pennetier C, Chaccour CJ, Dabiré RK, Mouline K (2023) Ivermectin as a novel malaria control tool: Getting ahead of the resistance curse. Acta Trop 245: 106973. https://doi.org/10.1016/j.actatropica.2023.106973
- 571. Li XX, Lee JD, Massey NL, Guan C, Robertson AAB, Clark RJ, Woodruff TM (2020) Pharmacological characterisation of small molecule C5aR1 inhibitors in human cells reveals biased activities for signalling and function. Biochem Pharmacol 180: 114156. https://doi.org/10.1016/j.bcp.2020.114156
- 572. Harigai M, Takada H (2022) Avacopan, a selective C5a receptor antagonist, for anti-neutrophil cytoplasmic antibody-associated vasculitis. Mod Rheumatol 32: 475–483.

https://doi.org/10.1093/mr/roab104

573. *Lee A* (2022) Avacopan: First Approval. Drugs 82: 79– 85.

https://doi.org/10.1007/s40265-021-01643-6

574. *Estrada JM, Soldin D, Buckey TM, Burman KD, Soldin OP* (2014) Thyrotropin isoforms: implications for thyrotropin analysis and clinical practice. Thyroid 24: 411–423.

https://doi.org/10.1089/thy.2013.0119

- 575. *Kleinau G, Mueller S, Jaeschke H, Grzesik P, Neumann S, Diehl A, Paschke R, Krause G* (2011) Defining structural and functional dimensions of the extracellular thyrotropin receptor region. J Biol Chem 286: 22622–22631. https://doi.org/10.1074/jbc.M110.211193
- 576. Kleinau G, Hoyer I, Kreuchwig A, Haas AK, Rutz C, Furkert J, Worth CL, Krause G, Schülein R (2011) From molecular details of the interplay between transmembrane helices of the thyrotropin receptor to general aspects of signal transduction in family a G-protein-coupled receptors (GPCRs). J Biol Chem 286: 25859–25871. https://doi.org/10.1074/jbc.M110.196980
- 577. Chantreau V, Taddese B, Munier M, Gourdin L, Henrion D, Rodien P, Chabbert M (2015) Molecular Insights into the Transmembrane Domain of the Thyrotropin Receptor. PLoS One 10: e0142250. https://doi.org/10.1371/journal.pone.0142250
- 578. Kleinau G, Haas AK, Neumann S, Worth CL, Hoyer I, Furkert J, Rutz C, Gershengorn MC, Schülein R, Krause G (2010) Signaling-sensitive amino acids surround the allosteric ligand binding site of the thyrotropin receptor. FASEB J 24: 2347–2354. https://doi.org/10.1096/fj.09-149146
- 579. *Kleinau G, Biebermann H* (2014) Constitutive activities in the thyrotropin receptor: regulation and significance. Adv Pharmacol 70: 81–119. https://doi.org/10.1016/B978-0-12-417197-8.00003-1
- 580. Kleinau G, Krause G (2009) Thyrotropin and homologous glycoprotein hormone receptors: structural and functional aspects of extracellular signaling mechanisms. Endocr Rev 30: 133–151. https://doi.org/10.1210/er.2008-0044

581. Kleinau G, Neumann S, Grüters A, Krude H, Biebermann H (2013) Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev 34: 691–724.

https://doi.org/10.1210/er.2012-1072

- 582. Costagliola S, Panneels V, Bonomi M, Koch J, Many MC, Smits G, Vassart G (2002) Tyrosine sulfation is required for agonist recognition by glycoprotein hormone receptors. EMBO J 21: 504–513. https://doi.org/10.1093/emboj/21.4.504
- 583. Bonomi M, Busnelli M, Persani L, Vassart G, Costagliola S (2006) Structural differences in the hinge region of the glycoprotein hormone receptors: evidence from the sulfated tyrosine residues. Mol Endocrinol 20: 3351–3363. https://doi.org/10.1210/me.2005-0521
- 584. Schaarschmidt J, Huth S, Meier R, Paschke R, Jaeschke H (2014) Influence of the hinge region and its adjacent domains on binding and signaling patterns of the thyrotropin and follitropin receptor. PLoS One 9: e111570.

https://doi.org/10.1371/journal.pone.0111570

- 585. *Krause G, Kreuchwig A, Kleinau G* (2012) Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor. PLoS One 7: e52920. https://doi.org/10.1371/journal.pone.0052920
- 586. Schaarschmidt J, Nagel MBM, Huth S, Jaeschke H, Moretti R, Hintze V, von Bergen M, Kalkhof S, Meiler J, Paschke R (2016) Rearrangement of the Extracellular Domain/Extracellular Loop 1 Interface Is Critical for Thyrotropin Receptor Activation. J Biol Chem 291: 14095–14108. https://doi.org/10.1074/jbc.M115.709659
- 587. *Fokina EA, Shpakov AO* (2022) Thyroid-stimulating hormone receptor: role in the development of thyroid pathology and its correction. J Evol Biochem Physiol 58: 1439–1454.
 - https://doi.org/10.1134/S0022093022050143 . Jäschke H, Neumann S, Moore S, Thomas CJ, Colso
- 588. Jäschke H, Neumann S, Moore S, Thomas CJ, Colson AO, Costanzi S, Kleinau G, Jiang JK, Paschke R, Raaka BM, Krause G, Gershengorn MC (2006) A low molecular weight agonist signals by binding to the transmembrane domain of thyroid-stimulating hormone receptor (TSHR) and luteinizing hormone/chorionic gonadotropin receptor (LHCGR). J Biol Chem 281: 9841–9844. https://doi.org/10.1074/jbc.C600014200
- 589. *Hoyer I, Haas AK, Kreuchwig A, Schülein R, Krause G* (2013) Molecular sampling of the allosteric binding pocket of the TSH receptor provides discriminative pharmacophores for antagonist and agonists. Biochem Soc Trans 41: 213–217. https://doi.org/10.1042/BST20120319
- 590. Kleinau G, Worth CL, Kreuchwig A, Biebermann H, Marcinkowski P, Scheerer P, Krause G (2017) Structural-Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work. Front Endocrinol (Lausanne) 8: 86. https://doi.org/10.3389/fendo.2017.00086
- 591. Marcinkowski P, Kreuchwig A, Mendieta S, Hoyer I, Witte F, Furkert J, Rutz C, Lentz D, Krause G, Schülein R (2019) Thyrotropin Receptor: Allosteric Modulators II-

luminate Intramolecular Signaling Mechanisms at the Interface of Ecto- and Transmembrane Domain. Mol Pharmacol 96: 452–462. https://doi.org/10.1124/mol.119.116947

592. *Mezei M, Latif R, Das B, Davies TF* (2021) Implications of an Improved Model of the TSH Receptor Transmembrane Domain (TSHR-TMD-TRIO). Endocrinology 162: bqab051.

https://doi.org/10.1210/endocr/bqab051

- 593. *Latif R, Morshed SA, Ma R, Tokat B, Mezei M, Davies TF* (2020) A Gq Biased Small Molecule Active at the TSH Receptor. Front Endocrinol (Lausanne) 11: 372. https://doi.org/10.3389/fendo.2020.00372
- 594. Neumann S, Huang W, Titus S, Krause G, Kleinau G, Alberobello AT, Zheng W, Southall NT, Inglese J, Austin CP, Celi FS, Gavrilova O, Thomas CJ, Raaka BM, Gershengorn MC (2009) Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice. Proc Natl Acad Sci U S A 106: 12471– 12476.

https://doi.org/10.1073/pnas.0904506106

595. *Neumann S, Gershengorn MC* (2011) Small molecule TSHR agonists and antagonists. Ann Endocrinol (Paris) 72: 74–76.

https://doi.org/10.1016/j.ando.2011.03.002

- 596. *Gershengorn MC, Neumann S* (2012) Update in TSH receptor agonists and antagonists. J Clin Endocrinol Metab 97: 4287–4292. https://doi.org/10.1210/jc.2012-3080
- 597. Allen MD, Neumann S, Gershengorn MC (2011) Smallmolecule thyrotropin receptor agonist activates naturally occurring thyrotropin-insensitive mutants and reveals their distinct cyclic adenosine monophosphate signal persistence. Thyroid 21: 907–912.

https://doi.org/10.1089/thy.2011.0025

598. Bakhtyukov AA, Derkach KV, Fokina EA, Sorokoumov VN, Zakharova IO, Bayunova LV, Shpakov AO (2022) Development of Low-Molecular-Weight Allosteric Agonist of Thyroid-Stimulating Hormone Receptor with Thyroidogenic Activity. Dokl Biochem Biophys 503: 67–70.

https://doi.org/10.1134/S1607672922020016

599. *Shpakova EA, Shpakov AO, Chistyakova OV, Moyseyuk IV, Derkach KV* (2012) Biological activity in vitro and in vivo of peptides corresponding to the third intracellular loop of thyrotropin receptor. Dokl Biochem Biophys 443: 64–67.

https://doi.org/10.1134/S1607672912020020

- 600. *Derkach KV, Shpakova EA, Titov AM, Shpakov AO* (2015) Intranasal and intramuscular administration of lysinepalmitoylated peptide 612-627 of thyroid-stimulating hormone receptor increases the level of thyroid hormones in rats. Int J Pept Res Ther 21: 249–260. https://doi.org/10.1007/s10989-014-9452-6
- 601. Neumann S, Eliseeva E, Boutin A, Barnaeva E, Ferrer M, Southall N, Kim D, Hu X, Morgan SJ, Marugan JJ, Gershengorn MC (2018) Discovery of a Positive Allosteric Modulator of the Thyrotropin Receptor: Potentiation of Thyrotropin-Mediated Preosteoblast Differentiation In Vitro. J Pharmacol Exp Ther 364: 38–45. https://doi.org/10.1124/jpet.117.244095

- 602. Neumann S, Kleinau G, Costanzi S, Moore S, Jiang JK, Raaka BM, Thomas CJ, Krause G, Gershengorn MC (2008) A low-molecular-weight antagonist for the human thyrotropin receptor with therapeutic potential for hyperthyroidism. Endocrinology 149: 5945–5950. https://doi.org/10.1210/en.2008-0836
- 603. Turcu AF, Kumar S, Neumann S, Coenen M, Iyer S, Chiriboga P, Gershengorn MC, Bahn RS (2013) A small molecule antagonist inhibits thyrotropin receptor antibody-induced orbital fibroblast functions involved in the pathogenesis of Graves ophthalmopathy. J Clin Endocrinol Metab 98: 2153–2159. https://doi.org/10.1210/jc.2013-1149
- 604. Neumann S, Nir EA, Eliseeva E, Huang W, Marugan J, Xiao J, Dulcey AE, Gershengorn MC (2014) A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice. Endocrinology 155: 310–314. https://doi.org/10.1210/en.2013-1835
- 605. Derkach KV, Fokina EA, Bakhtyukov AA, Sorokoumov VN, Stepochkina AM, Zakharova IO, Shpakov AO (2022) The Study of Biological Activity of a New Thieno[2,3-D]-Pyrimidine-Based Neutral Antagonist of Thyrotropin Receptor. Bull Exp Biol Med 172: 713–717. https://doi.org/10.1007/s10517-022-05462-x
- 606. Marcinkowski P, Hoyer I, Specker E, Furkert J, Rutz C, Neuenschwander M, Sobottka S, Sun H, Nazare M, Berchner-Pfannschmidt U, von Kries JP, Eckstein A, Schülein R, Krause G (2019) A New Highly Thyrotropin Receptor-Selective Small-Molecule Antagonist with Potential for the Treatment of Graves' Orbitopathy. Thyroid 29: 111–123. https://doi.org/10.1089/thy.2018.0349
- 607. Neumann S, Huang W, Eliseeva E, Titus S, Thomas CJ, Gershengorn MC (2010) A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. Endocrinology 151: 3454–3459. https://doi.org/10.1210/en.2010-0199
- 608. Neumann S, Eliseeva E, McCoy JG, Napolitano G, Giuliani C, Monaco F, Huang W, Gershengorn MC (2011) A new small-molecule antagonist inhibits Graves' disease antibody activation of the TSH receptor. J Clin Endocrinol Metab 96: 548–554. https://doi.org/10.1210/jc.2010-1935
- 609. Neumann S, Pope A, Geras-Raaka E, Raaka BM, Bahn RS, Gershengorn MC (2012) A drug-like antagonist inhibits thyrotropin receptor-mediated stimulation of cAMP production in Graves' orbital fibroblasts. Thyroid 22: 839–843. https://doi.org/10.1089/thy.2011.0520
- 610. Derkach KV, Bakhtyukov AA, Sorokoumov VN, Shpakov AO (2020) New Thieno-[2,3-d]pyrimidine-Based Functional Antagonist for the Receptor of Thyroid Stimulating Hormone. Dokl Biochem Biophys 491: 77– 80.

https://doi.org/10.1134/S1607672920020064

- 611. *Galofré JC, Chacón AM, Latif R* (2013) Targeting thyroid diseases with TSH receptor analogs. Endocrinol Nutr 60: 590–598. https://doi.org/10.1016/j.endonu.2012.12.008
- 612. *Shpakov AO* (2021) Endogenous and Synthetic Regulators of the Peripheral Components of the Hypothalamo-

Hypophyseal-Gonadal and -Thyroid Axes. Neurosci Behav Physiol 51: 332–345. https://doi.org/10.1007/s11055-021-01076-4

- 613. *Kim SM, Ryu V, Miyashita S, Korkmaz F, Lizneva D, Gera S, Latif R, Davies TF, Iqbal J, Yuen T, Zaidi M* (2021) Thyrotropin, Hyperthyroidism, and Bone Mass. J Clin Endocrinol Metab 106: e4809–e4821. https://doi.org/10.1210/clinem/dgab548
- 614. *Davis PJ, Hercbergs A, Luidens MK, Lin HY* (2015) Recurrence of differentiated thyroid carcinoma during full TSH suppression: is the tumor now thyroid hormone dependent? Horm Cancer 6: 7–12. https://doi.org/10.1007/s12672-014-0204-z
- 615. Boutin A, Neumann S, Gershengorn MC (2016) Multiple Transduction Pathways Mediate Thyrotropin Receptor Signaling in Preosteoblast-Like Cells. Endocrinology 157: 2173–2181. https://doi.org/10.1210/en.2015-2040

hups://doi.org/10.1210/en.2013-2040

616. *Boutin A, Gershengorn MC, Neumann S* (2020) β-Arrestin 1 in Thyrotropin Receptor Signaling in Bone: Studies in Osteoblast-Like Cells. Front Endocrinol (Lausanne) 11: 312.

https://doi.org/10.3389/fendo.2020.00312

- 617. *Bahn RS* (2012) Autoimmunity and Graves' disease. Clin Pharmacol Ther 91: 577–579. https://doi.org/10.1038/clpt.2012.10
- 618. Ryder M, Wentworth M, Algeciras-Schimnich A, Morris JC, Garrity J, Sanders J, Young S, Sanders P, Furmaniak J, Rees Smith B (2021) Blocking the Thyrotropin Receptor with K1-70 in a Patient with Follicular Thyroid Cancer, Graves' Disease, and Graves' Ophthalmopathy. Thyroid 31: 1597–1602. https://doi.org/10.1089/thy.2021.0053
- 619. *Cui X, Wang F, Liu C* (2023) A review of TSHR- and IGF-1R-related pathogenesis and treatment of Graves' orbitopathy. Front Immunol 14: 1062045. https://doi.org/10.3389/fimmu.2023.1062045
- 620. Lane JR, IJzerman AP (2013) Allosteric approaches to GPCR drug discovery. Drug Discov Today Technol 10: e219–21. https://doi.org/10.1016/j.ddtec.2013.01.006
- 621. Lane LC, Cheetham TD, Perros P, Pearce SHS (2020) New Therapeutic Horizons for Graves' Hyperthyroidism. Endocr Rev 41: 873–884. https://doi.org/10.1210/endrev/bnaa022
- 622. *Hamidi S, Hofmann MC, Iyer PC, Cabanillas ME, Hu MI, Busaidy NL, Dadu R* (2023) Review article: new treatments for advanced differentiated thyroid cancers and potential mechanisms of drug resistance. Front Endocrinol (Lausanne) 14: 1176731. https://doi.org/10.3389/fendo.2023.1176731
- 623. *Wiersinga WM* (2011) Autoimmunity in Graves' ophthalmopathy: the result of an unfortunate marriage between TSH receptors and IGF-1 receptors? J Clin Endocrinol Metab 96: 2386–2394. https://doi.org/10.1210/jc.2011-0307
- 624. *Krause G, Eckstein A, Schülein R* (2020) Modulating TSH Receptor Signaling for Therapeutic Benefit. Eur Thyroid J 9 (Suppl 1): 66–77. https://doi.org/10.1159/000511871

- 625. O'Callaghan K, Kuliopulos A, Covic L (2012) Turning receptors on and off with intracellular pepducins: new insights into G-protein-coupled receptor drug development. J Biol Chem 287 (16): 12787–12796. https://doi.org/10.1074/jbc.R112.355461
- 626. *Zhang P, Covic L, Kuliopulos A* (2015) Pepducins and Other Lipidated Peptides as Mechanistic Probes and Therapeutics. Methods Mol Biol 1324: 191–203. https://doi.org/10.1007/978-1-4939-2806-4_13
- 627. *Michael E, Covic L, Kuliopulos A* (2022) Lipopeptide Pepducins as Therapeutic Agents. Methods Mol Biol 2383: 307–333. https://doi.org/10.1007/978-1-0716-1752-6 21
- 628. *Xu H, Tilley DG* (2022) Pepducin-mediated G Protein-Coupled Receptor Signaling in the Cardiovascular System. J Cardiovasc Pharmacol 80: 378–385. https://doi.org/10.1097/FJC.000000000001236
- 629. Shpakov AO, Gur'yanov IA, Kuznetsova LA, Plesneva SA, Shpakova EA, Vlasov GP, Pertseva MN (2007) Studies of the molecular mechanisms of action of relaxin on the adenylyl cyclase signaling system using synthetic peptides derived from the LGR7 relaxin receptor. Neurosci Behav Physiol 37: 705–714. https://doi.org/10.1007/s11055-007-0071-y
- 630. Shpakov AO, Shpakova EA, Tarasenko II, Derkach KV, Vlasov GP (2010) The peptides mimicking the third intracellular loop of 5-hydroxytryptamine receptors of the types 1B and 6 selectively activate G proteins and receptor-specifically inhibit serotonin signaling via the adenylyl cyclase system. Int J Pept Res Ther 16: 95–105. https://doi.org/10.1007/s10989-9208-x
- 631. Шпакова EA, Скворцова EA, Тарасенко ИИ, Шпаков AO (2012) Вторичная структура пептидов, производных третьей петли рецепторов серпантинного типа, и ее связь с их биологической активностью. Цитология 54: 119–129. [Shpakova EA, Skvortsova EA, Tarasenko II, Shpakov AO (2012) [The secondary structure of peptides derived from the third intracellular loop of the serpentine type receptors and its interrelation with their biological activity]. Tsitologiia 54: 119–129. (In Russ)].
- 632. Puett D, Li Y, DeMars G, Angelova K, Fanelli F (2007) A functional transmembrane complex: the luteinizing hormone receptor with bound ligand and G protein. Mol Cell Endocrinol 260-262: 126–136. https://doi.org/10.1016/j.mce.2006.05.009
- 633. Puett D, Angelova K, da Costa MR, Warrenfeltz SW, Fanelli F (2010) The luteinizing hormone receptor: insights into structure-function relationships and hormone-receptor-mediated changes in gene expression in ovarian cancer cells. Mol Cell Endocrinol 329: 47–55. https://doi.org/10.1016/j.mce.2010.04.025
- 634. Duan J, Xu P, Cheng X, Mao C, Croll T, He X, Shi J, Luan X, Yin W, You E, Liu Q, Zhang S, Jiang H, Zhang Y, Jiang Y, Xu HE (2021) Structures of full-length glycoprotein hormone receptor signalling complexes. Nature 598: 688–692.

https://doi.org/10.1038/s41586-021-03924-2

635. *Riccetti L, Yvinec R, Klett D, Gallay N, Combarnous Y, Reiter E, Simoni M, Casarini L, Ayoub MA* (2017) Human Luteinizing Hormone and Chorionic Gonadotropin

Display Biased Agonism at the LH and LH/CG Receptors. Sci Rep 7 (1): 940. https://doi.org/10.1038/s41598-017-01078-8

636. *Segaloff DL* (2009) Diseases associated with mutations of the human lutropin receptor. Prog Mol Biol Transl Sci 89: 97–114.

https://doi.org/10.1016/S1877-1173(09)89004-2

- 637. *Latronico AC, Arnhold IJ* (2012) Inactivating mutations of the human luteinizing hormone receptor in both sexes. Semin Reprod Med 30: 382–386. https://doi.org/10.1055/s-0032-1324721
- 638. *Bhattacharya I, Dey S, Banerjee A* (2023) Revisiting the gonadotropic regulation of mammalian spermatogenesis: evolving lessons during the past decade. Front Endocrinol (Lausanne) 14: 1110572. https://doi.org/10.3389/fendo.2023.1110572
- 639. Althumairy D, Zhang X, Baez N, Barisas G, Roess DA, Bousfield GR, Crans DC (2020) Glycoprotein G-protein Coupled Receptors in Disease: Luteinizing Hormone Receptors and Follicle Stimulating Hormone Receptors. Diseases 8: 35.

https://doi.org/10.3390/diseases8030035

- 640. Fournier T, Guibourdenche J, Evain-Brion D (2015) Review: hCGs: different sources of production, different glycoforms and functions. Placenta 36 Suppl 1: S60–S65.
 - https://doi.org/10.1016/j.placenta.2015.02.002
- 641. *Fournier T* (2016) Human chorionic gonadotropin: Different glycoforms and biological activity depending on its source of production. Ann Endocrinol (Paris) 77: 75–81.

https://doi.org/10.1016/j.ando.2016.04.012

- 642. *Casarini L, Simoni M* (2021) Recent advances in understanding gonadotropin signaling. Fac Rev 10: 41. https://doi.org/10.12703/r/10-41
- 643. *Tao YX, Johnson NB, Segaloff DL* (2004) Constitutive and agonist-dependent self-association of the cell surface human lutropin receptor. J Biol Chem 279: 5904– 5914.

https://doi.org/10.1074/jbc.M311162200

- 644. Guan R, Feng X, Wu X, Zhang M, Zhang X, Hébert TE, Segaloff DL (2009) Bioluminescence resonance energy transfer studies reveal constitutive dimerization of the human lutropin receptor and a lack of correlation between receptor activation and the propensity for dimerization. J Biol Chem 284: 7483–7494. https://doi.org/10.1074/jbc.M809150200
- 645. *Zhang M, Feng X, Guan R, Hébert TE, Segaloff DL* (2009) A cell surface inactive mutant of the human lutropin receptor (hLHR) attenuates signaling of wild-type or constitutively active receptors via heterodimerization. Cell Signal 21: 1663–1671. https://doi.org/10.1016/j.cellsig.2009.07.003
- 646. *Jeoung M, Lee C, Ji I, Ji TH* (2007) Trans-activation, cisactivation and signal selection of gonadotropin receptors. Mol Cell Endocrinol 260–262: 137–143. https://doi.org/10.1016/j.mce.2005.09.015
- 647. *Fanelli F, De Benedetti PG, Raimondi F, Seeber M* (2009) Computational modeling of intramolecular and intermolecular communication in GPCRs. Curr Protein Pept

Sci 10: 173–185.

https://doi.org/10.2174/138920309787847554

648. *Rivero-Müller A, Chou YY, Ji I, Lajic S, Hanyaloglu AC, Jonas K, Rahman N, Ji TH, Huhtaniemi I* (2010) Rescue of defective G protein-coupled receptor function in vivo by intermolecular cooperation. Proc Natl Acad Sci U S A 107: 2319–2324. https://doi.org/10.1073/pnas.0906695106

649. *Feng X, Zhang M, Guan R, Segaloff DL* (2013) Heterodimerization between the lutropin and follitropin receptors is associated with an attenuation of hormone-dependent signaling. Endocrinology 154: 3925–3930.

- https://doi.org/10.1210/en.2013-1407
 650. Mazurkiewicz JE, Herrick-Davis K, Barroso M, Ulloa-Aguirre A, Lindau-Shepard B, Thomas RM, Dias JA (2015) Single-molecule analyses of fully functional fluorescent protein-tagged follitropin receptor reveal homodimerization and specific heterodimerization with lutropin receptor. Biol Reprod 92: 100. https://doi.org/10.1095/biolreprod.114.125781
- 651. Jonas KC, Chen S, Virta M, Mora J, Franks S, Huhtaniemi I, Hanyaloglu AC (2018) Temporal reprogramming of calcium signalling via crosstalk of gonadotrophin receptors that associate as functionally asymmetric heteromers. Sci Rep 8: 2239. https://doi.org/10.1038/s41598-018-20722-5
- 652. Szymańska K, Kałafut J, Przybyszewska A, Paziewska B, Adamczuk G, Kiełbus M, Rivero-Müller A (2018) FSHR Trans-Activation and Oligomerization. Front Endocrinol (Lausanne) 9: 760. https://doi.org/10.3389/fendo.2018.00760
- 653. Casarini L, Paradiso E, Lazzaretti C, D'Alessandro S, Roy N, Mascolo E, Zaręba K, García-Gasca A, Simoni M (2022) Regulation of antral follicular growth by an interplay between gonadotropins and their receptors. J Assist Reprod Genet 39: 893–904. https://doi.org/10.1007/s10815-022-02456-6
- 654. Schniewind HA, Sattler LM, Haudum CW, Münzker J, Minich WB, Obermayer-Pietsch B, Schomburg L (2021) Autoimmunity to the Follicle-Stimulating Hormone Receptor (FSHR) and Luteinizing Hormone Receptor (LHR) in Polycystic Ovarian Syndrome. Int J Mol Sci 22: 13667.

https://doi.org/10.3390/ijms222413667

- 655. *Chiauzzi VA, Bussmann L, Calvo JC, Sundblad V, Charreau EH* (2004) Circulating immunoglobulins that inhibit the binding of follicle-stimulating hormone to its receptor: a putative diagnostic role in resistant ovary syndrome? Clin Endocrinol (Oxf) 61: 46–54. https://doi.org/10.1111/j.1365-2265.2004.02054.x
- 656. *Riestenberg C, Ahern S, Shamonki M* (2020) Folliclestimulating hormone receptor autoantibody associated primary ovarian insufficiency successfully treated with corticosteroids: a case report. F S Rep 1: 206–208. https://doi.org/10.1016/j.xfre.2020.09.002
- 657. Heitman LH, Oosterom J, Bonger KM, Timmers CM, Wiegerinck PH, Ijzerman AP (2008) [3H]Org 43553, the first low-molecular-weight agonistic and allosteric radioligand for the human luteinizing hormone receptor. Mol Pharmacol 73: 518–524. https://doi.org/10.1124/mol.107.039875

- 658. van de Lagemaat R, Timmers CM, Kelder J, van Koppen C, Mosselman S, Hanssen RG (2009) Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor. Hum Reprod 24: 640–648. https://doi.org/10.1093/humrep/den412
- 659. van de Lagemaat R, Raafs BC, van Koppen C, Timmers CM, Mulders SM, Hanssen RG (2011) Prevention of the onset of ovarian hyperstimulation syndrome (OHSS) in the rat after ovulation induction with a low molecular weight agonist of the LH receptor compared with hCG and rec-LH. Endocrinology 152: 4350–4357. https://doi.org/10.1210/en.2011-1077
- 660. *Gerrits M, Mannaerts B, Kramer H, Addo S, Hanssen R* (2013) First evidence of ovulation induced by oral LH agonists in healthy female volunteers of reproductive age. J Clin Endocrinol Metab 98: 1558–1566. https://doi.org/10.1210/jc.2012-3404
- 661. *Shpakov AO, Dar'in DV, Derkach KV, Lobanov PS* (2014) The stimulating influence of thienopyrimidine compounds on the adenylyl cyclase signaling systems in the rat testes. Dokl Biochem Biophys 456: 104–107. https://doi.org/10.1134/S1607672914030065
- 662. *Derkach KV, Dar'in DV, Lobanov PS, Shpakov AO* (2014) Intratesticular, intraperitoneal, and oral administration of thienopyrimidine derivatives increases the testosterone level in male rats. Dokl Biol Sci 459: 326–329. https://doi.org/10.1134/S0012496614060040
- 663. *Derkach KV, Legkodukh AS, Dar'in DV, Shpakov AO* (2016) The stimulating effect of thienopyrimidines, the structural analogs of ORG 43553, on the activity of adenylyl cyclase in the testes and on the testosterone production in male rats. Tsitologiia 58: 602–609.
- 664. Bakhtyukov AA, Derkach KV, Dar'in DV, Shpakov AO (2019) Conservation of Steroidogenic Effect of the Low-Molecular-Weight Agonist of Luteinizing Hormone Receptor in the Course of Its Long-Term Administration to Male Rats. Dokl Biochem Biophys 484: 78–81. https://doi.org/10.1134/S1607672919010216
- 665. Bakhtyukov AA, Derkach KV, Gureev MA, Dar'in DV, Sorokoumov VN, Romanova IV, Morina IY, Stepochkina AM, Shpakov AO (2020) Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats. Int J Mol Sci 21: 7493. https://doi.org/10.3390/ijms21207493
- 666. Bakhtyukov AA, Derkach KV, Sorokoumov VN, Stepochkina AM, Romanova IV, Morina IY, Zakharova IO, Bayunova LV, Shpakov AO (2021) The Effects of Separate and Combined Treatment of Male Rats with Type 2 Diabetes with Metformin and Orthosteric and Allosteric Agonists of Luteinizing Hormone Receptor on Steroidogenesis and Spermatogenesis. Int J Mol Sci 23: 198. https://doi.org/10.3390/ijms23010198
- 667. Derkach KV, Bakhtyukov AA, Morina IY, Romanova IV, Bayunova LV, Shpakov AO (2022) Comparative Study of the Restoring Effect of Metformin, Gonadotropin, and Allosteric Agonist of Luteinizing Hormone Receptor on Spermatogenesis in Male Rats with Streptozotocin-Induced Type 2 Diabetes Mellitus. Bull Exp Biol Med 172:

435-440.

https://doi.org/10.1007/s10517-022-05409-2

- 668. Fokina EA, Derkach KV, Bakhtyukov AA, Sorokoumov VN, Lebedev IA, Morina IY, Shpakov AO (2022) Stimulation of Ovulation in Immature Female Rats Using Orthosteric and Allosteric Luteinizing Hormone Receptor Agonists. Dokl Biochem Biophys 507: 345–349. https://doi.org/10.1134/S1607672922340063
- 669. Bakhtyukov AA, Derkach KV, Fokina EA, Lebedev IA, Sorokoumov VN, Bayunova LV, Shpakov AO (2023) Effect of Different Luteinizing Hormone Receptor Agonists on Ovarian Steroidogenesis in Mature Female Rats. J Evol Biochem Physiol 59: 57–68. https://doi.org/10.1134/S0022093023010052
- 670. Jorand-Lebrun C, Brondyk B, Lin J, Magar S, Murray R, Reddy A, Shroff H, Wands G, Weiser W, Xu Q, McKenna S, Brugger N (2007) Identification, synthesis, and biological evaluation of novel pyrazoles as low molecular weight luteinizing hormone receptor agonists. Bioorg Med Chem Lett 17: 2080–2085. https://doi.org/10.1016/j.bmcl.2006.12.062
- 671. *Shpakova EA, Derkach KV, Shpakov AO* (2013) Biological activity of lipophilic derivatives of peptide 562–572 of rat luteinizing hormone receptor. Dokl Biochem Biophys. 452: 248–250. https://doi.org/10.1134/S1607672913050116
- 672. Шпакова EA, Шпаков AO (2013) Регуляция активности аденилатциклазы в семенниках крыс ацилированными производными пептида 562–572 рецептора лютеинизирующего гормона. Цитология. 55: 737–744. [Shpakova EA, Shpakov AO (2013) [Regulation of adenylyl cyclase activity in the rat testes by acylated derivatives of peptide 562-572 of luteinizing hormone receptor]. Tsitologiia 55: 737–744. (In Russ)].
- 673. Heitman LH, Narlawar R, de Vries H, Willemsen MN, Wolfram D, Brussee J, Ijzerman AP (2009) Substituted terphenyl compounds as the first class of low molecular weight allosteric inhibitors of the luteinizing hormone receptor. J Med Chem 52: 2036–2042. https://doi.org/10.1021/jm801561h
- 674. Heitman LH, Kleinau G, Brussee J, Krause G, Ijzerman AP (2012) Determination of different putative allosteric binding pockets at the lutropin receptor by using diverse drug-like low molecular weight ligands. Mol Cell Endocrinol 351: 326–336. https://doi.org/10.1016/j.mce.2012.01.010
- 675. Ayoub MA, Yvinec R, Jégot G, Dias JA, Poli SM, Poupon A, Crépieux P, Reiter E (2016) Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in steroidogenesis. Mol Cell Endocrinol 436: 10–22. https://doi.org/10.1016/j.mce.2016.07.013
- 676. Wortmann L, Lindenthal B, Muhn P, Walter A, Nubbemeyer R, Heldmann D, Sobek L, Morandi F, Schrey AK, Moosmayer D, Günther J, Kuhnke J, Koppitz M, Lücking U, Röhn U, Schäfer M, Nowak-Reppel K, Kühne R, Weinmann H, Langer G (2019) Discovery of BAY-298 and BAY-899: Tetrahydro-1,6-naphthyridine-Based, Potent, and Selective Antagonists of the Luteinizing Hormone Receptor Which Reduce Sex Hormone

Levels in Vivo. J Med Chem 62: 10321–10341. https://doi.org/10.1021/acs.jmedchem.9b01382

- 677. Munier M, Ayoub M, Suteau V, Gourdin L, Henrion D, Reiter E, Rodien P (2021) In vitro effects of the endocrine disruptor p,p'DDT on human choriogonadotropin/luteinizing hormone receptor signalling. Arch Toxicol 95: 1671–1681. https://doi.org/10.1007/s00204-021-03007-1
- 678. Derkach KV, Bakhtyukov AA, Dar'in DV, Golovanova NE, Shpakov AO (2019) Novel Thienopyrimidine Derivatives with an Activity of Full and Inverse Agonists of the Luteinizing Hormone Receptor. J Evol Biochem Physiol 55: 414–418.

https://doi.org/10.1134/S0022093019050090

- 679. Derkach KV, Dar'in DV, Shpakov AO (2020) Low-Molecular-Weight Ligands of Luteinizing Hormone with the Activity of Antagonists. Biochemistry (Moscow). Suppl. Ser. A: Membrane and Cell Biology. 14: 223–231. https://doi.org/10.1134/S1990747820030034
- 680. *Heitman LH, Ijzerman AP* (2008) G protein-coupled receptors of the hypothalamic-pituitary-gonadal axis: a case for Gnrh, LH, FSH, and GPR54 receptor ligands. Med Res Rev 28: 975–1011. https://doi.org/10.1002/med.20129
- 681. *Nataraja SG, Yu HN, Palmer SS* (2015) Discovery and Development of Small Molecule Allosteric Modulators of Glycoprotein Hormone Receptors. Front Endocrinol (Lausanne) 6: 142. https://doi.org/10.3389/fendo.2015.00142
- 682. *Lazzaretti C, Simoni M, Casarini L, Paradiso E* (2023) Allosteric modulation of gonadotropin receptors. Front Endocrinol (Lausanne) 14: 1179079. https://doi.org/10.3389/fendo.2023.1179079
- 683. *Gilchrist RL, Ryu KS, Ji I, Ji TH* (1996) The luteinizing hormone/chorionic gonadotropin receptor has distinct transmembrane conductors for cAMP and inositol phosphate signals. J Biol Chem 271: 19283–19287. https://doi.org/10.1074/jbc.271.32.19283
- 684. Derkach KV, Romanova IV, Bakhtyukov AA, Morina IY, Dar'in DV, Sorokoumov VN, Shpakov AO (2021) The Effect of Low-Molecular-Weight Allosteric Agonist of Lu-

teinizing Hormone Receptor on Functional State of the Testes in Aging and Diabetic Rats. Bull Exp Biol Med 171: 81–86.

- https://doi.org/10.1007/s10517-021-05177-5
- 685. Bakhtyukov AA, Morina IYu, Derkach KV, Romanova IV, Sorokoumov VN, Shpakov AO (2022) Development of approaches to reduce the effective dose of gonadotropin in the treatment in androgen insufficiency in male rats with type 1 diabetes mellitus. J Evol Biochem Physiol 58: 1503–1513.

https://doi.org/10.1134/S0022093022050209

- 686. Shpakov AO, Bakhtyukov AA, Dar'in DV, Derkach KV (2019) Pretreatment of rats with an allosteric luteinizing hormone receptor agonist augments chorionic gonadotropin-induced stimulation of testosterone production. J Evol Biochem Physiol 55: 510–514. https://doi.org/10.1134/S0022093019060115
- 687. Derkach KV, Bakhtyukov AA, Romanova IV, Zorina II, Bayunova LV, Bondareva VM, Morina IYu, Roy VK, Shpakov AO (2020) The effect of metformin treatment on the basal and gonadotropin-stimulated steroidogenesis in male rats with type 2 diabetes mellitus. Andrologia. 52: e13816. https://doi.org/10.1111/and.13816
- 688. *Shpakov AO* (2021) Improvement Effect of Metformin on Female and Male Reproduction in Endocrine Pathologies and Its Mechanisms. Pharmaceuticals (Basel) 14: 42.
 - https://doi.org/10.3390/ph14010042
- 689. Shpakova EA, Sorokoumov VN, Akenti'ev AV, Derkach KV, Tennikova TB, Shpakov AO (2017) The relationship between physical-chemical characteristics and biological activity of peptide 562–572 of luteinizing hormone receptor modified by decanoyl radicals at the N- and C-termini. Tsitologiia 59: 133–139.
- 690. Derkach KV, Shpakova EA, Shpakov AO (2014) Palmitoylated peptide 562–572 of luteinizing hormone receptor increases testosterone level in male rats. Bull Exp Biol Med 158: 209–212. https://doi.org/10.1007/s10517-014-2724-5

ALLOSTERIC SITES AND ALLOSTERIC REGULATORS OF G-PROTEIN-COUPLED RECEPTORS: GRAY CARDINALS OF SIGNAL TRANSDUCTION

A. O. Shpakov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia e-mail: alex shpakov@list.ru

Membrane G protein-coupled receptors (GPCRs) are key components of most eukaryotic signaling systems, transducing external signals to intracellular effector proteins. Activation of GPCRs occurs through the specific binding of ligands of different nature to their orthosteric site. However, regulation of the affinity of an orthosteric agonist for the receptor, control of its effectiveness, and selection of the preferentially activated intracellular signaling cascade is carried out using allosteric mechanisms. This is due to the presence in GPCRs of many allosteric sites, which differ in structural and functional organization and topology in the receptor molecule, and are located in all its functional subdomains. The endogenous regulators of these sites are simple ions (Na⁺, Zn²⁺, Mg²⁺, Ca²⁺, Cl⁻ and others), lipids (cholesterol, phospholipids, steroids), amino acids and their derivatives, polypeptides, as well as signaling proteins that form functionally active complexes with GPCRs (G proteins, β -ar-

ШПАКОВ

restins, RAMPs), and autoantibodies to the extracellular regions of GPCRs. Based on pharmacological activity, ligands of allosteric sites of GPCRs are divided into positive, negative or silent modulators of the effects of orthosteric agonists, as well as full and inverse agonists or neutral antagonists, which affect the basal activity of the receptor in the absence of an orthosteric agonist, although combining the properties of a modulator and an agonist is also possible. The multiplicity of allosteric sites and allosteric regulators, complex interactions between them, and the involvement of allosteric mechanisms in the formation of receptor complexes play a key role in fine-tuning the functional activity of signaling cascades, in biased agonism, and predetermine the processes of receptor desensitization and the fate of the receptor complex after hormonal signal transduction. The review summarizes and analyzes current concepts and new trends in the field of studying the allosteric regulation of GPCRs, the localization and functional role of allosteric sites, and their endogenous and synthetic ligands. As an example, synthetic allosteric regulators of the receptors of thyroid-stimulating and luteinizing hormones, as potential drugs for the correction of endocrine disorders, are discussed in detail.

Keywords: allosteric regulator, G protein-coupled receptor, allosteric site, orthosteric agonist, signal transduction, heterotrimeric G protein, β -arrestin, receptor complex